
An Introduction to MBT with HOL-TestGen

Burkhart Wolff1

1Université Paris-Sud, LRI, Orsay, France
wolff@lri.fr

DigiCosme Spring School 2013:
Program Analysis and Verification

Supelec 22-26 April 2013

http://www.lri.fr/~wolff
mailto:wolff@lri.fr

Outline
Static Functional Test with

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

Motivation and Introduction

Our First Vision

Testing and proof-based verification may converge,
in a precise technical sense.

We will show this for:

specification-based (black-box) unit testing

generation and management of formal test hypothesis

verification of test hypothesis (not discussed here)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 4

Motivation and Introduction

Our Second Vision

Observation:
Any testcase-generation technique is based on and limited
by underlying constraint-solution techniques.

Approach:
Testing should be integrated in an environment combining
automated and interactive proof techniques.

the test engineer must decide over, abstraction level, split
rules, breadth and depth of data structure exploration ...

we mistrust the dream of a push-button solution

byproduct: a verified test-tool

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 5

Motivation and Introduction HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):
“Functional Programming Language with Quantifiers”
plus definitional libraries on Sets, Lists, . . .
can be used meta-language for Hoare Calculus for Java, Z,
. . .

HOL-TestGen:
based on the interactive theorem prover Isabelle/HOL
implements these visions

Prover IDE and jedit client:
user interface for Isabelle and HOL-TestGen
continuous build and contiuous check models ("theories"),
test-specifications, test-plans
allows to explore the annotation test-plan with types,
theorems, test theorems, test data, ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 6

Motivation and Introduction HOL-TestGen and its Components

Components-Overview

Isabelle/HOL

HOL-TestGen

SML-System

PIDE/jedit

Figure: The Components of HOL-TestGen

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 7

A Sample Workflow

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

A Sample Workflow HOL-TestGen and its Workflow

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:

1 Step I: writing a test theory (in HOL)

2 Step II: writing a test specification
(in the context of the test theory)

3 Step III: generating a test theorem (roughly: testcases)

4 Step IV: generating test data

5 Step V: generating a test script

And of course:

building an executable test driver

and running the test driver

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 9

A Sample Workflow HOL-TestGen and its Workflow

Step I: Writing a Test Theory

Write data types in HOL:

theory List_test
imports Testing
begin

datatype ’a list =
Nil ("[]")

| Cons ’a "’a list" (infixr "#" 65)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 10

A Sample Workflow HOL-TestGen and its Workflow

Step I: Writing a Test Theory

Write recursive functions in HOL:

primrec is_sorted:: "(’a::ord) list⇒bool"
where "is_sorted [] = True"

"is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys⇒((x < y) ∨(x = y))
∧ is_sorted xs"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 11

A Sample Workflow HOL-TestGen and its Workflow

Step II: Write a Test Specification

writing a test specification (TS)
as HOL-TestGen command:

test_spec "is_sorted (prog (l::(’a list)))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 12

A Sample Workflow HOL-TestGen and its Workflow

Step III: Generating Testcases

executing the testcase generator in form of an Isabelle
proof method:

apply(gen_test_cases "prog")

concluded by the command:

store_test_thm "test_sorting"

. . . that binds the current proof state as test theorem to
the name test_sorting.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 13

A Sample Workflow HOL-TestGen and its Workflow

Step III: Generating Testcases

The test theorem contains clauses (the test-cases):

is_sorted (prog [])
is_sorted (prog [?X1X17])
is_sorted (prog [?X2X13, ?X1X12])
is_sorted (prog [?X3X7, ?X2X6, ?X1X5])

as well as clauses (the test-hypothesis):

THYP((∃ x. is_sorted (prog [x])) −→(∀ x. is_sorted(prog [x])))
. . .
THYP((∀ l. 4 < |l| −→is_sorted(prog l))

We will discuss these hypothesises later in great detail.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 14

A Sample Workflow HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,
all sorts of logical massages can be performed.
Finally, a test data generator can be executed:

gen_test_data "test_sorting"

The test data generator
extracts the testcases from the test theorem
searches ground instances satisfying the constraints (none
in the example)

Resulting in test statements like:

is_sorted (prog [])
is_sorted (prog [3])
is_sorted (prog [6, 8])
is_sorted (prog [0, 10, 1])

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 15

A Sample Workflow HOL-TestGen and its Workflow

Step V: Generating A Test Script

Finally, a test script or test harness can be generated:

gen_test_script "test_lists.sml" list" prog

The generated test script can be used to test an
implementation, e. g., in SML, C, or Java

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 16

A Sample Workflow HOL-TestGen and its Workflow

The Complete Test Theory

theory List_test
imports Main begin

primrec is_sorted:: "(’a::ord) list⇒bool"
where "is_sorted [] = True"

"is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys⇒((x < y) ∨(x = y))
∧ is_sorted xs"

test_spec "is_sorted (prog (l::(’a list)))"
apply(gen_test_cases prog)

store_test_thm "test_sorting"

gen_test_data "test_sorting"
gen_test_script "test_lists.sml" list" prog

end

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 17

A Sample Workflow HOL-TestGen and its Workflow

Testing an Implementation

Executing the generated test script may result in:

Test Results:
Test 0 - *** FAILURE: post-condition false, result: [1, 0, 10]
Test 1 - SUCCESS, result: [6, 8]
Test 2 - SUCCESS, result: [3]
Test 3 - SUCCESS, result: []

Summary:
Number successful tests cases: 3 of 4 (ca. 75%)
Number of warnings: 0 of 4 (ca. 0%)
Number of errors: 0 of 4 (ca. 0%)
Number of failures: 1 of 4 (ca. 25%)
Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 18

A Sample Workflow HOL-TestGen and its Workflow

A Critical Revision

But
this is complete rubbish !

This does not
test what we want: a sorting algorithm.

... even a program that just returns the
empty list would conform to this test !

... we need to revise our test !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 19

A Sample Workflow HOL-TestGen and its Workflow

Step I: Re-Writing the Test Theory

We write a reference sorter in HOL:

fun ins :: "(’a::linorder)⇒’a list ⇒ ’a list"
where "ins x [] = [x]"

|"ins x (y#ys) = (if (x < y) then x#y#ys
else (y#(ins x ys)))"

fun sort:: "(’a::linorder) list ⇒ ’a list"
where "sort [] = [] "

| "sort (x#xs) = ins x (sort xs)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 20

A Sample Workflow HOL-TestGen and its Workflow

Step II: Re-Write the Test Specification

and state as test specification (TS)
that "prog" should behave like "sort":

test_spec "sort(l) = prog(l)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 21

A Sample Workflow HOL-TestGen and its Workflow

Step III: Generating Testcases

we re-executing the testcase generator :

apply(gen_test_cases "prog")

concluded by the command:

store_test_thm "test_sorting2"

. . . that binds the current proof state as test theorem to
the name test_sorting2.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 22

A Sample Workflow HOL-TestGen and its Workflow

Step III: Generating Testcases

This time, the test theorem contains the test-cases:

[] = prog([])
[?X1] = prog([?X1])
[[?X1 ≤?X2]]=⇒[?X1, ?X2] = prog([?X1, ?X2])
[[?X1 > ?X2]]=⇒[?X2, ?X1] = prog([?X1, ?X2])
...

as well as all permutations (without having invented this
concenpt) and the test hypothesis:

THYP((∃ x. [x]= prog [x] −→(∀ x. [x]= prog [x])))
. . .
THYP(∀ l. 4 < |l| −→sort l = prog l)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 23

A Sample Workflow HOL-TestGen and its Workflow

Step IV: Test Data Generation

On the test theorem,
all sorts of logical massages can be performed.
Finally, a test data generator can be executed:

gen_test_data "test_sorting2"

The test data generator
extracts the testcases from the test theorem
and produces:

Resulting in test statements like:

[] = prog []
[3] = prog [3]
[6,8] = prog [6, 8]
[0,19] = prog [19, 0]
...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 24

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

From Foundations to Pragmatics Foundations

The Foundations of HOL-TestGen

Basis:

Isabelle/HOL library: 10000 derived rules, . . .
about 500 are organized in larger data-structures used by
Isabelle’s proof procedures, . . .

These Rules were used in advanced proof-procedures for:

Higher-Order Rewriting
Tableaux-based Reasoning —
a standard technique in automated deduction
Arithmetic decision procedures (Coopers Algorithm)

gen_testcases is an automated tactical program using
combination of them.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 26

From Foundations to Pragmatics Foundations

Some Rewrite Rules

Rewriting is a easy to understand deduction paradigm
(similar FP) centered around equality

Arithmetic rules, e. g.,

Suc(x + y) = x + Suc(y)

x + y = y + x

Suc(x) 6= 0

Logic and Set Theory, e. g.,

∀x. (P x ∧ Q x) = (∀x. P x) ∧ (∀x. P x)⋃
x ∈ S. (P x ∪ Q x) = (

⋃
x ∈ S. P x) ∪ (

⋃
x ∈ S. Q x)

JA = A′;A =⇒ B = B′K =⇒ (A ∧ B) = (A′ ∧ B′)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 27

From Foundations to Pragmatics Foundations

The Core Tableaux-Calculus

Safe Introduction Rules for logical connectives:

t = t true

P Q

P ∧ Q

[¬Q]
···
P

P ∨ Q

[P]
···
Q

P→ Q

[P]
···

false

¬P

...

Safe Elimination Rules:

false

P

P ∧ Q

[P,Q]
···
R

R

P ∨ Q

[P]
···
R

[Q]
···
R

R

P→ Q

[¬P]
···
R

[Q]
···
R

R

...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 28

From Foundations to Pragmatics Foundations

The Core Tableaux-Calculus

Safe Introduction Quantifier rules:

P ?x

∃x. P x

∧
x. P x

∀x. P x

Safe Quantifier Elimination ∃x. P x
∧

x.

[P x]
···
Q

Q
Critical Rewrite Rule:

if P then A else B = (P→ A) ∧ (¬P→ B)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 29

From Foundations to Pragmatics Foundations

The Generic Procedure

gen_test_cases :

yes

split_redex

norm_thm

solve_case

use_uniformity

select_redex

redex?

exists
no

Chooser: selects a splitting redex
(e.g. free variables)

Splitter: applies splitting rules (e.g.
regularity hypothesis, see
below)

Normalizer: Applies global simplification
and tableaux calculi of E,
i. e. the previously decribed
underlying ruleset

Solver: Attempts to eliminate
unsatisfiable constraints

Finalizer: Applies minimization and
uniformity hypothesis (see
below).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 30

From Foundations to Pragmatics Explicit Hypothesis

Explicit Test Hypothesis: The Concept

What to do with infinite data-strucutures?

What is the connection between test-cases and test
statements and the test theorems?

Two problems, one answer: Introducing test hypothesis
“on the fly”:

THYP : bool⇒bool
THYP(x) ≡x

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 31

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Regularity Hypothesis

What to do with infinite data-strucutures of type τ?
Conceptually, we split the set of all data of type τ into

{x :: τ | |x| < k} ∪ {x :: τ | |x| ≥ k}

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 32

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Motivation

Consider the first set {X :: τ | |x| < k}
for the case τ = α list, k = 2,3,4.
These sets can be presented as:

1) |x::τ |<2 = (x = []) ∨(∃ a. x = [a])
2) |x::τ |<3 = (x = []) ∨(∃ a. x = [a])

∨ (∃ a b. x = [a,b])
3) |x::τ |<4 = (x = []) ∨(∃ a. x = [a])

∨ (∃ a b. x = [a,b]) ∨(∃ a b c. x = [a,b,c])

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 33

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity I: Data Separation Rules

This motivates the (derived) data-separation rule:

(τ = α list, k = 3):[
x = []

]
···
P

∧
a.

[
x = [a]

]
···
P

∧
a b.

[
x = [a,b]

]
···
P THYP M

P

Here, M is an abbreviation for:

∀ x. k < |x| −→P x

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 34

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity II: Uniformity Hypothesis

What is the connection between test cases and test
statements and the test theorems?

Well, the “uniformity hypothesis”:

Once the program behaves correct for one test case,
it behaves correct for all test cases ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 35

From Foundations to Pragmatics Explicit Hypothesis

Taming Infinity II: Uniformity Hypothesis

Using the uniformity hypothesis, a test case:

n) [[C1 x; ...; Cm x]] =⇒TS x

is transformed into:

n) [[C1 ?x; ...; Cm ?x]] =⇒TS ?x
n+1) THYP((∃ x. C1 x ... Cm x −→TS x)

−→(∀ x. C1 x ... Cm x −→TS x))

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 36

From Foundations to Pragmatics Putting the Pieces Together

Testcase Generation by NF Computations

Test-theorem is computed out of the test specification by

a heuristicts applying Data-Separation Theorems

a rewriting normal-form computation

a tableaux-reasoning normal-form computation

shifting variables referring to the program under test
prog test into the conclusion, e.g.:

[[¬(prog x = c); ¬(prog x = d)]]=⇒A

is transformed equivalently into

[[¬A]] =⇒(prog x = c) ∨(prog x = d)

as a final step, all resulting clauses were normalized by
applying uniformity hypothesis to each free variable.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 37

A Sample Derivation of a Test Theorem

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

A Sample Derivation of a Test Theorem

Testcase Generation: An Example

theory TestPrimRec
imports Main
begin
primrec

x mem [] = False
x mem (y#S) = if y = x

then True
else x mem S

test_spec:
"x mem S =⇒prog x S"

apply(gen_testcase 0 0)

1) prog x [x]
2)
∧

b. prog x [x,b]
3)
∧

a. a6=x=⇒prog x [a,x]
4) THYP(3 ≤size (S)

−→∀ x. x mem S
−→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 39

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

is transformed via data-separation lemma to:

1. S=[] =⇒x mem S −→prog x S

2.
∧

a. S=[a] =⇒x mem S −→prog x S

3.
∧

a b. S=[a,b] =⇒x mem S −→prog x S

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

canonization leads to:

1. x mem [] =⇒prog x []

2.
∧

a. x mem [a] =⇒prog x [a]

3.
∧

a b. x mem [a,b] =⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

which is reduced via the equation for mem:

1. false =⇒prog x []

2.
∧

a. if a = x then True
else x mem [] =⇒prog x [a]

3.
∧

a b. if a = x then True
else x mem [b] =⇒prog x [a,b]

4. THYP(3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

erasure for unsatisfyable constraints and rewriting
conditionals yields:

2.
∧

a. a = x ∨(a 6=x ∧false)
=⇒prog x [a]

3.
∧

a b. a = x ∨(a 6=x ∧x mem [b]) =⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . which is further reduced by tableaux rules and
canconization to:

2.
∧

a. prog a [a]

3.
∧

a b. a = x =⇒prog x [a,b]
3’.

∧
a b. [[a6=x; x mem [b]]]=⇒prog x [a,b]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . which is reduced by canonization and rewriting of mem to:

2.
∧

a. prog x [x]

3.
∧

a b. prog x [x,b]
3’.

∧
a b. a6=x =⇒prog x [a,x]

4. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

Sample Derivation of Test Theorems

Example

x mem S −→prog x S

. . . as a final step, uniformity is expressed:

1. prog ?x1 [?x1]
2. prog ?x2 [?x2,?b2]
3. ?a36=?x1 =⇒prog ?x3 [?a3,?x3]
4. THYP(∃ x.prog x [x] −→prog x [x]

...
7. THYP(∀ S. 3 ≤|S| −→x mem S −→prog x S)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 40

A Sample Derivation of a Test Theorem

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

Summary Test Case Generation

Test Case Generation (I)

The test-theorem for a test specification TS has the general
form:

JTC1; . . . ; TCn; THYP H1; . . . ; THYP HmK =⇒ TS

where the test cases TCi have the form:

∃x.C1x ∧ . . . ∧ Cmx =⇒ P x (prog x)

and where the test-hypothesis are either uniformity or
regularity hypothethises.
The Ci in a test case were also called constraints of the
testcase.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 42

Summary Test Case Generation

Test Case Generation (II)

The overall meaning of the test-theorem is:

if the program passes the tests for all test-cases,
and if the test hypothesis are valid for PUT,
then PUT complies to testspecification TS.

Thus, the test-theorem establishes a formal link
between test and verification !!!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 43

Summary Test Data Generation

Using Constraint Solving

Test data generation is now a constraint satisfaction problem.

We eliminate the existential quantifiers (or equivalently:
the meta variables ?x , ?y, . . .) by constructing values
(“ground instances”) satisfying the constraints. This is
done by:

random testing (for a smaller input space!!!)
arithmetic decision procedures
reusing pre-compiled abstract test cases
. . .
interactive simplify and check, if constraints went away!

Output: Sets of instantiated test theorems
(to be converted into Test Driver Code)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 44

Summary Theoretic Properties of Test-Case Generation

Correctness of a Test-Theorem

A Test-Theorem is correct iff the implication:

TC1 ∧ . . . ∧ TCn ∧ THYP H1 ∧ . . . ∧ THYP Hm =⇒ TS

is logically valid.
Well, actually correctness is assumed if we speak of a
correctness-theorem.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 45

Summary Theoretic Properties of Test-Case Generation

Completeness of a Test-Theorem

A Test-Theorem is complete iff the implication:

TS =⇒ (TC1 ∧ . . . ∧ TCn ∧ THYP H1 ∧ . . . ∧ THYP Hm)

is logically valid.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 46

Summary Theoretic Properties of Test-Case Generation

Minimality of a Test-Theorem

A Test-Theorem is minimal iff the test cases are pairwise
disjoint, i. e.

{x.Ci1x ∧ . . . ∧ Cimx} ∩ {x.Cj1x ∧ . . . ∧ Cjnx} = {}

is logically valid for all i 6= j. This means that the partitions of
input are disjoint.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 47

Summary Theoretic Properties of Test-Case Generation

Theoretical Properties: The Case for

HOL-TestGen

generated test-theorems are correct by construction

... and complete (by meta-theoretic arguments)

... but not necessarily minimal (although, in practice, for
data-type-oriented specifications, not far from minimality).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 48

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 49

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Tuning the Workflow by Interactive Proof

Observations:

Test-theorem generations is fairly easy ...

Test-data generation is fairly hard ...
(it does not really matter if you use random solving
or just plain enumeration !!!)

Both are scalable processes . . .
(via parameters like depth, iterations, ...)

There are bad and less bad forms of test-theorems !!!

Recall: Test-theorem and test-data generation are normal
form computations:
=⇒ More Rules, better results . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 50

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

What makes a Test-case “Bad”

redundancy.

many unsatisfiable constraints.

many constraints with unclear logical status.

constraints that are difficult to solve.
(like arithmetics).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 51

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Case Studies: Red-black Trees

Motivation

Test a non-trivial and widely-used data structure.

part of the SML standard library

widely used internally in the sml/NJ compiler, e. g., for
providing efficient implementation for Sets, Bags, . . . ;

very hard to generate (balanced) instances randomly

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 52

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a
black parent.

Black Invariant: each path from the
root to an empty node
(leaf) has the same
number of black nodes.

2

5

6

8

datatype
color = R | B
tree = E | T color (α tree) (β::ord item) (α tree)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 53

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Modeling Red-black Trees II

Red-Black Trees: Test Theory

consts
redinv :: tree⇒bool
blackinv :: tree⇒bool

recdef blackinv measure (λ t. (size t))
blackinv E = True
blackinv (T color a y b) =

((blackinv a) ∧(blackinv b)
∧ ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 54

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Test Specification

Red-Black Trees: Test Specification

test_spec:
"isord t ∧ redinv t ∧blackinv t
∧ isin (y::int) t
−→
(blackinv(prog(y,t)))"

where prog is the program under test (e. g., delete).

Using the standard-workflows results, among others:

RSF −→blackinv (prog (100, T B E 7 E))
blackinv (prog (−91, T B (T R E −91 E) 5 E))

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 55

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: A first Summary

Observation:

Guessing (i. e., random-solving) valid red-black trees is difficult.

On the one hand:

random-solving is nearly impossible for solutions which are
“difficult” to find
only a small fraction of trees with depth k are balanced

On the other hand:

we can quite easily construct valid red-black trees
interactively.

Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 56

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: A first Summary

Observation:

Guessing (i. e., random-solving) valid red-black trees is difficult.

On the one hand:

random-solving is nearly impossible for solutions which are
“difficult” to find
only a small fraction of trees with depth k are balanced

On the other hand:

we can quite easily construct valid red-black trees
interactively.

Question:
Can we improve the test-data generation by using our
knowledge about red-black trees?

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 56

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

First attempt:
enumerate the height of some trees without black nodes

lemma maxB_0_1:
"max_B_height (E:: int tree) = 0"

lemma maxB_0_5:
"max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . .

and error-prone

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 57

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Hierarchical Testing I

Idea:

Characterize valid instances of red-black tree in more detail and
use this knowledge to guide the test data generation.

First attempt:
enumerate the height of some trees without black nodes

lemma maxB_0_1:
"max_B_height (E:: int tree) = 0"

lemma maxB_0_5:
"max_B_height (T R (T R E 2 E) (5::int) (T R E 7 E)) = 0"

But this is tedious . . . and error-prone

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 57

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

How to Improve Test-Theorems

New simplification rule establishing unsatisfiability.

New rules establishing equational constraints for
variables.

(max_B_height (T x t1 val t2) = 0) =⇒(x = R)

(max_B_height x = 0) =
(x = E ∨∃ a y b. x = T R a y b ∧

max(max_B_height a)
(max_B_height b) = 0)

Many rules are domain specific —
few hope that automation pays really off.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 58

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Improvement Slots

logical massage of test-theorem.

in-situ improvements:
add new rules into the context before gen_test_cases.

post-hoc logical massage of test-theorem.

in-situ improvements:
add new rules into the context before gen_test_data.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 59

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5

6

8

(a) pre-state

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 60

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “8”

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 60

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “8”

6

5

2

(c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 60

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: sml/NJ Implementation

2

5 8

6

(b) pre-state: delete “8”

6

5

2

(c) correct result

5

2

6

(d) result of sml/NJ

Figure: Test Data for Deleting a Node in a Red-Black Tree

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 60

Advanced Test Scenarios Tuning the Workflow by Interactive Proof

Red-black Trees: Summary

Statistics: 348 test cases were generated
(within 2 minutes)

One error found: crucial violation against
red/black-invariants

Red-black-trees degenerate to linked list
(insert/search, etc. only in linear time)

Not found within 12 years

Reproduced meanwhile by random test tool

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 61

Advanced Test Scenarios Sequence Testing

Motivation: Sequence Test

So far, we have used HOL-TestGen only for test
specifications of the form:

pre x→ post x (prog x)

This seems to limit the HOL-TestGen approach to
UNIT-tests.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 62

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

No Non-determinism.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 63

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 63

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

No Automata - No Tests for Sequential
Behaviour.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 63

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 63

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

No possibility to describe reactive tests.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 63

Advanced Test Scenarios Sequence Testing

Apparent Limitations of HOL-TestGen

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

HOL has Monads. And therefore means for
IO-specifications.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 63

Advanced Test Scenarios Sequence Testing

Representing Sequence Test

Test-Specification Pattern:

accept trace→P(Mfold trace σ0 prog)

where

Mfold [] σ = Some σ
MFold (input::R) = case prog(input, σ) of

None ⇒None
| Some σ‘⇒Mfold R σ’ prog

Can this be used for reactive tests?

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 64

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

stop

ack

ack

req?X send?D!Yport!Y

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

Observation:

X and Y are only known at runtime!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 65

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

Observation:

X and Y are only known at runtime!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 65

Advanced Test Scenarios Sequence Testing

Example: A Reactive System I

A toy client-server system:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .
Observation:

X and Y are only known at runtime!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 65

Advanced Test Scenarios Sequence Testing

Example: A Reactive System II

Observation:

X and Y are only known at runtime!

Mfold is a program that manages a state at test run time.

use an environment that keeps track of the instances of X
and Y?

Infrastructure: An observer maps
abstract events (reqX, port Y, ...) in traces
to
concrete events (req 4, port 2, ...) in runs!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 66

Advanced Test Scenarios Sequence Testing

Example: A Reactive System |||

Infrastructure: the observer

observer rebind substitute postcond ioprog ≡
(λ input. (λ (σ, σ’). let input’= substitute σinput in

case ioprog input’ σ’ of
None⇒None (* ioprog failure − eg. timeout ... *)

| Some (output, σ’’’)⇒let σ’’ = rebind σoutput in
(if postcond (σ’’,σ’’’) input’ output
then Some(σ’’, σ’’’)
else None (* postcond failure *))))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 67

Advanced Test Scenarios Sequence Testing

Example: A Reactive Test IV

Reactive Test-Specification Pattern:

accept trace→
P(Mfold traceσ0 (observer rebind subst postcond ioprog))

for reactive systems!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 68

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Motivation

So far, we have used HOL-TestGen only for test
specifications of the form:

pre x→ post x (prog x)

We have seen, this does not exclude to model reactive
sequence test in HOL-TestGen.

However, this seems still exclude the HOL-TestGen
approach from program-based testing approaches (such
as JavaPathfinder-SE or Pexx).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 69

Advanced Test Scenarios Program-based Testing by Symbolic Execution

How to Realize White-box-Tests in

HOL-TestGen?

Fact: HOL is a powerful logical framework used to embed
all sorts of specification and programming languages.

Thus, we can embed the language of our choice in
HOL-TestGen...

and derive the necessary rules for symbolic execution
based tests ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 70

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The Master-Plan for White-box-Tests in

HOL-TestGen?

We embed an imperative core-language — called IMP —
into HOL-TestGen, by defining its syntax and semantics

We add a specification mechanism for IMP: Hoare-Triples

we derive rules for symbolic evaluation and
loop-unfolding.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 71

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Syntax

The (abstract) IMP syntax is defined in Com.thy.

Com = Main +
typedecl loc
types
val = nat (*arb.*)
state = loc⇒val
aexp = state⇒val
bexp = state⇒bool

datatype com =
SKIP
| ":==" loc aexp (infixl 60)
| Semi com com ("_ ; _"[60, 60]10)
| Cond bexp com com

(" IF _ THEN _ ELSE _"60)
| While bexp com ("WHILE _ DO_"60)

The type loc stands for locations. Note that expressions are
represented as HOL-functions depending on state. The
datatype com stands for commands (command sequences).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 72

http://isabelle.in.tum.de/library/HOL/IMP/Com.html

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Example: The Integer Square-Root Program

tm :== λs. 1;
sum :== λs. 1;
i :== λs. 0;
WHILE λs. (s sum) <= (s a) DO

(i :== λs. (s i) + 1;
tm :== λs. (s tm) + 2;
sum :== λs. (s tm) + (s sum))

How does this program work?
Note: There is the implicit assumption, that tm, sum and i are
distinct locations, i.e. they are not aliases from each other !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 73

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

��
���

��:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 74

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

��
���

��:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 74

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

��
���

��:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 74

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics I: (Natural Semantics

Natural semantics going back to Plotkin

idea: programs relates states.

state -a :== b
state′ �

��
���

��:
WHILE . . .

XXXXXXXXz
SKIP

state′′

state′′′

consts evalc :: (com ×state ×state) set

translations "〈c,s〉 −→c s’ " ≡ "(c,s,s’) ∈evalc"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 74

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The transition relation of natural semantics is inductively
defined.

This means intuitively: The evaluation steps defined by the
following rules are the only possible steps.

Let’s go . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 75

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The transition relation of natural semantics is inductively
defined.

This means intuitively: The evaluation steps defined by the
following rules are the only possible steps.

Let’s go . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 75

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The transition relation of natural semantics is inductively
defined.

This means intuitively: The evaluation steps defined by the
following rules are the only possible steps.

Let’s go . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 75

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The natural semantics as inductive definition:

inductive evalc
intrs
Skip: 〈SKIP,s〉 −→c s

Assign: 〈x :== a,s〉 −→c s[x 7→a s]

Note that s[x 7→a s] is an abbreviation for update s x (a s),
where

update s x v ≡λy. if y=x then v else s y

Note that a is of type aexp or bexp.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 76

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The natural semantics as inductive definition:

inductive evalc
intrs
Skip: 〈SKIP,s〉 −→c s

Assign: 〈x :== a,s〉 −→c s[x 7→a s]

Note that s[x 7→a s] is an abbreviation for update s x (a s),
where

update s x v ≡λy. if y=x then v else s y

Note that a is of type aexp or bexp.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 76

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The natural semantics as inductive definition:

inductive evalc
intrs
Skip: 〈SKIP,s〉 −→c s

Assign: 〈x :== a,s〉 −→c s[x 7→a s]

Note that s[x 7→a s] is an abbreviation for update s x (a s),
where

update s x v ≡λy. if y=x then v else s y

Note that a is of type aexp or bexp.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 76

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Excursion: A minimal memory model:

(s[x 7→E]) x = E
x 6=y =⇒ (s[x 7→E]) y = s y

This small memory theory contains the typical rules for
updating and memory-access. Note that this rewrite system is
in fact executable!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 77

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 78

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 78

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 78

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The semantics for the sequential composition of statements
can be described as follows:

Semi: [[〈c,s〉 −→c s’; 〈c’,s’〉 −→c s’’]] =⇒〈c;c’, s〉 −→c s’’

Rationale of natural semantics:

if you can “jump” via c from s to s’, . . .

and if you can “jump” via c’ from s’ to s’’ . . .

then this means that you can “jump” via the composition
c;c’ from c to c’’.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 78

Advanced Test Scenarios Program-based Testing by Symbolic Execution

The other constructs of the language are treated analogously:

IfTrue: [[b s; 〈c,s〉 −→c s’]]

=⇒〈 IF b THEN c ELSE c’, s〉 −→c s’

IfFalse: [[¬b s; 〈c’,s〉 −→c s’]]

=⇒〈 IF b THEN c ELSE c’, s〉 −→c s’

WhileFalse: [[¬b s]]

=⇒〈WHILE b DO c, s〉 −→c s

WhileTrue: [[b s; 〈c,s〉 −→c s’;〈WHILE b DO c,s’〉 −→c s’’]]

=⇒〈WHILE b DO c, s〉 −→c s’’

Note that for non-terminating programs no final state can be
derived !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 79

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics II: (Transition Semantics)

The transition semantics is inspired by abstract machines.

idea: programs relate “configurations”.

a :== b;X, state - X, state′ ��
���

��:

XXXXXXXz X′′′, state′′′

X′′, state′′

consts evalc1 :: ((com ×state) ×(com ×state)) set

translations "cs −1−> cs’" ≡"(cs,cs’) ∈evalc1"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 80

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics II: (Transition Semantics)

The transition semantics is inspired by abstract machines.

idea: programs relate “configurations”.

a :== b;X, state - X, state′ ��
���

��:

XXXXXXXz X′′′, state′′′

X′′, state′′

consts evalc1 :: ((com ×state) ×(com ×state)) set

translations "cs −1−> cs’" ≡"(cs,cs’) ∈evalc1"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 80

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics II: (Transition Semantics)

The transition semantics is inspired by abstract machines.

idea: programs relate “configurations”.

a :== b;X, state - X, state′ ��
���

��:

XXXXXXXz X′′′, state′′′

X′′, state′′

consts evalc1 :: ((com ×state) ×(com ×state)) set

translations "cs −1−> cs’" ≡"(cs,cs’) ∈evalc1"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 80

Advanced Test Scenarios Program-based Testing by Symbolic Execution

inductive evalc1
intro

Assign: (x:==a,s) −1−> (SKIP, s[x 7→a s])
Semi1: (SKIP;c,s) −1−> (c,s)
Semi2: (c,s) −1−> (c’’,s’)

=⇒ (c;c’,s) −1−> (c’’;c’,s’)

Rationale of Transition Semantics:

the first component in a configuration represents a stack
of statements yet to be executed . . .

this stack can also be seen as a program counter . . .

transition semantics is close to an abstract machine.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

inductive evalc1
intro

Assign: (x:==a,s) −1−> (SKIP, s[x 7→a s])
Semi1: (SKIP;c,s) −1−> (c,s)
Semi2: (c,s) −1−> (c’’,s’)

=⇒ (c;c’,s) −1−> (c’’;c’,s’)

Rationale of Transition Semantics:

the first component in a configuration represents a stack
of statements yet to be executed . . .

this stack can also be seen as a program counter . . .

transition semantics is close to an abstract machine.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

inductive evalc1
intro

Assign: (x:==a,s) −1−> (SKIP, s[x 7→a s])
Semi1: (SKIP;c,s) −1−> (c,s)
Semi2: (c,s) −1−> (c’’,s’)

=⇒ (c;c’,s) −1−> (c’’;c’,s’)

Rationale of Transition Semantics:

the first component in a configuration represents a stack
of statements yet to be executed . . .

this stack can also be seen as a program counter . . .

transition semantics is close to an abstract machine.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 81

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IfTrue:
b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’,s)

IfFalse:
¬b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’’,s)

WhileFalse:
¬b s =⇒(WHILE b DO c,s) −1−> (SKIP,s)

WhileTrue:
b s =⇒(WHILE b DO c,s) −1−> (c;WHILE b DOc,s)

A non-terminating loop always leads to successor
configurations . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 82

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IfTrue:
b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’,s)

IfFalse:
¬b s =⇒(IF b THEN c’ ELSE c ’’, s) −1−> (c’’,s)

WhileFalse:
¬b s =⇒(WHILE b DO c,s) −1−> (SKIP,s)

WhileTrue:
b s =⇒(WHILE b DO c,s) −1−> (c;WHILE b DOc,s)

A non-terminating loop always leads to successor
configurations . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 82

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.
As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 83

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.

As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 83

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.
As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 83

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics III: (Denotational Semantics)

Idea:

Associate “the meaning of the program” to a statement
directly by a semantic domain. Explain loops as fixpoint (or
limit) construction on this semantic domain.
As semantic domain we choose the state relation:

types com_den = (state ×state) set

and declare the semantic function:

consts C :: com⇒com_den

The semantic function C is defined recursively over the syntax.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 83

Advanced Test Scenarios Program-based Testing by Symbolic Execution

primrec
C(SKIP) = Id (* ≡identity relation *)
C(x :== a) = {(s,t). t = s[x 7→ a s]}
C(c ; c’) = C(c’) O C(c) (* ≡seq. composition *)
C(IF b THEN c’ ELSE c’’) =

{(s,t). (s,t) ∈C(c’) ∧b(s)} ∪
{(s,t). (s,t) ∈C(c’’) ∧¬b(s)}"

C(WHILE b DO c) = lfp (Γ b (C(c)))"

where:

Γ b c ≡(λϕ. {(s,t). (s,t) ∈ (ϕ O c) ∧b(s)} ∪
{(s,t). s=t ∧¬b(s)})

and where the least-fixpoint-operator lfp F corresponds in this
special case to: ⋃

n∈N

Fn

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 84

Advanced Test Scenarios Program-based Testing by Symbolic Execution

primrec
C(SKIP) = Id (* ≡identity relation *)
C(x :== a) = {(s,t). t = s[x 7→ a s]}
C(c ; c’) = C(c’) O C(c) (* ≡seq. composition *)
C(IF b THEN c’ ELSE c’’) =

{(s,t). (s,t) ∈C(c’) ∧b(s)} ∪
{(s,t). (s,t) ∈C(c’’) ∧¬b(s)}"

C(WHILE b DO c) = lfp (Γ b (C(c)))"

where:

Γ b c ≡(λϕ. {(s,t). (s,t) ∈ (ϕ O c) ∧b(s)} ∪
{(s,t). s=t ∧¬b(s)})

and where the least-fixpoint-operator lfp F corresponds in this
special case to: ⋃

n∈N

Fn

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 84

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems I

Theorem: Natural and Transition Semantics Equivalent

(c, s) −*−> (SKIP, t) = (〈c,s〉 −→c t)

where cs −*−> cs’ ≡(cs,cs’)∈evalc1∗, i.e. the new arrow
denotes the transitive closure over old one.

Theorem: Denotational and Natural Semantics
Equivalent

((s, t) ∈C c) = (〈c,s〉 −→c t)

i.e. all three semantics are closely related !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 85

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems I

Theorem: Natural and Transition Semantics Equivalent

(c, s) −*−> (SKIP, t) = (〈c,s〉 −→c t)

where cs −*−> cs’ ≡(cs,cs’)∈evalc1∗, i.e. the new arrow
denotes the transitive closure over old one.

Theorem: Denotational and Natural Semantics
Equivalent

((s, t) ∈C c) = (〈c,s〉 −→c t)

i.e. all three semantics are closely related !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 85

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems I

Theorem: Natural and Transition Semantics Equivalent

(c, s) −*−> (SKIP, t) = (〈c,s〉 −→c t)

where cs −*−> cs’ ≡(cs,cs’)∈evalc1∗, i.e. the new arrow
denotes the transitive closure over old one.

Theorem: Denotational and Natural Semantics
Equivalent

((s, t) ∈C c) = (〈c,s〉 −→c t)

i.e. all three semantics are closely related !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 85

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems II

Theorem: Natural Semantics can be evaluated
equationally !!!

〈SKIP,s〉 −→c s’ = (s’ = s)

〈x :== a,s〉 −→c s’ = (s’ = s[x 7→a s])

〈c; c’, s〉 −→c s’ = (∃ s’’. 〈c,s〉 −→c s’’ ∧〈c’,s’’〉 −→c s’)

〈 IF b THEN c ELSE c’, s〉 −→c s’ = (b s ∧〈c,s〉 −→c s’) ∨
(¬b s ∧〈c’,s〉 −→c s’)

Note: This is the key for evaluating a program symbolically !!!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 86

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Example: “a:==2;b:==2*a”

〈a:==λs. 2; b:==λs. 2 * (s a),s〉 −→c s’

≡ (∃ s’’. 〈a:==λs. 2,s〉 −→c s’’ ∧〈b:==λs. 2 * (s a),s’’〉 −→c s’)

≡ (∃ s’’. s’’ = s[a7→(λs. 2) s] ∧s’ = s’’[b 7→(λs. 2 * (s a)) s’’])
≡ (∃ s’’. s’’ = s[a7→ 2] ∧s’ = s’’[b 7→ 2 * (s’’ a)])
≡ s’ = s[a7→ 2][b 7→ 2 * (s[a 7→2] a)]
≡ s’ = s[a7→ 2][b 7→ 2 * 2]
≡ s’ = s[a7→ 2][b 7→ 4]

Note:

1 The λ-notation is perhaps a bit irritating, but helps to get
the nitty-gritty details of substitution right.

2 The forth step is correct due to the “one-point-rule”
(∃x. x = e ∧ P(x)) = P(e).

3 This does not work for the loop and for recursion...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 87

Advanced Test Scenarios Program-based Testing by Symbolic Execution

IMP Semantics:Theorems III

Denotational semantics makes it easy to prove facts like:

C (WHILE b DO c) = C (IF b THEN c; WHILE b DO c ELSE SKIP)
C (SKIP ; c) = C(c)
C (c; SKIP) = C(c)
C ((c ; d); e) = C(c;(d;e))
C ((IF b THEN c ELSE d); e) = C(IF b THEN c ; e ELSE d ; e)

etc.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 88

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Program Annotations: Assertions revisited.

For our scenario, we need a mechanism to combine programs
with their specifications.
The Standard: Hoare-Tripel with Pre- and Post-Conditions a
special form of assertions.

types assn = state⇒bool
consts valid :: (assn ×com ×assn)⇒bool ("|= {_} _ {_}")

defs
|= {P}c{Q} ≡∀ s. ∀ t. (s,t) ∈C(c) −→P s −→ Q t"

Note that this reflects partial correctnes; for a non-terminating
program c, i.e. (s,t) /∈ C(c), a Hoare-Triple does not enforce
anything as post-condition !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 89

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Finally: Symbolic Evaluation.

For programs without loop, we have already anything together
for symbolic evaluation:

∀ s s’. 〈c,s〉 −→c s’ ∧ P s → Q s’

=⇒|= {P}c{Q}

or in more formal, natural-deduction notation:[
〈c, s〉 →c s

′, P s
]
s,s′

···
Q s′

|= {P} c {Q}
Applied in backwards-inference, this rule generates the
constraints for the states that were amenable to equational
evaluation rules shown before.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 90

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Example: “|= {0 ≤ x}a:==x;b:==2*a{0 ≤ b}”
|= {λs. 0 ≤s x} a:==λs. s x; b:==λs. 2 * (s a) {λs. 0 ≤s b}

⇐= s’ = s[a7→ s x][b 7→ 2 * (s[a 7→s x] a)] ∧0 ≤s x −→0 ≤s’ b
≡ s’ = s[a7→ s x][b 7→ 2 * (s x)] ∧“PRE s’’ −→“POST s’ ’’
≡ “PRE s’’ −→ “POST (s[a7→ s x][b7→ 2 * (s x)]) ’’

Note:

Note: the logical constaint
s’ = s[a7→s x][b7→2 * s x] ∧0 ≤s x consists of the

constraint that functionally relate pre-state s to post-state
s’ and the Path-Condition (in this case just “PRE s’’).
This also works for conditionals ... Revise !
The implication is actually the core validation problem: It
means that for a certain path, we search for the solution
of a path condition that validates the post-condition. We
can decide to 1) keep it as test hypothesis, 2) test k
witnesses and add a uniformity hypothesis, or 3) verify it.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 91

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Validation of Post-Conditions for a Given Path:

Ad 1 : Add THYP(PRE s→ POST(s[a 7→ s x][b 7→ 2 ∗ (s x)]))
(is: THYP(0 ≤ s x→ 0 ≤ 2 ∗ s x)) as test hypothesis.

Ad 2 : Find witness to ∃s.0 ≤ s x, run a test on this witness
(does it establish the post-condition?) and add the
uniformity-hypothesis:
THYP(∃s. 0 ≤ s x→ 0 ≤ 2∗s x→ ∀s. 0 ≤ s x→ 0 ≤ 2∗s x).

Ad 3 : Verify the implication, which is in this case easy.

Option 1 can be used to model weaker coverage criteria than
all statements and k loops, option 2 can be significantly easier
to show than option 3, but as the latter shows, for simple
formulas, testing is not necessarily the best solution.

Control-heuristics necessary.
B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 92

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 93

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 93

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 93

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

We have found a symbolic execution method that works for
programs with assignments, SKIP’s, sequentials, and
conditionals.

What to do with loops ???

Answer: Unfolding to a certain depth.

In the sequel, we define an unfolding function, prove it
semantically correct with respect to C, and apply the
procedure above again.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 93

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

consts unwind :: "nat ×com⇒com"
recdef unwind "less_than <*lex*> measure(λ s. size s)"
"unwind(n, SKIP) = SKIP"
"unwind(n, a :== E) = (a :== E)"
"unwind(n, IF b THEN c ELSE d) = IF b THEN unwind(n,c) ELSEunwind(n,d)"
"unwind(n, WHILEb DO c) =

if 0 < n
then IF b THEN unwind(n,c)@@unwind(n− 1,WHILE b DOc) ELSESKIP
else WHILE b DO unwind(0, c))"

"unwind(n, SKIP; c) = unwind(n, c)"
"unwind(n, c ; SKIP) = unwind(n, c)"
"unwind(n, (IF b THEN c ELSE d) ; e) =

(IF b THEN (unwind(n,c;e)) ELSE(unwind(n,d;e)))"
"unwind(n, (c ; d); e) = (unwind(n, c;d))@@(unwind(n,e))"
"unwind(n, c ; d) = (unwind(n, c))@@(unwind(n, d))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 94

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

where the primitive recursive auxiliary function c@@d
appends a command d to the last command in c that is
reachable from the root via sequential composition modes.

consts "@@" :: "[com,com]⇒com" (infixr 70)
primrec

"SKIP @@ c = c"
"(x:== E) @@ c = ((x:== E); c)"
"(c;d) @@ e = (c; d @@ e)"
"(IF b THEN c ELSE d) @@ e = (IF b THENc @@ e ELSEd @@ e)"
"(WHILE b DO c) @@ e = ((WHILE b DOc);e)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 95

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

Proofs for Correctness are straight-forward (done in
Isabelle/HOL) based on the shown rules for denotationally
equivalent programs ...

Theorem: Unwind and Concat correct

C(c @@ d) = C(c;d) and C(unwind(n,c)) = C(c)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 96

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

This allows us (together with the equivalence of natural and
denotational semantics) to generalize our scheme:

∀ s s’. 〈 unwind(n,c) ,s〉 −→c s’ ∧ P s → Q s’

=⇒|= {P}c{Q}

for an arbitrary (user-defined!) n !
Or in natural deduction notation:[

〈unwind(n, c), s〉 →c s
′, P s

]
s,s′

···
Q s′

|= {P} c {Q}

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 97

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

This allows us (together with the equivalence of natural and
denotational semantics) to generalize our scheme:

∀ s s’. 〈 unwind(n,c) ,s〉 −→c s’ ∧ P s → Q s’

=⇒|= {P}c{Q}

for an arbitrary (user-defined!) n !
Or in natural deduction notation:[

〈unwind(n, c), s〉 →c s
′, P s

]
s,s′

···
Q s′

|= {P} c {Q}

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 97

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

Example:
“|= {True} integer_squareroot {i2 ≤ a ∧ a ≤ (i+ 1)2}”
Setting the depth to n = 3 and running the process yields:

1. [[9 ≤s a; 〈WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum),

s(i := 3, tm := 7, sum := 16)〉 −→c s’

]] =⇒post s’
2. [[4 ≤s a; 8 < s a ; s’ = s (i := 2, tm := 5, sum := 9)]] =⇒post s’
3. [[1 ≤s a; s a < 4; s’ = s (i := 1, tm := 3, sum := 4)]] =⇒post s’
4. [[s a = 0 ; s’ = s(tm := 1, sum := 1, i := 0)]] =⇒post s’

which is a neat enumeration of all path-conditions for paths up
to n = 3 times through the loop, except subgoal 1, which is:

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 98

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Handling Loops (and Recursion).

Example:
“|= {True} integer_squareroot {i2 ≤ a ∧ a ≤ (i+ 1)2}”
Setting the depth to n = 3 and running the process yields:

1. [[9 ≤s a; 〈WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum),

s(i := 3, tm := 7, sum := 16)〉 −→c s’

]] =⇒post s’
2. [[4 ≤s a; 8 < s a ; s’ = s (i := 2, tm := 5, sum := 9)]] =⇒post s’
3. [[1 ≤s a; s a < 4; s’ = s (i := 1, tm := 3, sum := 4)]] =⇒post s’
4. [[s a = 0 ; s’ = s(tm := 1, sum := 1, i := 0)]] =⇒post s’

which is a neat enumeration of all path-conditions for paths up
to n = 3 times through the loop, except subgoal 1, which is:

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 98

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Explicit test-Hypothesis in White-Box-Tests:

1. THYP(9 ≤s a ∧〈WHILEλs. s sum ≤s a
DO i :== λs. Suc (s i) ;
(tm :== λs. Suc (Suc (s tm)) ;

sum :== λs. s tm + s sum),
s(i := 3, tm := 7, sum := 16)〉 −→c s’

→ post s’)

... a kind of “structural” regularity hypothesis !

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 99

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Summary: Program-based Tests in

HOL-TestGen:

1 It is possible to do white-box tests in HOL-TestGen

2 Requisite: Denotational and Natural Semantics for a
programming language

3 Proven correct unfolding scheme

4 Explicit Test-Hypotheses Concept also applicable for
Program-based Testing

5 Can either verify or test paths ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 100

Advanced Test Scenarios Program-based Testing by Symbolic Execution

Summary (II) : Program-based Tests in

HOL-TestGen:

Open Questions:

1 Does it scale for large programs ???

2 Does it scale for complex memory models ???

3 What heuristics should we choose ???

4 How to combine the approach with randomized tests?

5 How to design Modular Test Methods ???

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 101

Introduction to Sequence Testing

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 102

Introduction to Sequence Testing Motivation

Motivation: Sequence Test

So far, we have used HOL-TestGen only for test
specifications of the form:

pre x→ post x (prog x)

This seems to limit the HOL-TestGen approach to
UNIT-tests.

This seems to exclude testing of systems with internal
state.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 103

Introduction to Sequence Testing Motivation: A Sequence Example

Motivation: Sequence Test Example I

Example: A little Bank - Acount System.

internal var register : table[client, nat]integer

op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register)
post register’=register[(c,no) := register(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(register)
post register’=register and result = register(c,no)

op withdraw(c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register) and register(c,no) >= amount
post register’=register[(c,no) := register(c,no) − amount]

(Syntax a vague mix between JML, ACSDL, VCC(1) and OCL ...)
B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 104

Introduction to Sequence Testing Motivation: A Sequence Example

Motivation: Sequence Test Example II

1 Problem: Only the public interface (i. e. the operations
deposit, balance and withdraw. The internal (hidden)
state is not accessible.

2 Problem: we can therefore only control the state by
sequences of operation calls, not just produce data and
leave it to one operation call as in uit tests.

3 Problem: The spec does not speak about the initial
states.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 105

Introduction to Sequence Testing Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example I

A toy client-server system:

stop

ack

ack

req?X send?D!Yport!Y

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 106

Introduction to Sequence Testing Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example I

A toy client-server system:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 106

Introduction to Sequence Testing Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example I

A toy client-server system:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 106

Introduction to Sequence Testing Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example II

Observation:

X and Y are only known at runtime!

a test-driver is needed that manages a serialization of
tests at test run time.

... including use an environment that keeps track of the
instances of X and Y?

Infrastructure: An observer maps
abstract events (reqX, port Y, ...) in traces
to
concrete events (req 4, port 2, ...) in runs!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 107

Introduction to Sequence Testing Discussion: Apparent Limitations

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

No Non-determinism.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 108

Introduction to Sequence Testing Discussion: Apparent Limitations

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 108

Introduction to Sequence Testing Discussion: Apparent Limitations

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

No Automata - No Tests for Sequential
Behaviour.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 108

Introduction to Sequence Testing Discussion: Apparent Limitations

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 108

Introduction to Sequence Testing Discussion: Apparent Limitations

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

No possibility to describe reactive tests.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 108

Introduction to Sequence Testing Discussion: Apparent Limitations

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

HOL has Monads. And therefore means for
IO-specifications.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 108

Foundation: State-Monads

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 109

Foundation: State-Monads

The core of state-based computations:

state transitions from state σ to σ′ emmiting output out!

σ -out!
σ′

Such state-transitions can be modeled in various ways:

as total functions: σ⇒ (o × σ)

as partial functions: σ⇒ (o × σ) option

as relations: σ⇒ (o × σ) set

as finite series relation: σ⇒ (o × σ) list

as infinite series relation: σ⇒ (o × σ) sequence

...

We write for this form of type scheme (o, σ)Monφ for φ in
{,option, set, list, ...}. Note that (o, σ)Monφ in itself is not a type
in the Isabelle type-system (only the instances thereof).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 110

Foundation: State-Monads

Background:

If a type (o, σ)Monφ is completed to an algebraic stucture with
two operations :

bindφ :: [(α, σ)Monφ, α⇒ (β, σ)Monφ]⇒ (β, σ)Monφ

and
unitφ :: α⇒ (α, σ)Monφ

satisfying the associativity and both neutrality laws:

1 associativity:
bindφ F (λ y.bindφ G H) = bindφ(bindφ F (λ y.bindφ G) H

2 neutrality_left: bindφ (unit F) G = G

3 neutrality_right: bindφ F(unitG) = F

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 111

Foundation: State-Monads

What is the Relevance for Computing?

1 Monads talk of the sequential “glue”, the _; _ and resulte
in imperative languages.

2 Monads are an abstraction of “computational structures”
arranging computations based on an underying state. This
can be used in (for example):

1 computations based on state
2 computations based on state involving exceptions
3 computations based on state involving backtracking
4 computations based on state involving alltogether
5 ...

3 They have in intensively used for the study of
programming and specification language semantics

4 ... some of them are executable and were intensively used
in purely functional languages such as Haskell.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 112

Foundation: State-Monads The State Exception Monad

A basic case for “imperative programming”: the
state-exception-Monad MonSE based on the type
(o, σ)MonSE = σ ⇒ (o× σ)option.

1 It composes partial functions

2 In case a function evaluation fails (which can be viewed as
“an exception occured”), the execution is stopped and the
state remains unchanged (pretty much like Java or SML),

3 ... otherwise the execution continues with the new state.

4 unitSE corresponds to the usual “result” operation.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 113

Foundation: State-Monads The State Exception Monad

We define:

1 definition bind_SE::[(o,σ)MON_SE,o⇒(o,σ)MON_SE]⇒(o,σ)MON_SE
where "bind_SE f g ≡λσ. case f σof

None⇒None
| Some (out, σ’)⇒g out σ’"

2 definition unit_SE :: "o⇒(o, σ)MON_SE"
where "unit_SE e ≡λσ. Some(e,σ)"

where we use the syntax

x← f ;g x

for bindSE f (λ x.g) and return e for unitSE e.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 114

Foundation: State-Monads The State Exception Monad

Test Sequences as Monadic Compositions

In the state exception monad, we can already represent a
particular form of test-driver equivalent to a test sequence:

1 A test sequence has the form:

x1 ← put1; x2 ← (λ _. put2); . . . ; xn ← (λ _. putn);

return(post x1 . . . xn)

i. e. the program steps under test puti do not depend from
output of prior steps.

2 A reactive test sequence has the form:

x1 ← put1; x2 ← put2 x1; . . . ; xn ← putn x1 . . . xn−1;

return(post x1 . . . xn)

i. e. the program steps under test puti may depend from
output of prior steps.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 115

Foundation: State-Monads The State Exception Monad

In order to make test-sequences amenable to HOL-TestGen, we
need to represent them as data-types (so: lists of puti). We
introduce a multi− bind combinator taking a list of
io-stepping functions (i. e., in particular, putI’s) and
executes them while taking exceptions into account:

consts mbind ::[ι list,ι ⇒ (o,σ)MON_SE]⇒(o list,σ)MON_SE
primrec

"mbind [] iostep σ= Some([], σ)"
"mbind (a#H) iostep σ=

(case iostep a σof
None ⇒ Some([], σ)

|Some (out,σ’)⇒(case mbind H iostep σ’ of
None ⇒ Some([out],σ’)

|Some(outs,σ’’)⇒ Some(out#outs,σ’’)))"

Note that mbind has a slightly different behaviour than
bind_SE wrt. exceptions!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 116

Foundation: State-Monads The State Exception Monad

On this level, we can now state valid test sequences as a
test specification of the form:

σ0 |= (os← (mbind ιs ioprog); return(post os))

where the σ0 is the initial state and the validity statement
_ |= _ means: start computation ioprog in the initial state and
run it sequentially over the input sequence ιs and transfer all
outputs os to the post condition. Sequences are valid iff the
postcondition is true. The validity statement is defined as
follows:

definition valid :: σ⇒(bool,σ)MON_SE⇒bool (infix |=15)
where σ|=m ≡(m σ 6=None ∧fst(the (m σ)))

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 117

Foundation: State-Monads The State Exception Monad

Remark: From valid test sequence, HOL-TestGen test were
generated by exploring the data-structure input sequence ιs
up to given depths k by the standard mechanisms used in
unit-tests.

However, it may be convenient to specify constraints on ιs, let
it be by automata, by regular expressions, by temporal
formulas or by other means. In the literature, these constraints
were also called test purposes (TP).

TP(ιs) =⇒ σ0 |= (os← (mbind ιs ioprog); return(post os))

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 118

Foundation: State-Monads The State Relation Monad

A basic case for the “state transition system specification”: the
state-relation-Monad MonSB based on the type
(o, σ)MonSB = σ ⇒ (o× σ)set.

1 It composes relations on states (involving input and
output)

2 In case a function evaluation fails (which can be viewed as
“an exception occured”), the execution is stopped and the
state remains unchanged (roughly like PROLOG),

3 ... otherwise the execution continues with the new state.

4 unitSB corresponds to the usual “result” operation.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 119

Foundation: State-Monads The State Relation Monad

We define:

1 definition bind_SB::[(α,σ)MON_SB,α⇒(β,σ)MON_SB]⇒(β,σ)MON_SB
where "bind_SB f g σ≡

⋃
((λ(out, σ). (g out σ)) ‘(f σ))"

2 definition unit_SB:: o⇒(o,σ)MON_SB
where "unit_SB e ≡λσ. {(e,σ)}"

where we use the syntax

x← f ; ;g x

for bindSB f (λ x.g) and returns e for unitSB e.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 120

Foundation: State-Monads The State Relation Monad

In contrast to MON_SE, the operations of MON_SB are not
executable in general (why?).

On the other hand, concepts like pre- and post conditions can
be easily expressed in terms of MON_SB.

Example: The post-condition of the operation balance is
directly expressed in HOL as:

post(c :: client,no :: account_no) =

λσ.{(result, σ′) | σ = σ′ ∧ result = the(register(c,no))}

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 121

Connecting Specifications and Test-Sequences

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 122

Connecting Specifications and Test-Sequences Formalising “Little Bank” by Interface Encapsulation

Revisiting the Little Bank Example I

Example: A Little Bank - Acount System.

internal var register : table[client, nat]integer

op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register)
post register’=register[(c,no) := register(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(register)
post register’=register and result = register(c,no)

op withdraw(c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register) and register(c,no) >= amount
post register’=register[(c,no) := register(c,no) − amount]

(Syntax a vague mix between JML, ACSDL, VCC(1) and OCL ...)
B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 123

Connecting Specifications and Test-Sequences Transforming State-Relation to State Exception Monads

In order to formalize input and output implicit in such a
specification, such that we can consider it uniformely as “a list
of input data” and “a list of output data”, we need to convert
the given interface into

1 a type for the internal state,

2 a uniform data-type containing all inputs, and

3 a uniform data-type containing all outputs.

This so-called interface encapsulation is a syntactic
transformation and could in principle be done automatically.
(Not supported yet in HOL-TestGen).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 124

Connecting Specifications and Test-Sequences Transforming State-Relation to State Exception Monads

Example: Interface Encapsulation

For “Little Bank”, we have:
1 a type for the internal state register:

(client ×nat)⇀ int
2 the inputs data-type:

datatype in_c = deposit client account_no nat
| withdraw client account_no nat
| balance client account_no

3 a uniform data-type containing all outputs:

datatype out_c = depositO| balanceO nat | withdrawO

This so-called interface encapsulation is a syntactic
transformation and could in principle be done automatically.
(Not supported yet in HOL-TestGen).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 125

Connecting Specifications and Test-Sequences Transforming State-Relation to State Exception Monads

Also pre-and post-conditions of “Little Bank” were
encapsulated, such that we have now a typed state transition
system on σ (= register), in_c and out_c.

consts precond :: "register⇒in_c⇒bool"
primrec
"precond σ(deposit c no m) = ((c,no) ∈dom σ)"
"precond σ(balance c no) = ((c,no) ∈dom σ)"
"precond σ(withdraw c no m) = ((c,no) ∈dom σ

∧ (int m) ≤the(σ(c,no)))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 126

Connecting Specifications and Test-Sequences Transforming State-Relation to State Exception Monads

The post-condition looks as follows:

consts postcond :: "register⇒in_c⇒out_c ×register⇒bool"
primrec
"postcond σ(deposit c no m) =

(λ (n,env’). (n = depositO
∧σ’=σ ((c,no)7→ the(env(c,no)) + int m)))"

"postcond σ(balance c no) =
(λ (n,env’). (σ=σ’ ∧(∃ x. balanceO x = n

∧x = nat(the(σ(c,no))))))"
"postcond σ(withdraw c no m) =

(λ (n,env’). (n = withdrawO
∧σ’=σ((c,no) 7→ the(env(c,no)) − int m)))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 127

Connecting Specifications and Test-Sequences Linking Monads

The following combinators — based on the Hilbert-Operator —
hold the key for a conversion between monads:

definition impl ::[[σ,ι]⇒bool,ι⇒ (o,σ)MON_SB]⇒ι⇒(o,σ)MON_SE
where "impl pre post ι=

(λ σ.if pre σι
then Some(SOME(out,σ’). post ισ(out,σ’))
else arbitrary)"

definition strong_impl ::[[σ,ι]⇒bool, ι⇒(o,σ)MON_SB]⇒ ι⇒(o,σ)MON_SE
where "strong_impl pre post ι=

(λ σ. if pre σι
then Some(SOME(out,σ’). post ισ(out,σ’))
else None)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 128

Connecting Specifications and Test-Sequences Linking Monads

definition is_strong_impl :: "[’σ ⇒’ι⇒bool,
’ι ⇒ (’o,’σ)MON_SB,
’ι ⇒ (’o, ’σ)MON_SE]⇒bool"

where "is_strong_impl pre post ioprog =
(∀ σι . (¬pre σι ∧ ioprog ισ = None) ∨

(pre σι ∧ (∃ x. ioprog ισ = Some x)))"

This results in the following:

theorem "is_strong_impl pre post (strong_impl pre post)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 129

Connecting Specifications and Test-Sequences Linking Monads

This following characterization of implementable specifications
gives the key for turning specs into programs. First, we define
the concept of an implementable specification, i. e. the fact
that there is a function that maps leagal input to output/state
pairs, that satisfy the postcondition:

definition implementable::[σ⇒ι⇒bool, ι⇒(o,σ)MON_SB]⇒bool
where "implementable pre post =

(∀ σι . pre σι −→(∃ out σ’. post ισ(out,σ’)))"

This results in the following characterization theorem:

theorem implementable_charn:
"[[implementable pre post; pre σι]] =⇒

post ι σ (the(strong_impl pre post ισ))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 130

Connecting Specifications and Test-Sequences Symbolic Evaluation of “Little Bank”

It is now straight-forward to “convert” our (interface
encapsulated) specification into a program. Simply:

strong_impl precond postcond

does the trick.

This program will report violations of pre- and postconditions
as exceptions which were then treated at run-time.

Problem: How can we use the specification to generate
test-sequences symbolically?

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 131

Connecting Specifications and Test-Sequences Symbolic Evaluation of “Little Bank”

Observation: Our specification is state-deterministic, i. e. for
each observable output, there is at most one corresponding
state.

For this type of specification, we can use HOL-TestGen as
follows: we state:

σ_0 |=s← mbind S (strong_impl precond postcond); return(s = x)

as a constraint, let HOL-TestGen find solutions for x, and use
these solutions in the generated test drivers.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 132

Connecting Specifications and Test-Sequences Symbolic Evaluation of “Little Bank”

For this, we need the generic symbolic evaluation rules:

(σ |=(s←return x ; return (P s))) = P x

(σ |=(s←mbind (a#S) ioprog ; return (P s))) =
(case ioprog a σof

None⇒(σ |=(return (P [])))
| Some(b,σ’)⇒(σ’ |=(s← mbind S ioprog ; return (P (b#s)))))

The introduced case-statements were eliminated in the
case-splitting of the test-case-generation phase.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 133

Connecting Specifications and Test-Sequences Symbolic Evaluation of “Little Bank”

... and the program specific symbolic evaluation rules (where
H = (strong_impl precond postcond)):

(σ |=(s←mbind ((deposit c no m)#S) H; return (P s))) =
(if (c, no) ∈dom σ

then (σ((c, no) 7→the (σ (c, no)) + int m))
|=(s ←mbind S H; return (P (depositO#s)))

else (σ |=(return (P []))))

(σ |=(s←mbind ((balance c no)#S) H; return (P s))) =
(if (c, no) ∈dom σ

then (σ |=(s←mbind S H;
return (P (balanceO(nat(the (σ (c, no))))#s))))

else (σ |=(return (P []))))

...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 134

Test-Case Generation Test Specification

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 135

Test-Case Generation Test Specification

Generating all possible input sequences is far too general:
there would a lot of superfluous attempts to access a wrong
account with a wrong account number, far too many initial
states.
In order to reduce the number of possible input sequences, we
define a test purpose, i. e. a predicate that constrains the
number of possible input traces for one given client with an
account which is initially empty.
This raises a particular testability assumption (at the
beginning, the system is in particular initial state) which
results from our lacking init method in our interface.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 136

Test-Case Generation Test Specification

This test-purpose is formalized as follows:

consts test_purpose :: "[client, account_no, in_c list]⇒bool"
primrec

"test_purpose c no [] = False"
"test_purpose c no (a#R) = (case R of

[] ⇒ a = balance c no
| a’#R’⇒(((∃ m. a = deposit c no m) ∨

(∃ m. a = withdraw c no m)) ∧
test_purpose c no R))"

This terst-purpose formalizes that the input sequences belong
to the language expressed as regular expression:

(withdraw c no _ | deposit c no _)* balance c no

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 137

Test-Case Generation Test Specification

The test-specification is formalized as follows:

test_spec test_balance:
assumes account_defined: "(c,no) ∈dom σ_0"
and test_purpose : "test_purpose c no ιs"
and symbolic_run_yields_x :

"σ_0 |=(s←mbind ιs (strong_impl precond postcond);
return (s = x))"

shows " σ_0 |=(s←mbind ιs SUT; return (s = x))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 138

Test-Case Generation Test Theorem

The resulting test-theorem for k=5 looks follows:

1. (λa. Some 2) |=
(s ←mbind [balance ?X1 ?X2] SUT; return s = [balanceO 2])

2. THYP ...
3. (λa. Some 5) |=

(s ←mbind
[deposit ?X3 ?X4 ?X5, balance ?X3 ?X4]
SUT; return s = [depositO, balanceO (nat (5 + int
?X5))])

4. THYP ...
5. THYP
6. int ?X6 ≤7 =⇒

(λa. Some 7) |=(s←mbind
[withdraw ?X7 ?X8 ?X6, balance ?X7 ?X8] SUT;
return s = [withdrawO, balanceO (nat (7 − int ?X6))])

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 139

Test-Case Generation Test Theorem

Caution: Which are the underlying Testability Hypothesis (to
be clear: not Test-Hypotheses) of this problem ???

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 140

Test-Case Generation Test Theorem

Well, we made two (more or less explicit) testability hypothesis
underlying our test-construction, that must be assured by
other means than just running the test:

1 initialization condition (reflected by the assumption
(c,no)∈dom σ_0). We must assume that a concrete user
and accountnumber is defined.

2 deterministism condition (reflected by the assumption
that SUT has type in_c⇒(out_c,register)Mon_SE). We
assume that SUT behaves indeed like a function in a state
in the sense of our model; we assume it is deterministic
and will not have hidden state or engage in hidden
state-transitions (like clocks, etc.).

Pragmatically: if we detect violations against these hypotheses
during testing, we must refine our model ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 141

Summing Up

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 142

Summing Up

1 Test-Sequence generation can be formalized as a
constraint-resolution problem, too.

2 Reason: We have data-types (this lists and laguages) and
Monads in HOL

3 Test-drivers can be generated as well

4 Handling of Testability hypotheses implicit (control over
the init-state, PUT a function in the sense of the
specification)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 143

Summing Up

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 144

Revision: Apparent Limitations of Present Approaches

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 145

Revision: Apparent Limitations of Present Approaches

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

No Non-determinism.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 146

Revision: Apparent Limitations of Present Approaches

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 146

Revision: Apparent Limitations of Present Approaches

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

No Automata - No Tests for Sequential
Behaviour.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 146

Revision: Apparent Limitations of Present Approaches

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 146

Revision: Apparent Limitations of Present Approaches

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

No possibility to describe reactive tests.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 146

Revision: Apparent Limitations of Present Approaches

Apparent Limitations of HOL-TestGen

So far, we have used HOL-TestGen only for test specifications
of the form:

pre x→ post x (prog x)

post must indeed be executable; however, the
pre-post style of specification represents a
relational description of prog.

HOL has lists and recursive predicates; thus sets
of lists, thus languages . . .

HOL has Monads. And therefore means for
IO-specifications.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 146

Nondetermistic Sequence Test

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 147

Nondetermistic Sequence Test Revision: A Sequence Example

A Deterministic Sequence Test Example I

Example: A little Bank - Acount System.

internal var register : table[client, nat]integer

op deposit (c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register)
post register’=register[(c,no) := register(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(register)
post register’=register and result = register(c,no)

op withdraw(c : client, no : account_no, amount:nat) : unit
pre (c,no) : dom(register) and register(c,no) >= amount
post register’=register[(c,no) := register(c,no) − amount]

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 148

Nondetermistic Sequence Test Revision: A Sequence Example

A Non-Determin. Sequence Test Example II

Example: A Bank - Acount System with

internal var register : table[client, nat]integer
op init(c : client, no : account_no) : unit
op deposit (c : client, no : account_no, amount:nat) : unit

pre (c,no) : dom(register)
post register’=register[(c,no) := register(c,no) + amount]

op balance (c : client, no : account_no) : int
pre (c,no) : dom(register)
post register’=register and result = register(c,no)

op withdraw(c : client, no : account_no, amount:nat) : int
pre (c,no) : dom(register) and register(c,no) >= amount
post 1<=result and result <= amount and

register’=register[(c,no) := register(c,no) − result]

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 149

Nondetermistic Sequence Test Revision: A Sequence Example

A Non-Determin. Sequence Test Example II

1 Old Problem: Only the public interface (i. e. the
operations deposit, balance and withdraw. The internal
(hidden) state is not accessible.

2 Old Problem: we can therefore only control the state by
sequences of operation calls, not just produce data and
leave it to one operation call as in unit tests.

3 New Problem: the operation withdraw may
non-deterministically change the state (which can still be
indirectly observed via outputs); we can therefore not
pre-compute all input sequences.

4 The problem of initial states is solved by an explicit
init-action creating an account for a client with an account
number. (For convenience — but still realistic.)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 150

Nondetermistic Sequence Test Revision: A Sequence Example

A Non-Determin. Sequence Test Example II

1 Modified Test-Purpose :

(init c no) (withdraw c no _ | deposit c no _)* (balance c no)

2 Modified Test-Specification:

test_spec test_balance2:
assumes test_purpose : "test_purpose c no ιs"
shows _ |=(os←mbind ιs SUT;

return (|ιs| = |os| ∧ ∀ i ∈{1..|os|}. post’ i ιs os))

3 Note: This works only for those parts post’ of the
post-conditions that do not depend on the (not
observable) internal state σ.

4 Note: For output-deterministic specifications post’ can
be defined, but the construction is neither necessarily
constructive nor executable (=> involves theorem proving
for special cases ...)

5 we need an executable inversion function from observed
output to the (specification) successor state ...

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 151

Nondetermistic Sequence Test Revision: A Sequence Example

A Non-Determin. Sequence Test Example II

Note: We did not use anywhere the concrete state σ of the
SUT::ι→ (o,σ)MON_SE, we can therefore just pass a dummy
(for example, the type unit).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 152

Reactive Sequences with Observers

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 153

Reactive Sequences with Observers Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example I

A toy client-server system, a simplified FTP protocol:

stop

ack

ack

req?X send?D!Yport!Y

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 154

Reactive Sequences with Observers Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example I

A toy client-server system, a simplified FTP protocol:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 154

Reactive Sequences with Observers Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example I

A toy client-server system, a simplified FTP protocol:

req?X→ port!Y[Y < X]→
(recN. send!D.Y → ack→ N

� stop→ ack→ SKIP)

a channel is requested within a bound X, a channel Y is
chosen by the server, the client communicates along this
channel . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 154

Reactive Sequences with Observers Motivation: A Reactive Sequence Example

Motivation: A Reactive System Example II

Observation:

X and Y are only known at runtime!

a test-driver is needed that manages a serialization of
tests at test run time.

... including use an environment that keeps track of the
instances of X and Y?

Infrastructure: An observer maps
abstract events (reqX, port Y, ...) in traces
to
concrete events (req 4, port 2, ...) in runs!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 155

Reactive Sequences with Observers Motivation: A Reactive Sequence Example

ioprog

(PUT or
other

observer)

observer

(manages
internal
state σobs)

ιc, σc ￧

οc, σ'c

ιa, σcxσobs ￧

οa, σ'cxσ'obs

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 156

Reactive Sequences with Observers Foundation: Observers

A formal definition looks as follows:

definition observer :: "[σ_obs⇒o_c⇒σ_obs,
σ_obs⇒ι_a⇒ι_c,
σ_obs⇒σ⇒ ι_c⇒ o_c⇒bool]
⇒ (ι_c⇒ (o_c, σ)MON_SE)
⇒ (ι_a⇒ (o_c,σ_obs ×σ)MON_SE) "

where "observer rebind substitute postcond ioprog ≡
(λ ι_a. (λ (σ_obs, σ). let ι_c = substitute σ_obs ι_a in
case ioprog ι_c σof

None⇒None (* ioprog failure − eg. timeout ... *)
| Some (o_c, σ’)⇒(let σ_obs’ = rebind σ_obs o_c

in if postcond σ_obs’ σ’ ι_c out_c
then Some(o_c, (σ_obs’, σ’))
else None (* postcond failure *))))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 157

Reactive Sequences with Observers Foundation: Observers

As can be inferred from the type of observer, the function is a
a monad-transformer; it transforms the i/o stepping function
ioprog into another stepping function, which is the combined
sub-system consisting of the observer and, for example, a
program under test PUT.

Thus, our concept of an i/o stepping function serves as an
interface for varying entities in (reactive) sequence testing.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 158

Reactive Sequences with Observers Foundation: Observers

Note that we made the following testability assumptions:

1 ioprog behaves wrt. to the reported state and input as a
function, i.e. it behaves deterministically (in the modeled
state!), and

2 it is not necessary to destinguish internal failure and
post-condition-failure. (Modelling Bug ? This is superfluous
and blind featurism ... One could do this by introducing an
own "weakening"-monad endo-transformer.)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 159

Reactive Sequences with Observers Foundation: Observers

observer can actually be decomposed into two combinators -
one dealing with the management of explicit variables and one
that tackles post-conditions ...

where "observer3 rebind substitute ioprog ≡
(λ ι_a. (λ (σ_obs, σ).

let ι_c = substitute σ_obs ι_a
in case ioprog ι_c σof

None⇒None (* ioprog failure − eg. timeout ... *)
| Some (o_c, σ’)⇒(let σ_obs’ = rebind σ_obs o_c

in Some(o_c, (σ_obs’, σ’)))))"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 160

Reactive Sequences with Observers Foundation: Observers

and ...

where "observer4 postcond ioprog ≡
(λ ι. (λ σ. case ioprog ισof

None⇒None (* ioprog failure − eg. timeout ... *)
| Some (o, σ’)⇒(if postcond σ’ ιo

then Some(o, σ’)
else None (* postcond failure *))))"

Note that all three definitions of observers are executable.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 161

Reactive Sequences with Observers Foundation: Observers

We can build on top of the observer function definitions some
theory on observers, which might pave the way for future
optimizations. For example, the following decomposition
theorem holds:

theorem observer_decompose:
"observer r s (λ x. pc) io = (observer3 r s (observer4 pc io))"

The abstraction assures that pc is a function not referring to
the observer state.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 162

Example: FTP Protocol Test Specification

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 163

Example: FTP Protocol Test Specification

FTP Protocol Example II

We specify explicit variables and a joined type containing
abstract events (replacing values by explicit variables) as well
as their concrete counterparts.

datatype vars = X | Y
datatype data = Data
types chan = int (* just to make it executable *)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 164

Example: FTP Protocol Test Specification

Abstract and concrete events ...

datatype InEvent_conc = req chan | send data chan | stop
datatype InEvent_abs = reqA vars | sendA data vars | stopA
datatype OutEvent_conc = port chan | ack
datatype OutEvent_abs = portA vars | ackA

types InEvent = "InEvent_abs + InEvent_conc"
types OutEvent = "OutEvent_abs + OutEvent_conc"
types event_abs = "InEvent_abs + OutEvent_abs"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 165

Example: FTP Protocol Test Specification

The function subsitute maps abstract events containing
explicit variables to concrete events by substituting the
variables by values communicated in the system run.
It requires an environment (“substitution”) where the concrete
values occuring in the system run were assigned to variables.

definition lookup :: "[’a ⇀’b, ’a]⇒ ’b"
where "lookup env v ≡the(env v)"

consts substitute :: "[vars ⇀chan, InEvent_abs]⇒InEvent_conc"
primrec

"substitute env (reqA v) = req(lookup env v)"
"substitute env (sendA d v)= send d (lookup env v)"
"substitute env stopA = InEvent_conc.stop"

This environment is the observer state σobs.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 166

Example: FTP Protocol Test Specification

The function rebind extracts from concrete output events the
values and binds them to explicit variables in env. (= σobs)
The predicate rebind only stores occurrences of input-events
(marked by ?) in the protocol into the environment; output
(!)-occurences were ignored.

consts rebind :: "[vars ⇀chan, OutEvent_conc]⇒vars ⇀chan"
primrec

"rebind env (port n) = env(Y 7→n)"
"rebind env OutEvent_conc.ack = env"

In a way, rebind can be viewed as an abstraction of the
concrete log produced at runtime.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 167

Example: FTP Protocol Test Specification

Revisit the protocol automaton:

stop

ack

ack

req?X send?D!Yport!Y

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 168

Example: FTP Protocol Test Specification

Test-purpose specification (= protocol specification) is as
follows (we view the enumeration type A=0 as abbreviation).

consts accept’ :: "nat ×event_abs list⇒bool"
recdef accept’ "measure(λ (x,y). length y)"

"accept’(A,(Inl(reqA X))#S) = accept’(B,S)"
"accept’(B,(Inr(portA Y))#S) = accept’(C,S)"
"accept’(C,(Inl(sendA d Y))#S) = accept’(D,S)"
"accept’(D,(Inr(ackA))#S) = accept’(C,S)"
"accept’(C,(Inl(stopA))#S) = accept’(E,S)"
"accept’(E,[Inr(ackA)]) = True"
"accept’(x,y) = False"

constdefs
accept :: "event_abs list⇒bool"

Actually, this is merely an academic exercise - we use for
testing merely the subsequent protocol automaton:

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 169

Example: FTP Protocol Test Specification

We proceed by modeling a subautomaton of the protocol
automaton accept.

consts stim_trace’ :: "nat ×InEvent_abs list⇒bool"
recdef stim_trace’ "measure(λ (x,y). length y)"

"stim_trace’(A,(reqA X)#S) = stim_trace’(C,S)"
"stim_trace’(C,(sendA d Y)#S) = stim_trace’(C,S)"
"stim_trace’(C,[stopA]) = True"
"stim_trace’(x,y) = False"

constdefs stim_trace :: "InEvent_abs list⇒bool"
"stim_trace s ≡stim_trace’(A,s)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 170

Example: FTP Protocol Test Specification

consts postcond’ :: "((vars ⇀int)×σ×InEvent_conc×OutEvent_conc)⇒
bool"

recdef postcond’ "{}"
"postcond’ (env, _, req n, port m) = (m <= n)"
"postcond’ (env, _, send z n, ack) = (n = lookup env Y)"
"postcond’ (env, _, stop, ack) = True"
"postcond’ (env, _, y, z) = False"

constdefs postcond :: "(vars ⇀int)⇒’σ ⇒InEvent_conc⇒OutEvent_conc⇒
bool"

"postcond env σy z ≡postcond’ (env, σ, y, z)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 171

Example: FTP Protocol Test Specification

test_spec "stim_trace ιs =⇒
(empty[X7→ x],())
|=(os←(mbind ιs(observer2 rebind substitute postcond ioprog));

result(length ιs = length os))"

where ioprog is the program under test. The initial state
consists of a suitably initialized observer state (the
client-controlled X must be initialized), whereas we provide for
the server-side state σ, which is nowhere used in the model (in
particular not in postcond) and therefore polymorphic, is
instantiated by the dummy type unit and its element ()).

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 172

Example: FTP Protocol Test Specification

1. ([X 7→?X1], ())
|=(os←mbind [reqA X,stop] (observer2 rebind substitute postcond ioprog);

result(2=length os)
3. ([X 7→?X2], ())
|=(os←mbind [reqA X,sendA Data Y,stop] (observer2 rebind substitute postcond ioprog);

result(3 = length os))
5. ([X 7→?X3], ())
|=(os←mbind [reqA X, sendA Data Y,sendA Data Y,stop] (observer2 rebind substitute postcond ioprog);

result(4 = length os))
7. ([X 7→?X4], ())
|=(os←mbind [reqA X,sendA Data Y,sendA Data Y,sendA Data Y,stop] (observer2 rebind substitute postcond ioprog);

result (5 = length os))
9. ...

where we left out the test hypotheses. The meta-variables
serve just as a place-holder for the initial (client-controlled)
value for the X.

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 173

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

Case Studies Firewall Testing

Specification-based Firewall Testing

Objective: test if a firewall configuration implements a given
firewall policy

Procedure: as usual:
1 model firewalls (e.g., networks and protocols)

and their policies in HOL
2 use HOL-TestGen for test-case generation

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 175

Case Studies Firewall Testing

A Typical Firewall Policy

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

−→ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ ∅ - smtp
Internet ∅ http,smtp -

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 176

Case Studies Firewall Testing

A Bluffers Guide to Firewalls

A Firewall is a

state-less or
state-full

packet filter.

The filtering (i.e., either accept or deny a packet) is based
on the

source
destination
protocol
possibly: internal protocol state

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 177

Case Studies Firewall Testing

The State-less Firewall Model I

First, we model a packet:

types (α,β) packet = "id ×protocol ×αsrc ×αdest ×βcontent"

where

id: a unique packet identifier, e. g., of type Integer

protocol: the protocol, modeled using an enumeration type
(e.g., ftp, http, smtp)

α src (α dest): source (destination) address, e.g., using IPv4:

types
ipv4_ip = "(int ×int ×int ×int)"
ipv4 = "(ipv4_ip ×int)"

β content: content of a packet

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 178

Case Studies Firewall Testing

The State-less Firewall Model II

A firewall (packet filter) either accepts or denies a packet:

datatype
α out = accept α| deny

A policy is a map from packet to packet out:

types
(α, β) Policy = "(α, β) packet ⇀((α, β) packet) out"

where α⇀β is a type synonym for α→β option modeling
partial functions.
Writing policies is supported by a specialised combinator
set

constdefs
allow_prot_from_to :: "protocol⇒α::net set set⇒α::net set set⇒(α,β) Rule"
"allow_prot_from_to prot src_net dest_net ≡allow_all |‘

{pa. src pa @src_net ∧dest pa @dest_net ∧protocol pa = prot}"
B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 179

Case Studies Firewall Testing

Testing State-less Firewalls: An Example I

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

−→ Intranet DMZ Internet
Intranet - smtp, imap all protocols except smtp
DMZ ∅ - smtp
Internet ∅ http,smtp -

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 180

Case Studies Firewall Testing

Testing State-less Firewalls: An Example II

src dest protocol action
Internet DMZ http accept
Internet DMZ smtp accept

...
...

...
...

∗ ∗ ∗ deny

constdefs Internet_DMZ :: "(ipv4, content) Rule"
"Internet_DMZ ≡

(allow_prot_from_to smtp internet dmz) ++
(allow_prot_from_to http internet dmz)"

The policy can be modelled as follows:

constdefs test_policy :: "(ipv4,content) Policy"
"test_policy ≡deny_all ++ Internet_DMZ ++ ..."

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 181

Case Studies Firewall Testing

Testing State-less Firewalls: An Example III

Using the test specification

test_spec "FUT x = test_policy x"

results in test cases like:

FUT
(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data) =
Some (accept
(6,smtp,((192,169,2,8),25),((6,2,0,4),2),data))
FUT (2,smtp,((192,168,0,6),6),((9,0,8,0),6),data)
= Some deny

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 182

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) I

ftp_close

ftp_data

ftp_port_request

ftp_init

Server Client

 ftp_data

ftp_close
ftp_port_req

ftp_init

Exception

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 183

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) II

based on our state-less model:
Idea: a firewall (and policy) has an internal state:

the firewall state is based on the history and the current
policy:

types (α,β,γ) FWState = "α ×(β,γ) Policy"

where FWStateTransition maps an incoming packet to a
new state

types (α,β,γ) FWStateTransition =
"((β,γ) In_Packet ×(α,β,γ) FWState) ⇀
((α,β,γ) FWState)"

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 184

Case Studies Firewall Testing

State-full Firewalls: An Example (ftp) III

HOL-TestGen generates test case like:

FUT [(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)] =

([(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), close),
(6, ftp, ((4, 7, 9, 8), 21), ((192, 168, 3, 1), 3), ftp_data),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), port_request 3),
(6, ftp, ((192, 168, 3, 1), 10), ((4, 7, 9, 8), 21), init)],

new_policy)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 185

Case Studies Firewall Testing

Firewall Testing: Summary

Successful testing if a concrete configuration of a network
firewall correctly implements a given policy

Non-Trivial Test-Case Generation

Non-Trivial State-Space (IP Adresses)

Sequence Testing used for Stateful Firewalls

Realistic, but amazingly concise model in HOL!

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 186

Outline

1 Motivation and Introduction

2 A Sample Workflow

3 From Foundations to Pragmatics

4 A Sample Derivation of a Test Theorem

5 Summary

6 Advanced Test Scenarios

7 Introduction to Sequence Testing

8 Foundation: State-Monads

9 Connecting Specifications and Test-Sequences

10 Test-Case Generation

11 Summing Up

12 Revision: Apparent Limitations of Present Approaches

13 Nondetermistic Sequence Test

14 Reactive Sequences with Observers

15 Example: FTP Protocol

16 Case Studies

17 Conclusion

Conclusion

Conclusion I

Approach based on theorem proving

test specifications are written in HOL
functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user
(could even be verified!)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”
compiler library is feasible!

Verified tool inside a (well-known) theorem prover

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 188

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 189

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Unit Test:

pre x −→ post x(prog x)

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 189

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Sequence Test:

accept trace =⇒ P(Mfold trace σ0prog)

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 189

Conclusion

Conclusion II

Explicit Test Hypothesis are controllable by the
test-engineer (can be seen as proof-obligation!)

In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Reactive Sequence Test:

accept trace =⇒ P(Mfold trace σ0

(observer observer rebind subst prog))

The Sequence Test Setting of HOL-TestGen is effective
(see Firewall Test Case Study)

HOL-Testgen is a verified test-tool
(entirely based on derived rules . . .)

The White-box Test offers potentials to prune unfeasible
paths early ... (but no large programs tried so far ...)

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 189

How to get the system ?

Current Version:
Version HOL-TestGen 1.7 (Isabelle 2011-1)

http://www.brucker.ch/projects/hol-testgen
Including the example suite . . .

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 190

http://www.brucker.ch/projects/hol-testgen

Bibliography

Bibliography

Figure: Recent publcations

B. Wolff Uni Paris-Sud Model-based Testing with HOL-TestGen A Tutorial at the LRI 191

	Theorem-prover based Testing with HOL-TestGen
	Motivation and Introduction
	HOL-TestGen and its Components

	A Sample Workflow
	HOL-TestGen and its Workflow

	From Foundations to Pragmatics
	Foundations
	Explicit Hypothesis
	Putting the Pieces Together

	A Sample Derivation of a Test Theorem
	Summary
	Test Case Generation
	Test Data Generation
	Theoretic Properties of Test-Case Generation

	Advanced Test Scenarios
	Tuning the Workflow by Interactive Proof
	Sequence Testing
	Program-based Testing by Symbolic Execution

	Introduction to Sequence Testing
	Motivation
	Motivation: A Sequence Example
	Motivation: A Reactive Sequence Example
	Discussion: Apparent Limitations

	Foundation: State-Monads
	The State Exception Monad
	The State Relation Monad

	Connecting Specifications and Test-Sequences
	Formalising ``Little Bank'' by Interface Encapsulation
	Transforming State-Relation to State Exception Monads
	Linking Monads
	Symbolic Evaluation of ``Little Bank''

	Test-Case Generation
	Test Specification
	Test Theorem

	Summing Up
	Revision: Apparent Limitations of Present Approaches
	Nondetermistic Sequence Test
	Revision: A Sequence Example

	Reactive Sequences with Observers
	Motivation: A Reactive Sequence Example
	Foundation: Observers

	Example: FTP Protocol
	Test Specification
	Test Specification

	Case Studies
	Firewall Testing

	Conclusion

	Appendix

