
Creusot: a Foundry for the Deductive
Verification of Rust Programs

Xavier Denis , Jacques-Henri Jourdan , and Claude Marché

Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA, Laboratoire Méthodes
Formelles, F-91405 Gif-sur-Yvette

Abstract. Rust is a fairly recent programming language for system pro-
gramming, bringing static guarantees of memory safety through a strict
ownership policy. The strong guarantees brought by this feature opens
promising progress for deductive verification, which aims at proving the
conformity of Rust code with respect to a specification of its intended
behavior. We present the foundations of Creusot, a tool for the formal
specification and deductive verification of Rust code. A first originality
comes from Creusot’s specification language, which features a notion
of prophecy to reason about memory mutation, working in harmony with
Rust’s ownership system. A second originality is how Creusot builds
upon Rust trait system to provide several advanced abstraction features.

Keywords: Rust programming language · Deductive program verifica-
tion · Aliasing and Ownership · Prophecies · Traits.

1 Introduction

Critical services like transportation, energy or medicine are nowadays con-
trolled by software, and thus verifying the correctness of such software is highly
important. However, systems software is often written in low-level, pointer-
manipulating languages such as C/C++ which make verification challenging.
The pitfalls and traps of C-family languages are well-known; a common thread
among them is the unrestricted usage of mutable pointers, which allow alias-
ing. When two pointers are aliased, a write through one will silently change the
value pointed by the other, wreaking havoc on the programmer and verification
tool’s understanding of the program. Much effort has been spent trying to con-
trol and reason about aliasing. Specialized logics like separation logic or dynamic
frames [20] give a vocabulary to express these challenges. On the other side, lan-
guage features like the region typing of Why3 [9] or the ownership typing of the
Rust programming language prevent mutable aliasing altogether. Indeed, Rust
promises the performance and flexibility of C with none of the memory safety
issues. To make good on this promise, its ownership type system guarantees
that pointers are always valid and that mutable ones are unique. The ownership
discipline of Rust is enforced by a static analysis called borrow checking, which
infers the lifetime of every borrow (temporary pointer), and ensures that, when
mutating, only one pointer can be used to access the data, which is essential for

http://orcid.org/0000-0003-2530-8418
http://orcid.org/0000-0002-9781-7097
http://orcid.org/0000-0003-3035-1269

2 Denis, Jourdan, Marché

memory safety. Once a variable is mutably borrowed, a second borrow cannot
be created until the lifetime expires. Alternatively, immutable borrows can be
duplicated, as one cannot modify the memory they point to. This combination
of features, memory safety and low-level control, has led to Rust’s exploding
popularity. As Rust finds usage in key systems like Firefox and the Linux kernel,
it becomes important to move beyond the safety guarantees of the language.

In 2020, Matsushita et al. [16] proposed a notion of prophecies to reason
about the functional behavior of mutable borrows of Rust. Roughly speaking,
a prophecy denotes the future value a borrow will have when its lifetime ends.
Matsushita et al. developed a proof-of-concept tool RustHorn translating Rust
code to Constrained Horn Clauses, making it possible to check the validity of
code assertions using automated solvers. Our tool Creusot1 allows for auto-
active deductive verification of Rust code. Creusot uses a prophetic translation
in the lineage of RustHorn, but aims to verify real-world programs, pushing the
size, scope and features of programs far beyond RustHorn. Unlike RustHorn,
Creusot has a specification language, Pearlite2, which allows users to write
function contracts and loop invariants, where logic formulas can make use of
a novel operator ^ (pronounced final) to denote prophecies. Creusot has the
ambition of going beyond a proof-of-concept verification tool. To support a large
subset of Rust, including its standard library, it is mandatory to support the
notion of traits which are a key mechanism for abstraction in Rust. Creusot
not only supports the verification of Rust code involving traits, but it also builds
upon the trait system to provide important features: first, the concept of resolu-
tion of prophecies is expressed as a Resolve trait; second, logical abstraction of
concrete data is provided through a Model trait which is used pervasively in our
case studies.

1.1 Example: a Polymorphic Sorting Function

As a motivating example, let’s consider a simple generic sorting routine. We
use the “Gnome Sort” algorithm, using a single loop that swaps out of order
elements successively. We provide an implementation in Fig. 1. To verify this
we face two primary challenges. The first is genericity : to compare values of a
generic type in Rust we need to use the trait Ord. The traits of Rust are like
the typeclasses of Haskell: here they allow us to constrain T to have an ordering
relation. In Creusot, we can add the necessary logical specifications to the Ord
trait, formalizing its documentation [21] stating that it must implement a total
order. The second challenge is the need to handle the library Vec for vectors,
providing a safe interface to resizeable arrays, despite being implemented using
unsafe code. Creusot does not permit the verification of unsafe code but allows
the specification of safe abstractions like Vec: we choose a model for such types,
representing vectors as mathematical sequences.
1 Le Creusot is an industrial town in the eastern France, whose economy is dominated

by metallurgical companies, cf. https://en.wikipedia.org/wiki/Le_Creusot
2 Pearlite is a structure occurring in common grades of steels, cf https://en.wikipedia.

org/wiki/Pearlite

https://en.wikipedia.org/wiki/Le_Creusot
https://en.wikipedia.org/wiki/Pearlite
https://en.wikipedia.org/wiki/Pearlite

Creusot, Deductive Verification for Rust 3

1 #[ensures(sorted_range(@^v, 0, (@^v).len()))]
2 #[ensures((@^v).permutation_of(@*v))]
3 fn gnome_sort<T: Ord>(v: &mut Vec<T>) {
4 let old_v = Ghost::record(&v);
5 let mut i = 0;
6 #[invariant(sorted_range(@*v, 0, @i))]
7 #[invariant((@*v).permutation_of(@*@old_v))]
8 while i < v.len() {
9 if i == 0 || v[i - 1] <= v[i] {

10 i += 1;
11 } else {
12 v.swap(i - 1, i);
13 i -= 1;
14 }
15 }
16 }

Fig. 1. Gnome Sort and its specification.

Now, we can finally specify what it means to sort a vector. We do this using
two ensures clauses which establish the postconditions of the function. The first
uses a helper logical predicate sorted_range to define what it means for a sequence
to be sorted according to a generic order on T.

#[predicate]
fn sorted_range<T: Ord>(s: Seq<T>, l: Int, u: Int) -> bool {

pearlite! { forall<i: Int, j : Int>
l <= i && i < j && j < u ==> s[i] <= s[j] }

}

This definition is written using Pearlite, the specification language of
Creusot. While Pearlite has a Rust inspired syntax, it adds several con-
structs like quantification forall<..>, or implication ==>. Using these we can
say a sequence is sorted if for any ordered pair of indices the values at those
indices respect the order on T. On line 1 of Fig. 1, we use this definition with two
more Pearlite operators: the model operator (@) (syntactic sugar for the Model
trait), and the prophetic operator final (^). The final operator provides access
to the value of a mutable borrow at the end of its lifetime; here we use it to talk
about the value the vector pointed by v has after the function call. The second
postcondition on line 2 makes use of a similar helper predicate permutation_of
to require that the final value of v is a permutation of its initial value. To prove
these postconditions we provide two loop invariants (lines 6-7). The first states
that the segment of the vector before i is sorted, while the second states that
the vector at each iteration is a permutation of the input. To state this invari-
ant about permutations we make use of the Ghost type, to record a ghost value
which does not exist at runtime but does during proof, allowing us to remember
the original value of v. The annotated program is fed through Creusot, which

4 Denis, Jourdan, Marché

translates it to Why3. In turn, Why3 generates and discharges the verifica-
tion conditions in under 2 seconds using automated provers including Z3 [19],
CVC4 [2] and Alt-Ergo [6].

1.2 Contributions

Our contributions, and the structure of this paper, are summarized as follows.
In §2 we give an introduction through the Pearlite specification language and
the verification process of Creusot. This section illustrates how prophecies are
integrated in Pearlite. In §3, we explain how Creusot translate Rust func-
tions into Why3 functions, this section explains how we generate the verification
conditions for mutable borrows. In §4 we first present in deeper details how Rust
traits are interpreted by Creusot, and in a second step we discuss the specific
Creusot traits used in borrow resolution and in data abstraction. In §5 we
present an overview of the implementation of Creusot and an experimental
evaluation of the tool on a set of benchmarks. We discuss related work in §6.
Notice that due to space limitations, we focus here on the original features of
Creusot and refer to an extended research report [8] for more details.

2 Specifying and Proving Programs using Prophecies

To formally specify the intended behavior of programs, one can use so-called Be-
havioral Interface Specification Languages [10], such as JML for Java [5], ACSL
for C [3] or Spark for Ada [17]. Creusot follows this tradition by introducing
the Pearlite specification language, where Rust functions are given contracts
which specify pre- and postconditions: logic formulas which respectively hold at
the entrance and exit of a function call.

Traditionally, specification languages introduce specific contract clauses to
specify the behavior of pointers such as the assignable or assigns in ACSL and
JML. Pearlite has no equivalent clause. Instead specifications can refer not
only to the value of a borrow at function entry but also to its value at the end
of its lifetime: this is the notion of prophecies that we detail in §2.2.

2.1 Background Logic

The background logic of Pearlite is a classical, first-order, multi-sorted logic.
Each Rust type corresponds to a sort in this logic. The logic connectives
denoted by &&, || and ! mirror their Rust counterparts, but Pearlite also
introduces ==> for implication, and the quantifiers forall<v:t> formula and
exists<v:t> formula. Atomic predicates can be built using custom logic func-
tions and predicates, constant literals, variables and built-in symbols, a central
case being the logical equality denoted by a tripled equal sign (===) and defined
on any sort. This logical equality is the symbol interpreted to the set-theoretic
equality in a set-based semantics. This distinguishes it from the program equal-
ity of Rust, ==, which is sugar for PartialEq::eq. Finally, Pearlite has support

Creusot, Deductive Verification for Rust 5

for logical sorts which do not exist in Rust, like Int, the unbounded mathe-
matical integers, or like Seq<T> the generic sort of mathematical sequences. A
syntactically valid formula is thus for example:

forall<x: Int> x >= 0 ==> exists<y: Int> y >= 0 && x * x === x + 2 * y

See [8] for more technical details on the background logic. Pearlite formulas
are type-checked by the front-end of the Rust compiler, but they are not borrow-
checked. Hence values can be used in logic functions or predicates, even if the
Rust ownership rules would forbid copying them.

A useful feature of Pearlite is the introduction of user lemmas using the
so-called lemma function construction. To achieve this, one provides a contract
to a logical function returning (). By proving the contract valid, one obtains
a lemma stating that for all values of arguments, the preconditions imply the
postconditions. This construction is even able to prove lemmas by induction.
Here is an example (detailed in [8]):

#[logic]
#[requires(x >= 0)]
#[variant(x)]
#[ensures(sum_of_odd(x) === sqr(x))]
fn sum_of_odd_is_sqr(x:Int) { if x > 0 { sum_of_odd_is_sqr(x-1) } }

This code is automatically proved conforming to its contract. Any call to this
function would then add the hypothesis ∀x, x ≥ 0 ⇒ sum_of_odd(x) = x2 in the
current proof context.

2.2 Borrows and Prophecies

We illustrate the use of prophecies to specify mutable borrows in Fig. 2. The
function pick returns, depending on its first boolean parameter, either its second
or third argument. We wish to show that the client pick_test returns 42. For that
purpose, pick must be given an appropriate contract: namely the postcondition
of lines 1 and 2. The first part of the postcondition states that the result of pick
(denoted by the identifier result) is either x or y, depending on the value of t.
Importantly, when we say result === x (i.e., when t === true), we are stating
that the borrow result, which is a pointer, is equal to the borrow x, not merely
the values being pointed. In particular, this captures that writing through the
returned pointer affect the variable pointed to by x. In pick_test, this entails
that the final value of a is 6. The second part of the post-condition is needed
to state that the other borrow parameter (y when t === true) is released so the
caller knows the value it points to can no longer change until the lifetime ’a ends.
This is specified using a prophecy. For any mutable borrow b, one can write ^b
in Pearlite to denote its final value, the value the variable it points to will
have when the lifetime expires. Prophecies act like a bridge between the lender
and borrower, when a borrow is released we recover information which allows us
to update the value of the lender. Releasing a mutable borrow is equivalent to
stating that the current value of the borrow, *b, equals its final value, ^b. We

6 Denis, Jourdan, Marché

1 #[ensures(if t { result === x && ^y === *y }
2 else { result === y && ^x === *x })]
3 fn pick<’a>(t: bool, x: &’a mut i32, y: &’a mut i32) -> &’a mut i32 {
4 if t { x } else { y }
5 }
6
7 #[ensures(result === 42)]
8 fn pick_test() {
9 let (mut a, mut b) = (4, 7);

10 let x = pick(true, &mut a, &mut b);
11 *x += 2; return a * b;
12 }

Fig. 2. A toy example illustrating prophecies in the specification language.

refer to this process as the resolution of the borrow. Thanks to the resolution,
we can prove the postcondition of pick and deduce in pick_test that the value
of b at line 11 is its original value 7. The final value of a borrow is a logical
artifact: it is not necessarily known at runtime when the specification mentions
it, but one can prove [16,15] that it is sound to prophesize it in the logic. Note
that the first equality (i.e., result === x when t === true) actually implies the
equality ^result === ^x, as we are asserting that result and x are completely
indistinguishable. This explains why the first equality is enough to specify that a
mutation through the borrow result causes a mutation of the variable pointed to
by the argument x (when t === true). Since they both have the same prophecy,
modifications to the memory pointed to by result will affect the lender of x.
The approach is detailed and validated in prior work [16,15].

3 Handling Rust Function Bodies

Creusot translates Rust programs into WhyML, the programming language of
Why3. Rather than starting from source level Rust, translation begins from the
Mid-Level Intermediate Representation (MIR) of the Rust compiler. MIR is a
key language in the compilation of Rust and is the final result of desugaring and
type checking Rust code. Many tools that wish to consume Rust code target
MIR. There are rich APIs to access, extract and manipulate MIR code. Further-
more, MIR is created after type checking and is the representation on which
Rust’s flagship static analysis borrow checking is formulated. MIR is also the
language modeled in RustHornBelt [15] to prove the correctness of prophetic
translation. Thus, we want to design our translation from MIR to Why3 so the
generated verification conditions are as close as possible to those proved sound
in RustHornBelt. MIR programs are unstructured: they are represented as
a control-flow graph (CFG) whose nodes are basic blocks composed of atomic
instructions (borrowing, arithmetic, dereferencing, etc.) each terminated by a
function call, a goto, a switch, an abort or a return. To verify a MIR program, we

Creusot, Deductive Verification for Rust 7

find ourselves needing to calculate the weakest-precondition (WP) of a function
represented as a CFG. We achieve this using a dedicated Why3 input front-end
called MLCFG, that reconstructs a structured WhyML code from a control flow
graph, and then use Why3’s carefully designed WP computation algorithms.

3.1 Translating Owned Pointers

The ownership discipline of Rust makes a simple translation of (mutable) owned
pointers possible. Consider the case of a local variable x containing an owned
pointer to the heap (i.e., of type Box<T> for some type T). Then, we know that
mutating memory through x can only be observed by a read using variable x.
Therefore, if t is the translation of type T, then we can translate type Box<T> to
type t as well. An assignment through the pointer *x = e is simply translated
to the assignment: x = e′, where e′ is the translation of e.

3.2 Translating Borrows to Prophecies in Why3

Just like in RustHornBelt, borrows are translated into pairs of a current value
and a final value. Hence, we introduce a new polymorphic record type in Why3:

type borrow ’a = { current : ’a ; final : ’a }

A Rust variable of type &mut T is translated by Creusot as an object of type
borrow t, where t is the translation of T. The Pearlite notations *x and ^x are
translated into x.current and x.final.

Using the pattern of prophecies for encoding mutable borrows into a func-
tional language poses a difficulty: when we create a borrow, we obtain a new
prophetized value which comes out of thin air. We won’t know anything concrete
about this prophecy until the borrow is resolved at the moment it is dropped, and
then at the lifetime’s end the lender will have the value of this same prophecy.
In between these points there can be arbitrary control flow, ownership changes,
or reborrowing. We may no longer know who the lender of a borrow was at
its lifetime’s end, and therefore have no way to propagate the prophecy to the
lender. Our solution may be surprising: we update the lender with the prophecy
at the moment of the borrow’s creation, foreseeing all the mutations that will
occur. This is valid because the value of the lender cannot be observed before
the lifetime’s end. As a result, the creation of a borrow

let y : &mut T = &mut x;

is translated into

y : borrow t <- { current = x ; final = any t };
x : t <- y.final;

where any t is the WhyML non-deterministic construct which returns an arbi-
trary value of type t. It encodes the fact that the final value is not yet known,
it is thus prophetized. The second line gives to x the final future value of y.

An important other case occurs when a borrow is dropped, where we insert a
resolution statement :

8 Denis, Jourdan, Marché

1 val pick (t: bool) (a: borrow int32) (b: borrow int32) : borrow int32
2 ensures { if t then result = a /\ b.final = b.current
3 else result = b /\ a.final = a.current }
4
5 let cfg pick_test () =
6 ensures { result = 42 }
7 var a, b : int; var bor_a, bor_b, x : borrow int;
8 { a <- 4; a <- 7;
9 (* let x = pick(true, &mut a, &mut b); *)

10 bor_a <- { current = a ; final = any int32 }; a <- bor_a.final;
11 bor_b <- { current = b ; final = any int32 }; b <- bor_b.final;
12 x <- pick true bor_a bor_b;
13 (* *x += 2; *)
14 x <- { current = x.current + 2; final = x.final };
15 assume { x.final = x.current };
16 (* return a * b *)
17 return a * b }

Fig. 3. Simplified translation of the projection pick example in MLCFG.

assume { y.final = y.current };

The contents of a WhyML assume clause states a fact as a trusted hypothesis
for subsequent statements. Resolution corresponds to the fact that at this point
the value pointed to by the borrow will not change, and therefore its prophecy
has been fulfilled.

The simplified translation of the pick example, from Fig. 2, is given in Fig. 3.
See [8] for more details. The postcondition of pick_test and pick are proven using
Why3 and SMT solvers.

4 Support for Rust Traits

Rust makes heavy use of a trait system to implement abstractions. Like type-
classes in Haskell, traits allow functions, types or constants to be associated to
specific types, and can automatically select the correct instance at each call-site.
The trait system enables ecosystem-wide modularity and many common opera-
tions are expressed using traits, such as equality in the PartialEq and Eq traits,
order relations in PartialOrd and Ord, and accessing collections in the Index and
IndexMut traits. Supporting Rust’s trait system is necessary for a verification
tool, they manifest themselves in even the most basic programs, like Fig. 1. In
this section, we explain how traits can be used in Creusot to modularly ver-
ify programs. But Creusot not only verifies programs using traits, it also uses
traits for some of its core features: the Resolve and Model traits.

Creusot, Deductive Verification for Rust 9

1 trait Ord {
2 #[logic] fn cmp_log(self, o: Self) -> Ordering;
3
4 #[ensures(result === self.cmp_log(*o))]
5 fn cmp(&self, o: &Self) -> Ordering;
6
7 #[law]
8 #[requires(a.cmp_log(*b) === o && b.cmp_log(*c) === o)]
9 #[ensures(a.cmp_log(*c) === o)]

10 fn trans(a: &Self, b: &Self, c: &Self, o: Ordering);
11 ...
12 }

Fig. 4. A simplified Ord trait with specifications

4.1 Specifying Trait Behavior

The trait PartialOrd implements a heterogenous partial order : instances must
provide implementations for all of lt, gt, le, ge, and partial_cmp. Additionally,
the official documentation [21] requires that these definitions are mutually com-
patible, for example: if a.le(b) then a.lt(b) || a.eq(b). This is an example of a
law for PartialOrd. In Creusot, laws can be included in traits using the #[law]
annotation and written in the style of lemma functions (see §2.1). A particular-
ity of trait laws is their auto-loading : whenever we use any associated item of a
trait or implementation, we will bring into scope any laws from that trait.

Traits can be arranged into a hierarchy, with sub-traits refining or expand-
ing upon their super-traits. The sub-trait Ord strengthens the specification of
PartialOrd, requiring the order to be total and homogeneous. The laws of Ord
constrain the behavior of functions defined in the super-trait PartialOrd. In
Fig. 4 we present a simplified version of our specifications for Ord (see [8] for
more details). We require a definition of cmp_log and a proof of transitivity.
Each time a user makes use of a comparison operation, Creusot will load the
laws of Ord, allowing us to leverage the transitivity of our order.

Every implementation of a trait for a specific type must refine the contract
of the trait. It must weaken preconditions and strengthen postconditions. This
possibility of refinement allows implementations to provide stronger contracts
which leverage specific knowledge of the type the trait is being implemented for.
Whenever a trait method is used, Creusot will use the most specific contract
possible. Performing the translation to Why3 of all such different usage of traits
is indeed highly non-trivial: it relies on algorithms for construction of specific
dependency graphs which are detailed in our research report [8].

4.2 The Resolve Trait

We use traits to generalize the notion of resolution discussed in §3.2, as follows.

10 Denis, Jourdan, Marché

#[trusted] trait Resolve {
#[predicate] fn resolve(self) -> bool;

}

Much like how Rust’s Drop trait allows types to customize their program destruc-
tors, we use the Resolve trait to define the knowledge gained from resolving a
specific type. Following discussion of §3.2, the Resolve trait is given the following
implementation for mutable borrows:

unsafe impl<T> Resolve for &mut T {
#[predicate]
fn resolve(self) -> bool { pearlite! { ^self === *self } }

}

so indeed, when a mutable borrow r is resolved, instead of assuming ^r === *r,
Creusot will assume the equivalent assertion r.resolve().

Because Resolve represents information that is assumed about a type, an
incorrect implementation can introduce unsoundness to Creusot, for this rea-
son we mark the trait as #[trusted], and require all implementations to do the
same. This mirrors the notion of unsafe trait in Rust for those traits where a
malicious implementation could introduce undefined behavior in safe code.

The Resolve trait makes it possible to generalize the resolution mechanism
to data structures containing mutable borrows, like vectors of borrows, pairs
of pairs of borrows, etc. For example, when we resolve a pair p of mutable
borrows, we wish to learn that both components of p are resolved, that is,
*p.0 === ^p.0 && *p.1 === ^p.1. To achieve this goal, we give the following im-
plementation of the Resolve trait for pairs:

unsafe impl<T1: Resolve, T2: Resolve> Resolve for (T1, T2) {
#[predicate]
fn resolve(self) -> bool {

pearlite! { self.0.resolve() && self.1.resolve() }
}

}

Then, resolving x: (&mut T, &mut T) would expand into the resolution of each
component of the pair.

Like Drop, we need to be able to resolve a value of any type, but we don’t have
the benefit of being a first-class language feature of Rust. We solve this using a
cutting-edge feature of Rust, specialization. This allows us to provide a generic
implementation for every type T, and then provide more specific instances which
specialize resolution. In practice, this means users can write x.resolve() for any
value, and never need to constrain generic parameters to implement Resolve.

4.3 Specifying with Models: the Model Trait

Traits provide a convenient mechanism for abstracting specifications, just like in
programs. When working with complex data structures we wish to treat their
specifications in terms of a model which abstracts away implementation details.

Creusot, Deductive Verification for Rust 11

For example, we may wish to view a HashMap as a mathematical map between
two types, or a Vec as a sequence of values. To do this, we provide a function
which shows how to interpret concrete values as members of the model. In certain
cases (like Vec in Creusot), we may even take the existence of this function as
an axiom. This design pattern is common enough that we can capture it in a
trait.

trait Model {
type ModelTy;
#[logic] fn model(self) -> Self::ModelTy;

}

Each implementation of the Model trait specifies the type of the model and a
function to interpret itself as a value of that type. By making this a trait, we can
provide convenience instances that improve ergonomics. Creusot goes further
and provides syntactic sugar for this trait. Rather than using x.model(), users
can write @x where appropriate. Apart from this small sugar, models purely are
a library concern, Creusot as a tool has no specific awareness of them.

5 Experimentation and Evaluation

We evaluated the performance of Creusot on a wide range of benchmarks.
These benchmarks make heavy use of polymorphism and traits. Additionally,
we improved on the benchmarks of other tools by proving additional functional
properties. The evaluation shows that Creusot’s approach scales well, with ver-
ification times remaining low even in complex examples. Furthermore, it provides
evidence that our prophetic specifications are well-suited and concise.

Implementation Like many other Rust verification tools, Creusot is imple-
mented as an extension of the Rust compiler, and integrates easily into standard
Rust workflows. The total implementation including the ‘verification standard
library’ of Creusot totals 14k lines of code, published under an LGPL license,
available at https://github.com/xldenis/creusot/. During execution Creusot
translates Rust libraries into MLCFG and outputs the result to a file. The re-
sulting file can then be loaded in Why3 and verified using either its IDE or
command line3.

Language Support Creusot supports a large subset of safe Rust, including
structs and enums, all forms of borrowing, loops and recursions. As we discussed
in this paper, we also support polymorphism and traits, including associated
types and functions, and super traits. Furthermore, we extend Rust with both
logic functions and predicates, which can be used in the specifications of functions
and traits. Creusot also allows types like Vec to be axiomatized so their safe
clients can still be verified.
3 Note to reviewers: the page at https://www.lri.fr/~xldenis/icfem2022/ provides de-

tailed instructions on how to reproduce the experiments below.

https://github.com/xldenis/creusot/
https://www.lri.fr/~xldenis/icfem2022/

12 Denis, Jourdan, Marché

Has Has Spec. # of Additional
Name generics? traits? LOC LOC VCs Time (s) Properties
Inc Some List ✗ ✗ 25 22 4 0.98 Func. correctness
Inc Max ✗ ✗ 12 3 2 0.53 Func. correctness
Inc Max Many ✗ ✗ 13 3 2 0.74 Func. correctness
Binary Search ✓ ✓ 21 20 31 2.15 Func. correctness
Knapsack 0/1 ✓ ✗ 32 52 81 3.94 —
Knapsack 0/1 ✓ ✗ 32 106 113 5.96 Func. correctness
Knuth Shuffle ✓ ✗ 9 11 1 0.30 Permutation
100 doors ✗ ✗ 18 6 3 1.08 —
Heap Sort ✓ ✓ 30 71 125 14.6 Func. correctness
Selection Sort ✓ ✓ 15 27 30 2.14 Func. correctness
Gnome Sort ✓ ✓ 11 17 31 2.06 Func. correctness
Filter Vector ✓ ✗ 21 39 6 0.98 —
Sparse Array† ✓ ✗ 47 75 37 4.86 Func. behavior
In place List Rev. ✓ ✗ 12 10 1 0.55 Func. correctness
All Zero List ✓ ✗ 11 10 1 0.64 Func. correctness
Swap Pair ✓ ✗ 9 3 2 0.48 —
HashMap ✓ ✓ 50 111 71 5.43 Func. correctness

Table 1. Selected results of our evaluation. The column “LOC” indicates the lines
of program code (excluding blank lines) we verify. The column “Spec. LOC” measures
the lines of specifications (excluding blank) used. “# of VCs” measures the number of
verification conditions that are sent as proof tasks to CVC4 or Z3. “Time (s)” measures
the time Why3 takes to run the provers. The “Has traits?” measures whether the test
case has a function with a generic parameter constrained by a trait. Tests marked with
† required a few manual proof steps in Why3 IDE [7].

Evaluation We measure the verification performance for programs translated
with Creusot. We adapted and generalized programs from the Prusti [1]
benchmark suite, additionally strengthening the verified properties. Other
examples were inspired from the Why3 gallery [4], Rosetta Code [18] or
RustHorn [16].

Note that Why3 has support for a wide range of manual proof tactics that
allow users to setup proof structure before handing off obligations to provers.
As these can dramatically help verification, we avoid them in our evaluation
and instead apply a standard proof strategy to all examples. Each example is
proved using Why3’s “Auto Level 2” strategy, a common first step when verifying
programs with Why3. One benchmark required a small number of additional
manual proof steps, “Sparse Array”, to prove a complex lemma about injections
between sequences.

Our evaluation was performed using a 2016 Macbook Pro running macOS
11.6 installation with a Intel Core i7-7920HQ CPU and 16 GB of RAM. We
relied on a combination of Alt-Ergo 2.4.1, Z3 4.8.17 and CVC4 1.8 as back-ends
to Why3.

Creusot, Deductive Verification for Rust 13

Discussion The selected results are presented in Table 1, where benchmarks are
grouped by origin. The first group come RustHorn’s evaluation [16, §4.3], where
we added specifications of the intended functional behavior. The second group
of benchmarks are adapted from Prusti’s evaluation [1, §7.2]. The third group
are novel examples contributed as part of Creusot’s test suite. “Filter Vector”
is a challenging example regarding reasoning on memory separation [12]. “Sparse
Array” is an example from the VACID-0 benchmarks [14]. The proof involves
a mathematical lemma with a few steps of manual proof [7] before sending the
sub-goals to SMT solvers. “In Place List Rev.” is the in-place linked-list reversal
procedure, classically used as an illustration of reasoning in separation logic. It
is remarkable that the Rust code for that can be verified without the need for
separation logic.

Our RustHorn tests show that we maintain the verification performance of
RustHorn, as these examples are rapidly verified by our provers. While some
manual annotation is required, even for safety, the overhead is low, and mostly
consists of stating the properties we wanted to prove in the first place.

The Prusti examples listed here are derived from their introductory paper
in 2019 [1]. In their paper they provide two versions for their functions, the first
proving only safety while the second proves portions of functional correctness.

The difference in verification performance is made evident by the “Knap-
sack 0/1” example of Prusti. This example solves the 0/1-Knapsack problem
using the traditional dynamic programming approach. Prusti takes over 2 min-
utes to verify the safety of the problem, whereas our proof of safety passes in
approximately 4 seconds. This difference in performance helps us go further, be-
ing able to rapidly check proofs allows for faster iteration, which enabled us to
extend this example with a complete proof of functional correctness. Our version
of the Knapsack Problem with functional correctness takes longer to verify, with
the proof passing in approximately 6 seconds.

6 Related Work

RustHorn [16] laid the foundations for Creusot by developing a prophetic
encoding of mutable borrows and applying it to Rust. It translates MIR pro-
grams directly to Constrained Horn Clauses where existing dedicated automated
solvers can be thrown at the task. Creusot on the other hand introduces an
intermediate step: we translate first to an intermediate language which is then
lowered to first-order logic (FOL) by calculating weakest-preconditions. As a tool
RustHorn remains a proof-of-concept, it supports a core fragment of Rust: al-
gebraic data types, borrows, simple loops and arithmetic and polymorphism.
There is no support for unsafe types like Vec or for traits like Eq. Moreover,
RustHorn has no specification language, it is limited to the verification of
program assertions, which are by essence limited to executable boolean expres-
sions on program variables, without any way to relate them with an abstract
model. It relies entirely on automation to infer both function postconditions and
loop invariants, meaning a seemingly small change can cause verification times

14 Denis, Jourdan, Marché

to spiral out of control or fail unpredictably. While not an automated verifier,
RustHornBelt mechanizes a proof of soundness for prophetic verification of
Rust [15], by extending the prior RustBelt proof. The proof shows that the
uniqueness and lifetimes of mutable borrows enables prophetizing their final val-
ues, placing Creusot’s approach on solid theoretical grounds. However, there
remains a gap between an implementation like Creusot and the mechanization.
In particular, the language of RustHornBelt λRust makes a number of sim-
plifying assumptions when compared to MIR, like boxing function parameters
or using a CPS structure for the programs. Furthermore, RustHornBelt es-
tablishes the soundness of the final verification conditions directly but Creusot
introduces an intermediate step by targeting a functional language.

Prusti [1] is another deductive verifier for Rust, based on the Viper sep-
aration logic platform. It does not use a prophetic encoding, instead modeling
ownership using permissions. Like Creusot, Prusti has a specification lan-
guage which can be used to give contracts and invariants. Because Prusti has
no notion of prophecy, it does not use the final operator (^) to specify mutable
borrows, instead using pledges. A pledge is an assertion that is guaranteed to
hold at the time when the borrow expires, which is not necessarily in the body
of the function. In contrast, the final operator of Creusot brings prophecies
as first-class objects in the specification language, to specify the future values
of borrows. The semantics of Prusti specifications were designed to preserve
the behavior of program assertions when lifted into pure contracts. In partic-
ular, arithmetic in Prusti’s specifications is machine arithmetic and has to
be checked for overflow. Creusot takes a different approach by using a more
abstract specifications language (Pearlite), which is usually easier to reason
with. A consequence of this difference is that Pearlite logical functions can-
not be executed, while Prusti’s pure functions can be used in programs. While
Prusti’s permission system supports the common borrowing patterns of Rust,
it struggles with patterns like reborrowing in a loop (e.g., “All Zeros List” 5),
with data structures containing borrows like pairs of mutable borrows 5, or with
nested borrows. In contrast, Creusot’s translation of Rust types using prophe-
cies for mutable borrows is general and compositional : we place no restrictions
on the usage of mutable borrows or their position within types. Another notice-
able difference with Prusti lies in the choice of the underlying logic. Prusti
encodes specifications into separation logic and delegates verification to Viper,
whereas Creusot encodes them into FOL and delegates verification to SMT
solvers via Why3. Prusti chooses to verify Rust’s ownership discipline with
Viper, while Creusot depends on Rust’s borrow checker for that, which means
Creusot relies on the soundness of Rust’s type system and of its implementa-
tion. We believe this difference explains the significant blow-up in verification
times: on simple examples verification takes an order of magnitude more time
than with Creusot. The simpler underlying logic in Creusot, allows it to ben-
efit from Why3’s mature infrastructure to manage a herd of automated provers
and a tactic system to provide guidance when they go astray. Both Prusti and
Creusot support traits and polymorphism. However, because mutable borrows

Creusot, Deductive Verification for Rust 15

need special care in Prusti, a generic Rust function cannot be instantiated with
a mutable borrow, which causes no problem in Creusot. Moreover, properties
of traits in Prusti are specified using only pre- and postconditions; we use laws
for specifying such properties, which we find more flexible.

Aeneas [11] is a novel verifier for Rust targeting interactive verification of
programs in established proof assistants like F∗ or Coq. To achieve this they also
translate Rust programs to functional programs in a State-Error Monad. Instead
of using prophecies they use backwards functions to reconstruct the value of a
lender has after the borrows expiry. This approach appears to have a deep and
close link to prophecies as used by Creusot, instead of using non-determinism to
pull the value out of thin air, Aeneas constructs the actual witness of this value.
The constructive approach that Aeneas takes may very well be better suited to
interactive provers which traditionally prefer constructive logics. Aeneas also
makes the choice of using so called extrinsic proofs, all specification and proof
work is done in the prover, with no annotations present in Rust. While this allows
them to leverage all the existing tools in the underlying prover, the proof engineer
must manually sync these proofs and specifications with the Rust code as it
evolves. This attests to the different audiences targeted by the tools, Aeneas
seeks to enable the users of existing advanced verification tools to perform more
ergonomic verification using their traditional toolkits, while Creusot seeks to
bring verification to regular engineers. In terms of language support, Aeneas
is currently more limited than Creusot, it has no support for loops, nested
borrows or traits.

Beyond the Rust ecosystem, Spark/Ada is a tool suite for deductive verifi-
cation of Ada programs. For a long-time, it was restricted to a subset of Ada
without pointers. Support for pointers was added in 2020 [13], based on an
ownership policy similar to Rust’s. At the start Spark used a notion of pledges
similar to Prusti’s, but they have now replaced it with prophecies. Similarly
to Creusot, Spark/Ada makes use of the ownership information computed by
the compiler to encode specifications and code into a first-order logic, instead of
relying on a separation logic.

References

1. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. Proc. ACM Program. Lang. 3, 147:1–147:30
(2019). https://doi.org/10.1145/3360573

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Computer Aided Verification (2011). https:
//doi.org/10.1007/978-3-642-22110-1_14

3. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.:
ACSL: ANSI/ISO C Specification Language, version 1.16 (2020), https://frama-c.
com/html/acsl.html

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
Int. J. on Software Tools for Technology Transfer 17(6), 709–727 (2015). https:
//doi.org/10.1007/s10009-014-0314-5

https://doi.org/10.1145/3360573
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://frama-c.com/html/acsl.html
https://frama-c.com/html/acsl.html
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5
https://doi.org/10.1007/s10009-014-0314-5

16 Denis, Jourdan, Marché

5. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK,
and Eclipse. In: Formal Integrated Development Environment. vol. 149, pp. 79–92
(2014). https://doi.org/10.4204/EPTCS.149.8

6. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: Satis-
fiability Modulo Theories (2018), https://hal.inria.fr/hal-01960203

7. Dailler, S., Marché, C., Moy, Y.: Lightweight interactive proving inside an auto-
matic program verifier. In: Formal Integrated Development Environment (2018).
https://doi.org/10.4204/EPTCS.284.1

8. Denis, X., Jourdan, J.H., Marché, C.: The Creusot environment for the deductive
verification of Rust programs. Research Report 9448, Inria Saclay - Île de France
(2021), https://hal.inria.fr/hal-03526634

9. Filliâtre, J.C., Gondelman, L., Paskevich, A.: A pragmatic type system for de-
ductive verification. Research report, Université Paris Sud (2016), https://hal.
archives-ouvertes.fr/hal-01256434v3

10. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3) (2012). https://doi.
org/10.1145/2187671.2187678

11. Ho, S., Protzenko, J.: Aeneas: Rust verification by functional translation (2022).
https://doi.org/10.48550/ARXIV.2206.07185

12. Hubert, T., Marché, C.: Separation analysis for deductive verification. In: Heap
Analysis and Verification. pp. 81–93 (2007), https://hal.inria.fr/hal-03630177

13. Jaloyan, G.A., Dross, C., Maalej, M., Moy, Y., Paskevich, A.: Verification of pro-
grams with pointers in SPARK. In: Formal Methods and Software Engineering.
pp. 55–72 (2020). https://doi.org/10.1007/978-3-030-63406-3_4

14. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invari-
ants of data-structures, edition 0. In: Verified Software, Tools, Techniques and
Experiments (2010)

15. Matsushita, Y., Denis, X., Jacques-Henri, J., Dreyer, D.: RustHornBelt: A seman-
tic foundation for functional verification of Rust programs with unsafe code. In:
Programming Language Design and Implementation (2022). https://doi.org/10.
1145/3519939.3523704

16. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for
Rust programs. ACM Trans. Progr. Lang. Syst. 43(4), 15:1–15:54 (2021). https:
//doi.org/10.1145/3462205

17. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press (2015)

18. Mol, M., other contributors: The Rosetta Code chrestomathy of programs, http:
//rosettacode.org

19. de Moura, L., Bjørner, N.: Z3, an efficient SMT solver. In: TACAS. Lecture Notes
in Computer Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.
1007/978-3-540-78800-3_24

20. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: ECOOP 2009 — Object-Oriented Programming.
pp. 148–172 (2009). https://doi.org/10.1007/978-3-642-03013-0_8

21. The Rust Community: The std::cmp::Ord trait of Rust, https://doc.rust-lang.
org/std/cmp/trait.Ord.html

https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.4204/EPTCS.149.8
https://hal.inria.fr/hal-01960203
https://doi.org/10.4204/EPTCS.284.1
https://doi.org/10.4204/EPTCS.284.1
https://hal.inria.fr/hal-03526634
https://hal.archives-ouvertes.fr/hal-01256434v3
https://hal.archives-ouvertes.fr/hal-01256434v3
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.48550/ARXIV.2206.07185
https://doi.org/10.48550/ARXIV.2206.07185
https://hal.inria.fr/hal-03630177
https://doi.org/10.1007/978-3-030-63406-3_4
https://doi.org/10.1007/978-3-030-63406-3_4
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
http://rosettacode.org
http://rosettacode.org
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8
https://doc.rust-lang.org/std/cmp/trait.Ord.html
https://doc.rust-lang.org/std/cmp/trait.Ord.html

	Creusot: a Foundry for the DeductiveVerification of Rust Programs

