
RustHornBelt: A Semantic Foundation for Functional
Verification of Rust Programs with Unsafe Code

Yusuke Matsushita
The University of Tokyo

Tokyo, Japan
yskm24t@is.s.u-tokyo.ac.jp

Xavier Denis
Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA,

Laboratoire Méthodes Formelles
Gif-sur-Yvette, France

xldenis@lri.fr

Jacques-Henri Jourdan
Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA,

Laboratoire Méthodes Formelles
Gif-sur-Yvette, France

jacques-henri.jourdan@lri.fr

Derek Dreyer
MPI-SWS

Saarbrücken, Germany
dreyer@mpi-sws.org

Abstract

Rust is a systems programming language that offers both low-
level memory operations and high-level safety guarantees,
via a strong ownership type system that prohibits mutation
of aliased state. In prior work, Matsushita et al. developed
RustHorn, a promising technique for functional verification
of Rust code: it leverages the strong invariants of Rust types
to express the behavior of stateful Rust code with first-order
logic (FOL) formulas, whose verification is amenable to off-
the-shelf automated techniques. RustHorn’s key idea is to
use prophecies to describe the behavior of mutable borrows.
However, the soundness of RustHorn was only established
for a safe subset of Rust, and it has remained unclear how to
extend it to support various safe APIs that encapsulate unsafe
code (i.e., code where Rust’s aliasing discipline is relaxed).

In this paper, we presentRustHornBelt, the first machine-
checked proof of soundness for RustHorn-style verification
which supports giving FOL specs to safe APIs implemented
with unsafe code. RustHornBelt employs the approach of
semantic typing used in Jung et al.’s RustBelt framework,
but it extends RustBelt’s model to reason not only about
safety but also functional correctness. The key challenge in
RustHornBelt is to develop a semantic model of RustHorn-
style prophecies, which we achieve via a new separation-
logic mechanism we call parametric prophecies.

CCS Concepts: • Theory of computation→ Program-
ming logic; Separation logic; Type theory.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523704

Keywords: Rust, separation logic, verification, type systems,
prophecy variables, Iris

ACM Reference Format:

YusukeMatsushita, Xavier Denis, Jacques-Henri Jourdan, andDerek

Dreyer. 2022. RustHornBelt: A Semantic Foundation for Functional

Verification of Rust Programs with Unsafe Code. In Proceedings of

the 43rd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI ’22), June 13ś17, 2022,

San Diego, CA, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3519939.3523704

1 Introduction

The Rust programming language [39, 30, 27] has shown that
high-level safety is not fundamentally at odds with low-level
control. Drawing from decades of academic research [45, 11],
Rust employs an ownership type system, where aliasing of
pointers is tracked statically and direct mutation of aliased
state is prohibited. This serves to guarantee memory safety
and data-race freedom even in the presence of low-level
features like interior pointers and manual deallocation. Un-
surprisingly, the arrival of a language with low-level control
as in C/C++, as well as stronger safety guarantees than in
most existing languages, has been met with great interest
by academic researchers and industrial software developers
alike [22, 21, 19, 35, 17, 37, 40].

However, as Rust gets deployed in ever more critical posi-
tions in the software stack, the need to go beyond the mere
safety guarantees of the language grows more pressing. Re-
cently, several projects have developed tools for functional
verification of Rust programs, with a focus on how the safety
guarantees provided by the Rust type system can be exploited
to simplify the verification problem.

Prusti [6] uses information from the Rust compiler to auto-
matically synthesize separation logic [38] proofs of memory
safety for Rust programs in the Viper framework [36]; the
user can then verify functional correctness on top by instru-
menting the source code with additional annotations.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

841

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-5208-3106
https://orcid.org/0000-0003-2530-8418
https://orcid.org/0000-0002-9781-7097
https://orcid.org/0000-0002-3884-6867
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

RustHorn by Matsushita et al. [32, 33] goes even further,
eliminating separation logic from the picture entirely: they
show that, using Rust’s strong aliasing guarantees, the behav-
ior of (well-typed) Rust programs can be described in first-
order logic (FOL) formulas, without any explicit representa-
tion of memory or separation logic analogues like points-to
assertions. This encoding is amenable to off-the-shelf logic
solvers, as they demonstrated with fully automated verifica-
tion using CHC (constrained Horn clause) solvers [9].

However, both Prusti and RustHorn share a common limi-
tation: they assume that the program being verified is writ-
ten entirely in the safe fragment of Rust. In reality, however,
many Rust programs depend on APIs that, while observably
safe, are implemented internally with features that are unsafe
(i.e., not guarded by Rust’s static ownership checking), such
as raw pointer accesses and unchecked type casts. For exam-
ple, the widely used Vec API (for growable arrays) manages
its underlying buffer and performs memory access using
raw pointers. The Cell API provides a restricted (e.g., single-
threaded) form of sharedmutable state, allowing the contents
of a Cell to be mutated through a shared (immutable) ref-
erence to the Cell. It has remained unclear how to soundly
extend the formal foundations of Prusti and RustHorn to
account for APIs like these that safely encapsulate uses of
unsafe code.

In this paper, we present RustHornBelt, a semantic foun-
dation for proving soundness of RustHorn-style verification,
which is compatible with safe APIs built from unsafe code,
like Vec and Cell, and is mechanized in Coq [12]. RustHorn-
Belt builds on the RustBelt soundness proof for Rust [21],
extending it with a model of types based on RustHornÐan ex-
tension that required us to develop several novel techniques
in separation logic. Before we get there, though, let us briefly
review the prior work on RustHorn and RustBelt.

RustHorn: Leveraging Rust types to verify stateful
programs in first-order logic. One of the greatest chal-
lenges in automatically checking the safety of stateful pro-
grams is dealing with mutation of aliased (or shared) state.
When an object can be aliased between multiple parts of a
programÐi.e., there exist multiple references to itÐand one
alias is used to mutate or potentially deallocate the object, it
can be difficult to reason modularly about the result of that
mutation from the perspective of the other aliases.
Rust’s type system tackles this challenge by restricting

the mutation of aliased state. In particular, the design of Rust
is centered around the principle of Aliasing XOR Mutabil-
ity (AXM), which says that an object can either be aliased
or be mutable, but cannot be both at the same time. The
AXM principle is enforced through the concept of ownership.
By default, objects are exclusively łownedž, meaning that
whichever piece of code can refer to the object can freely
mutate and/or deallocate it but has unique access: there can
be no aliases.

However, exclusive ownership per se would be too restric-
tive to account for common C++-style programming idioms.
Thus, to enable objects to be passed by reference or shared
between multiple parts of the program, Rust introduces the
concept of borrowing. Given an object x, one can create ei-
ther a mutable borrow (&mut x) or a shared borrow (&x) of it.
The former has type &𝛼 mut T, which represents the unique
right to both read and mutate the object, but only during the
lifetime 𝛼 .1 The latter has type &𝛼 T, which represents the
freely duplicable right to read the object during 𝛼 , but not to
write it. In either case, during the lifetime 𝛼 of the borrow,
the original owner of the object loses both read and write
access to the object, regaining them only once 𝛼 is over.

The key insight of RustHorn by Matsushita et al. [32, 33]
is that, by severely restrictingmutation of shared state, Rust’s
AXM discipline makes it possible to give a pure, first-order
logic (FOL) formulation of the behavior of stateful Rust code,
which is more amenable to fully automatic verification than
approaches based on separation logic. For the cases of shared
borrows and fully owned objects, this is not too surprising:
the former temporarily prohibit state change, and the latter
can be described in a standard state-passing style [45, 10, 8].
The interesting case is mutable borrows, for which the

key question is how to łcommunicatež the result of state
changes through the mutable borrow back to the original
owner (lender) of the object, without relying on stateful rea-
soning à la separation logic. RustHorn solves this challenge
by using prophecies. Prophecies are a classic technique in
program verification [1, 44, 24], through which, when ver-
ifying a program, one can make proof decisions based on
peeking into its future execution. RustHorn uses prophecies
to express mutable borrows in functional style: as a pair of
the current value of the object and the final (prophesied)
value the object will have when the borrow ends.

RustHorn’s approach to simplifying the Rust verification
problem has already been influential, giving rise to a semi-
automated Rust verifier Creusot [15], which uses RustHorn-
style prophecy-based translation. RustHorn also motivated
recent work on CHC solving [26].

RustBelt: Tackling Rust’s type soundness semanti-
cally. Matsushita et al. [32, 33] established the soundness of
RustHorn via a syntactic proof, which supports a significant
subset of the safe fragment of the Rust language. However,
this approach fundamentally bakes in the assumption that all
code in the program adheres to the AXM discipline enforced
by the Rust type system. As soon as any code in the program
violates this discipline by using unsafe features of Rust, the
syntactic approach breaks down.

This limitation of syntactic proofs of soundness was previ-
ously articulated and tackled by Jung et al. [21] in their work
on RustBelt. That work developed a semantic model for a
𝜆-calculus representing a substantial subset of Rust (called

1 We use Greek letters 𝛼, 𝛽 for lifetimes, instead of 'a, 'b as Rust does.

842

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

𝜆Rust) and used the model to prove an extensible type sound-
ness theorem for Rust: not only does it verify that safe Rust
code has well-defined behavior, it also stipulates what verifi-
cation condition a Rust API that uses unsafe features must
satisfy in order to be deemed an observably safe extension to
the language.

The RustBelt soundness proof is formalized in the higher-
order concurrent separation logic Iris [25, 28, 23, 20], which
is mechanized in the Coq proof assistant [12] and provides
an expressive logical language for modular reasoning about
ownership and state. Using Iris, RustBelt verified type sound-
ness of 𝜆Rust, along with several representative Rust APIs
built from unsafe code, including Cell and Mutex.

Contributions. In this paper, we present RustHornBelt,
the first approach to formal verification of Rust programs
that accounts soundly for the presence of (safely encap-
sulated) unsafe code. As the name suggests, RustHornBelt
marries the benefits of RustHorn and RustBelt, providing
a semantic, RustBelt-style foundation for the soundness
of RustHorn-style verification. Specifically, RustHornBelt
extends RustBelt’s higher-order separation-logic model of
Rust types to include a RustHorn-style FOL representation
of types. It also extends RustBelt’s typing judgment to in-
clude a specificationÐin the form of a predicate transformerÐ
describing the functional behavior of the typed Rust term
with respect to the RustHorn-style representation of types.

RustHornBelt’s semantic foundationÐpresented at a high
level in ğ2 and in more detail in ğ3Ðachieves two objectives.
First of all, it provides the first machine-checked soundness
proof for RustHorn: for safe Rust code, it verifies (in Coq)
that it satisfies a RustHorn-style FOL specification. Second,
like RustBelt, it is extensible: for a Rust API R, whose imple-
mentation uses unsafe code, we cannot automatically derive
a RustHorn-style spec of its behaviorÐbut we can choose a
particular RustHorn-style spec Φ that we wish to give to R,
and RustHornBelt will tell us what verification conditions
we must discharge (manually, in Iris) in order to prove that R
satisfies Φ. Like RustBelt, RustHornBelt is fully mechanized
in the Coq proof assistant, using the Iris framework.
In particular, we have verified RustHorn-style specs for

key Rust APIs implemented with unsafe code, including Vec
(growable array), SmallVec (Vec-like array that stores ele-
ments inline when the length is small), &𝛼 (mut) [T] (shared/
mutable slices), Iter(Mut)<𝛼,T> (shared/mutable iterators),
MaybeUninit (possibly uninitialized object), swap (swap via
mutable references), Cell (shared mutable cell), spawn/join
(thread spawning and joining), and Mutex (mutex synchro-
nizationwrapper for sharing data across threads).We present
several of these API specs in ğ 2.3. As one can see in our
paper’s artifact [31], we evaluated our approach by fully
mechanizing our proofs of soundness of these specs in Coq
(ğ4.1) and also confirmed that our API specs are useful for
(semi)-automated verification using Creusot (ğ4.2).

The key technical challenge we faced in RustHornBeltÐ
which we explore in depth in ğ 3Ðwas determining how
to integrate RustHorn’s prophecy-based representation of
Rust’s mutable borrows into RustBelt. Although Jung et al.
[24] have developed an account of prophecy variables in Iris,
it is not a good fit for RustHorn-style prophecies for several
reasons: (a) it requires the program to be explicitly annotated
with prophecy-related ghost instructions; and (b) it treats a
prophecy variable name as distinct from the value it resolves
to, thus making it seemingly impossible to partially resolve a
prophecy to a value that mentions other prophesied values (a
feature we need for modeling, e.g., nested borrows and borrow
subdivision). We thus instead model RustHorn’s prophecies
via a new mechanism (encoded in Iris) we call parametric
prophecies. It alleviates all the above problems with Jung
et al.’s prophecies, so long as we embed all our RustHorn-
style specs within a reader monad, ensuring that we only
make observations about prophecy variables that hold under
all possible resolutions of those variables.

Limitations. Although RustHornBelt provides amachine-
checked semantic foundation for RustHorn-style verification
of Rust programs with unsafe code, it does not constitute
an automated verification framework in itself. One must
link it with a separate RustHorn-style verifier for safe Rust
code (e.g., Creusot), and the implementation of that verifier
remains part of the trusted computing base (TCB).

We used Creusot to confirm that our RustHorn-style specs
for internally-unsafe Rust APIs are useful for automated
verification of client programs; however, there remains a
formal gap between RustHornBelt and Creusot. First, Creusot
targets surface Rust, whereas RustHornBelt only models
𝜆Rust. Second, as it is built atopWhy3 [18], Creusot represents
RustHorn-style specs as purely functional WhyML functions
rather than (as in RustHornBelt) predicate transformers; that
said, there is a close correspondence between the two, which
we expect could be formalized in future work.

Although we have formally verified RustHorn-style specs
for various APIs, we do not cover all the APIs that were
verified safe in RustBelt. Notably, we do not provide any
specs for the APIs Rc, Arc, RefCell, and RwLock, which
implement reference and access counting. This is largely
due to a technical issue related to step-indexing, which we
discuss in ğ3.5 but leave as an open problem for future work.

2 Overview of RustHornBelt

In this section, we give a high-level overview of RustHorn-
Belt. We first review RustHorn’s prophecy-based translation
from Rust to FOL (ğ2.1), and then show how we formalize
that as the type-spec system, Rust’s type system extended
with RustHorn-style specs (ğ2.2). We also present RustHorn-
style specs for various Rust APIs implemented with unsafe
code, which we have verified in RustHornBelt (ğ2.3).

843

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

2.1 Key Idea of RustHorn: Mutable Borrows
Expressed in FOL via Prophecies

Consider the following program:2

fn max_mut<𝛼>(ma: &𝛼 mut int, mb: &𝛼 mut int)

-> &𝛼 mut int { if *ma >= *mb { ma } else { mb } }

fn test(mut a: Box<int>, mut b: Box<int>) {

let mc = max_mut(&mut a, &mut b);

mc += 7; / end */ assert!(abs(*a - *b) >= 7); }

What’s going on in test? First, a and b, boxed (fully owned)
pointers to integers, are taken as input. Then their integer
objects are mutably borrowed (&mut a and &mut b) under
the same lifetime (i.e., time limit of ownership rental) 𝛼 . This
createsmutable references of type &𝛼 mut int, pointers that
borrow ownership from a or b. They are passed to max_mut,
which returns the one with the larger target value mc and
drops the other. Then the target of mc is increased by 7. The
mutable borrows temporarily deprive a and b of access to
their integer object. When the lifetime 𝛼 ends, mc’s own-
ership gets expired, and a and b regain access. Finally, the
values of a and b are asserted to be different by 7 or more.

Suppose we want to verify that the assertion at the end
always succeeds. To do so, we must analyze the effect of
the update *mc += 7, where mc’s address is determined dy-
namically. Intuitively, this is tricky because whichever of
the mutable borrows of a and b stores the smaller value will
be dropped (and no longer modified) before its lifetime is
over, but this does not involve any explicit communication
between the borrower and the original owner. So how can
we reason about this communication formally?

RustHorn solved this problem using prophecies. When we
start a new mutable borrow &mut a, we prophesy the final
state of the borrow 𝑎′, peeking into the future. Importantly,
we don’t decide anything on the value 𝑎′ when we create a
borrow. Instead, we represent a mutable reference ma as the
pair (𝑎, 𝑎′) of the current state 𝑎 and the final state 𝑎′. When
a mutable reference (𝑎, 𝑎′) is dropped (i.e., its ownership
is given up), we learn 𝑎′ = 𝑎, i.e., that the final state 𝑎′ is
now set to the state at that point 𝑎 (which is called prophecy
resolution). That information can be in effect łcommunicatedž
to the original owner, telling what is the state of the returned
object just after the end of the lifetime. This is the key idea
of RustHorn, which enables one to give FOL descriptions to
Rust programs in an elegant way.
For example, max_mut’s postcondition (input-output rela-

tion)MaxMut (𝑚𝑎,𝑚𝑏, res) can be written in FOL as follows:3

if 𝑚𝑎.1 ≥ 𝑚𝑏.1 then 𝑚𝑏.2 =𝑚𝑏.1 ∧ res =𝑚𝑎

else 𝑚𝑎.2 =𝑚𝑎.1 ∧ res =𝑚𝑏

2 For simplicity, we consider an idealized unbounded integer type int. By

managing extra preconditions for avoiding overflows, we can easily handle

realistic bounded integer types like i32 (32-bit).
3 The logic is multi-sorted. We often let a variable’s sort be implicit.

Note that the final state of the dropped reference (e.g., mb for
the first branch) is determined (e.g.,𝑚𝑏.2 =𝑚𝑏.1).
Now the verification condition for test’s assertion can

be written as the following FOL formula:

∀𝑎, 𝑏. ∀𝑎′, 𝑏′ . ∀𝑚𝑐. MaxMut
(

(𝑎, 𝑎′), (𝑏, 𝑏′),𝑚𝑐
)

→

𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎′ − 𝑏′ | ≥ 7

For the mutable borrow &mut a, we prophesy the final state
𝑎′, and represent the mutable references as a pair (𝑎, 𝑎′), and
similarly for &mut b. Since mc is dropped just after *mc +=

7, we set 𝑚𝑐.2 = 𝑚𝑐.1 + 7. Finally, the assertion after the
lifetime’s end can be described using the prophesied final
states 𝑎′, 𝑏′ (namely, |𝑎′ − 𝑏′ | ≥ 7). Indeed, the logic formula
above is true. You can check that 𝑎′ and 𝑏′ are always set to
the actual final state of the borrows.

Though the above example involves borrows of mere inte-
gers, RustHorn’s prophecy-based representation of mutable
borrows can be naturally extended to various use cases of
mutable borrows in Rust, such as nested borrows (e.g., &mut
&mut int) and borrow subdivision (e.g., getting &𝛼 mut int

out of &𝛼 mut List<int>), as well.

2.2 Type-Spec System: Our Formalization of
RustHorn-Style Verification

RustHornBelt provides a solid, mechanized foundation for
the soundness of RustHorn-style verification. Toward that
end, it formalizes RustHorn-style verification by means of
a type-spec system, which extends Rust’s type system (or
rather, the type system of 𝜆Rust developed in RustBelt) with
generation of RustHorn-style FOL specifications. As we de-
scribe later in ğ3, RustHornBelt gives a semantic proof of
soundness for this type-spec system.

Overview of the łtype-spec systemž. The basic judg-
ment of our type-spec system4 is the type-spec judgment,
which extends RustBelt’s typing judgment with a specifica-
tion Φ of the instruction 𝐼 ’s behavior:

L | T ⊢ 𝐼 ⊣ r. L′ | T′
⇝ Φ

Here, we have two type contexts T and T
′, which respec-

tively represent the state before and after executing 𝐼 . The
result of 𝐼 is bound to the variable r (we omit this part when
we ignore the result), which T

′ may refer to. A type context
is a sequence of items of form either a : T or a : †𝛼 T. The
former simply means we own an object a of the type T. The
latter is more unique to Rust: it means that an object a of
type T is borrowed under the lifetime 𝛼 , and thus access to
that object via a is temporarily frozen until 𝛼 is over.

We also have the input and output (local) lifetime contexts
L and L

′, which are a set of local lifetimes (𝛼, 𝛽, · · ·) that are
alive before and after the execution of 𝐼 , respectively. (When
a lifetime context is empty, we omit it.)

4 The type-spec system we present in the paper is a simplified version of

the actual one used for Coq mechanization.

844

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

After⇝ comes what is new, the specification. Formally, it
is a (backward) predicate transformer Φ, of the sort (⌊T′⌋ →

Prop) → ⌊T⌋ → Prop, which calculates a precondition (of
sort ⌊T⌋ → Prop) for safe execution of 𝐼 , given a postcondi-
tion (of sort ⌊T′⌋ → Prop) that must hold after 𝐼 is executed.
The sort of a type context ⌊T⌋, in turn, is defined as the

product (heterogeneous list sort) of the sorts ⌊T⌋ of the items
a : ? T in T, where the sort ⌊T⌋ of a type T is defined as follows:

⌊int⌋ ≜ Z ⌊Box<T>⌋ ≜ ⌊T⌋

⌊&𝛼 T⌋ ≜ ⌊T⌋ ⌊&𝛼 mut T⌋ ≜ ⌊T⌋ × ⌊T⌋

Here, ⌊T⌋ describes the RustHorn-style representation of
the Rust type T. For ⌊int⌋ it is just an integer Z, and for
⌊Box<T>⌋ and ⌊&𝛼 T⌋ it refers to the representation of the
pointer’s target. The case of a mutable reference ⌊&𝛼 mut T⌋

is the interesting łpropheticž one: its representation is a pair
of the current value stored there and the final value stored
there when the lifetime of the borrow ends.

Note that, although the above definition of ⌊T⌋ represents
a frozen object in T with the same sort as an active object,
the meaning is quite different. For an active object a : T, its
representation ⌊T⌋ is simply a’s current value. For a frozen
object a : †𝛼 T, its representation ⌊T⌋ is the prophesied value
that a will have at the lifetime 𝛼 ’s end.

For a simple example, we can give the following type-spec
judgment to integer addition:5

a : int, b : int ⊢ a + b ⊣ c. c : int ⇝ 𝜆𝛹, [𝑎, 𝑏] . 𝛹 [𝑎 + 𝑏]

It takes two integers and returns an integer. The predicate
transformer passes the output 𝑎 + 𝑏 to the postcondition𝛹;
intuitively, it is like a CPS program with the continuation𝛹.
Semantically, a type-spec judgment with spec Φ is mod-

eled as a Hoare triple over 𝐼 , which is universally quantified
over its postcondition𝛹 and usesΦ𝛹 (roughly) as its precon-
dition. For formal details, see ğ3.1’s (tysp-sem-0) or ğ3.3’s
(tysp-sem-1).

Operations formutable borrows. Let’s type and specify
basic operations for the mutable borrowing machinery.

Creation of a mutable borrow is described as follows:
mutbor

a : Box<T> ⊢ &mut a ⊣ b.

a : †𝛼 Box<T>, b : &𝛼 mut T ⇝ 𝜆𝛹,[𝑎] .∀𝑎′ .𝛹 [𝑎′, (𝑎,𝑎′)]

The final state of the borrow is prophesied as a value 𝑎′, about
which we know nothing now (hence the universal quantifier).
The spec says that (1) the first argument to the postcondition
𝛹, corresponding to the frozen lender a : †𝛼 Box<T> in the
output typing context, is the final prophesied value 𝑎′ that a
will have when the borrow ends; and (2) the second argument
to 𝛹, corresponding to the borrower b : &𝛼 mut T, is the
pair of the current state 𝑎 of the borrowed object a and the
prophesied final state 𝑎′.

5 In a binder like ł𝜆𝛹, [𝑎,𝑏] .ž in the spec, the bracket pattern [𝑎,𝑏] simply

destructs the (heterogeneous) list of input values.

Writing to a mutable reference is type-spec’ed as follows:
mutref-write

𝛼 | b : &𝛼 mut T, c : T ⊢ *b = c ⊣ 𝛼 |

b : &𝛼 mut T ⇝ 𝜆𝛹, [𝑏, 𝑐] . 𝛹 [(𝑐, 𝑏.2)]

The mutable reference’s current state is updated to 𝑐 , but its
final state 𝑏.2 is preserved. The lifetime 𝛼 should be active.
Dropping a mutable reference is type-spec’ed as follows

(we leave the instruction empty since it is a ghost instruction
that does not appear in the Rust source program):
mutref-bye

𝛼 | b : &𝛼 mut T ⊢ ⊣ 𝛼 | ⇝ 𝜆𝛹, [𝑏] . 𝑏.2 = 𝑏.1 →𝛹 []

Here, since we are dropping b, we know that it will not be
updated any further until the lifetime 𝛼 ends, so we learn
that the final state 𝑏.2 is equal to the current state 𝑏.1.6

Expiration of a local lifetime 𝛼 , with objects borrowed
under 𝛼 getting unfrozen, is type-spec’ed as follows:

endlft

𝛼 | a : †𝛼 T ⊢ ⊣ a : T ⇝ 𝜆𝛹, 𝑎.𝛹 𝑎

This removes 𝛼 from the lifetime context and changes each
a : †𝛼 T into a : T, simply retaining their values.

Composing specs. As seen above, our type-spec system
associates each fragment of safe Rust code with a spec in the
form of a predicate transformer. We can then compose such
specs to verify the functional behavior of a program.

For example, suppose we want to verify that the assertion
of ğ2.1’s test always succeeds. For that, we find the overall
precondition ♠ of test and prove that ♠[𝑎, 𝑏] holds for any
inputs 𝑎, 𝑏. We can calculate ♠ backward, iteratively applying
predicate transformers to the final postcondition, just like Di-
jkstra [16]’s weakest precondition calculus. For test, we start
with the assertion assert!(abs(*a - *b) >= 7)’s condi-
tion: p ≜ 𝜆[𝑎, 𝑏] . |𝑎 − 𝑏 | ≥ 7.

First, just before the end of the lifetime, the condition stays
the same (endlft). Whenwe go back to just before the update
*mc += 7 (mutref-write), which is followed by dropping mc
(mutref-bye), we get the following new condition:

𝜆[𝑎, 𝑏,𝑚𝑐] . 𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎 − 𝑏 | ≥ 7 (♦)

Compared to p, this is weakened by𝑚𝑐.2 =𝑚𝑐.1 + 7.
Let’s go back more. First, the spec of max_mut can be de-

scribed as follows in predicate-transformer style:

𝜆𝛹,[𝑚𝑎,𝑚𝑏] . if𝑚𝑎.1 ≥ 𝑚𝑏.1 then𝑚𝑏.2 =𝑚𝑏.1 →𝛹 [𝑚𝑎]

else𝑚𝑎.2 =𝑚𝑎.1 →𝛹 [𝑚𝑏]

Let’s name this spec MaxMut∗. Now we can deduce that
the condition just before the call of max_mut is as follows
(binding the result of &mut a to𝑚𝑎 and &mut b to𝑚𝑏):

𝜆[𝑎, 𝑏,𝑚𝑎,𝑚𝑏] . MaxMut∗

(𝜆𝑚𝑐.𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎 − 𝑏 | ≥ 7) [𝑚𝑎,𝑚𝑏]
(♥)

6 If you wonder why implication → appears here, recall that the predicate

transformer outputs the precondition. Given a precondition 𝑏.2 = 𝑏.1 →

𝛹 [], after we learn the equality 𝑏.2 = 𝑏.1 by prophecy resolution, we can

combine the two to get the desired postcondition𝛹 [].

845

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

This is obtained simply by passing the condition (♦) to the
predicate transformer MaxMut∗.
Finally, we can derive the overall precondition of test:

𝜆[𝑎, 𝑏] . ∀𝑎′, 𝑏′ . MaxMut∗ (𝜆𝑚𝑐.

𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎′ − 𝑏′ | ≥ 7) [(𝑎, 𝑎′), (𝑏,𝑏′)]
(♠)

This is calculated from the previous condition (♥) as follows
(by mutbor): ♠[𝑎, 𝑏] ≜ ∀𝑎′, 𝑏′ . ♥[𝑎′, 𝑏′, (𝑎, 𝑎′), (𝑏, 𝑏′)].

This precondition simplifies to the following:

if𝑎 ≥ 𝑏 then | (𝑎 + 7) − 𝑏 | ≥ 7 else |𝑎 − (𝑏 + 7) | ≥ 7

Logic solvers can fairly easily prove that this condition holds
for all 𝑎 and 𝑏 by case analysis on 𝑎 ≥ 𝑏, thereby establishing
that the assertion of ğ2.1’s test always succeeds.

2.3 Rust APIs with Unsafe Code

So far we discussed Rust’s safe features. Now we present
RustHorn-style specs for various Rust APIs with unsafe im-
plementations, which we have verified in RustHornBelt.

Vec API. One common use of unsafe code in Rust APIs
is to provide a more efficient implementation than Rust’s
safe typing rules allow. A canonical example of this is the
ubiquitous vector (or growable array) type Vec<T>. The Vec
API manages a dynamically allocated memory block to store
and provide access to an unbounded number of objects of the
type T, which it achieves through effective use of raw pointers.
Raw pointers are Rust pointers whose aliasing is untracked
by the type system and which are therefore potentially un-
safe to use. The Vec API supports a variety of operations; for
RustHorn-style verification, we are particularly interested
in those that perform destructive state mutation.
First, let’s consider the following operations:

fn push<T>(v: &mut Vec<T>, a: T)

fn pop<T>(v: &mut Vec<T>) -> Option<T>

They both destructively update a vector through a mutable
reference v: &mut Vec<T> to it. The operation push adds an
element a: T to the end of the vector (and returns nothing),
and pop removes the last element a from the vector, returning
Some(a) (and None if the vector is empty).
Before we can describe the behavior of these operations,

we must first choose a representation for the type Vec<T>.
Naturally, we represent a vector as a list of its contents:
⌊Vec<T>⌋ ≜ List ⌊T⌋. Correspondingly, the push and pop

operations get the following specs:

𝑣 .2 = 𝑣 .1 ++ [𝑎] → 𝛹 []

if 𝑣 .1 = [] then 𝑣 .2 = [] → 𝛹 [None]

else 𝑣 .2 = last 𝑣 .1 → 𝛹 [Some(init 𝑣 .1)]

where last𝑤 is the last element of the list 𝑤 , and init𝑤 is
𝑤 without its last item. In the case of both functions, 𝑣 .1
represents the initial state of the mutable reference v; and
since v is dropped before the function returns, we also learn
that the prophesied łfinalž value of v (i.e., 𝑣 .2) is precisely

the state of v at the end of the function. Thus, so far, 𝑣 .1 and
𝑣 .2 act pretty much like just an input and output.

Things get more interesting when an operation not only
inputs but also outputs a mutable reference. Let’s consider
the following operation for random access:

fn index_mut<𝛼,T>(v: &𝛼 mut Vec<T>, i: int)

-> &𝛼 mut T

Physically, it is just address calculation: get the head address
of the buffer of a vector and add the offset of 𝑖 blocks. In
Rust, however, such addresses are linked with ownership. In
index_mut, the mutable borrow over a vector is subdivided
into a smaller borrow over a specific element of the vector,
inheriting the lifetime 𝛼 .

We give to index_mut the following RustHorn-style spec:

0 ≤ 𝑖 < |𝑣 .1| ∧ ∀𝑎′ . 𝑣 .2 = 𝑣 .1{𝑖 ≔ 𝑎′} →𝛹 [(𝑣 .1[𝑖], 𝑎′)]

The precondition 0 ≤ 𝑖 < |𝑣 .1| is for the bounds check. In
addition, we prophesy the final state 𝑎′ of the new, subdivided
borrow for the output. Now the old borrow’s prophesied final
state 𝑣 .2 is partially determined with respect to 𝑎′ (an ex-
ample of partial prophecy resolution). It is set to 𝑣 .1{𝑖 ≔ 𝑎′},
which can be read as 𝑣 .1 with the 𝑖-th element’s determina-
tion left to the prophesied value 𝑎′.

IterMut API. Rust’s IterMut API for mutable iteratorsÐ
though implemented with unsafe codeÐexemplifies how
Rust’s type system actually provides stronger guarantees
than those of łsafež languages like Java, leveraging owner-
ship to eliminate common pitfalls like iterator invalidation.
With iter_mut, you can create a mutable iterator out of

a mutable reference to a vector:

fn iter_mut<𝛼,T>(v: &𝛼 mut Vec<T>) -> IterMut<𝛼,T>

As the lifetime parameter 𝛼 of IterMut indicates, a mutable
iterator is an advanced form of mutable borrow, having tem-
porary ownership of some memory sequence. Rust’s type
system ensures that, while the iterator IterMut<𝛼,T> is ac-
tive, the ownership of the iterated vector is frozen, prevent-
ing the vector from being modified while it is being iterated
overÐa phenomenon known as iterator invalidation.

With next, you can perform one step of mutable iteration:

fn next<𝛼,T>(it: &mut IterMut<𝛼,T>)

-> Option<&𝛼 mut T>

This yields a mutable reference to the head element a: &𝛼

mut T, moving the focus to the next element and returning
Some(a) (or None if the iterator has reached the end).

With iterated application of next, it is possible to convert
the mutable iterator into a bunch of mutable references to
the individual elements of the vector, which can all be used
simultaneouslyÐi.e., one need not give up the mutable refer-
ence to one element to obtain a mutable reference to the next.
Hence, in RustHornBelt, we naturally represent a mutable

846

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

iterator as a list of mutable references to each element of the it-
erated container, setting ⌊IterMut<𝛼,T>⌋ ≜ List (⌊T⌋× ⌊T⌋).
This leads to the following straightforward spec for next:

if it .1 = [] then it .2 = [] → 𝛹 [None]

else it .2 = tail it .1 → 𝛹 [Some(head it .1)]

We can also give the following spec to iter_mut, which
might look tricky at first:

|𝑣 .2| = |𝑣 .1| → 𝛹 [zip 𝑣 .1 𝑣 .2]

Essentially, what we are doing is an elementwise split of
the mutable borrow over the vector (one example of borrow
subdivision, like Vec’s index_mut). The borrow’s final state
𝑣 .2 is split elementwise into a list of prophesied values 𝑣 .2[0],
𝑣 .2[1], · · · , 𝑣 .2[|𝑣 .1| − 1], and the length (|𝑣 .2| = |𝑣 .1|) is
guaranteed to stay constant. The output iterator works as
if it were a list of mutable references to each element of the
vector. The function zip works like zip [𝑎, 𝑏, 𝑐] [𝑎′, 𝑏′, 𝑐′] =
[(𝑎, 𝑎′), (𝑏,𝑏′), (𝑐, 𝑐′)].
Combining iter_mut and next, we can write and func-

tionally verify various programs that iteratively mutate vec-
tors. For example, let’s consider the following function:

fn inc_vec(v: &mut Vec<int>)

{ for a in v.iter_mut() { *a += 7; } }

This uses a mutable iterator, v.iter_mut(), to increment
each element of the vector *v by 7. The for statement is
syntactic sugar for repeatedly calling the next method and
unwrapping the result to get a: &mut int until None is re-
turned. Using the specs of iter_mut and next, we can derive
the following spec on inc_vec: 𝑣 .2 = map (+ 7) 𝑣 .1 →𝛹 [].

SmallVec API. The small-vector type SmallVec<T,𝑛>7

acts like a vector Vec<T> but uses a trickier memory layout
for performance. When the number of the elements is no
more than𝑛, it stores all the elements inline, behaving like an
array [T;𝑘] (array mode). When the number of the elements
gets larger, it spills out all the elements into the heap, just
like a vector Vec<T> (vector mode).
The SmallVec API supports all the key methods of the

Vec APIÐincluding push, pop, index_mut and iter_mut. In-
terestingly, the functional specs for these SmallVec meth-
ods are exactly the same as the specs for their Vec coun-
terparts. A small-vector is represented as a list of values
(⌊SmallVec<T,𝑛>⌋ ≜ List ⌊T⌋), regardless of the internal
memory layout (array mode or vector mode). As we can see
here, RustHorn-style verification can abstract away represen-
tation details and focus on observable functional properties.

Cell API. Though useful for avoiding memory safety
bugs and data races, Rust’s prohibition of aliased mutable
state is too restrictive in many situations, such as implement-
ing cyclic data structures. To meet such needs, Rust also
provides a number of APIs with interior mutability, meaning

7 The actual notation used by the Rust library is SmallVec<[T;𝑛]>.

that they allow mutation even through a shared reference,
albeit in carefully controlled ways.
Arguably the simplest such API is Cell, whose safety is

guaranteed by various restrictions (e.g., it can only be used
within a single thread). It provides the following operations:

fn new<T>(a: T) -> Cell<T>

fn get<T: Copy>(c: &Cell<T>) -> T

fn set<T>(c: &Cell<T>, a: T)

You can convert a T to a cell Cell<T> by calling new. Then,
using a shared reference to a cell &Cell<T> with copyable
content, you can both read from the cell by get and write a
new value to the cell by set.
Such interior mutability is useful for writing code but

makes functional verification (especially in the RustHorn
style) more challenging. RustHornBelt proposes one simple
approach to solve this problem: invariants.
Concretely, we represent Cell<T> as an invariant predi-

cate, with ⌊Cell<T>⌋ ≜ ⌊T⌋ → Prop. For get, we know that
the read value 𝑎 satisfies the invariant, which amounts to
the following spec: ∀𝑎. 𝑐 (𝑎) →𝛹 [𝑎], where 𝑐 is the invari-
ant representing the cell, of sort ⌊T⌋ → Prop. For set, we
promise that writing to the cell will preserve the invariant,
hence the following spec: 𝑐 (𝑎) ∧𝛹 []. For new, we can choose
the cell’s invariant𝛷 , which should be satisfied by the initial
value of the cell. Thus, we give new the following spec, for
any𝛷 :𝛷 (𝑎) ∧𝛹 [𝛷].

Using these specs, we can do some functional verification.
For example, let’s consider the following function:

fn inc_cell(c: &Cell<int>, i: int)

{ c.set(c.get() + i); }

We should ensure that the update by set does not invalidate
the cell’s invariant. That is satisfied by giving the following
spec to inc_cell:

(

∀𝑛. 𝑐 (𝑛) → 𝑐 (𝑛 + 𝑖)
)

∧ 𝛹 []. What comes
before ∧ is the main precondition, which is satisfied if, for
example, 𝑐 = 𝜆𝑛. (𝑛 is odd) and 𝑖 = 4.
RustHornBelt allows the invariant𝛷 for a cell to depend

on runtime values. For example, we can call inc_cell with
the invariant 𝜆𝑛. 𝑛 mod 𝑘 = 1, where 𝑘 represents another
program variable k : int. For technical reasons, we restrict
this dependency to non-prophesied values: we cannot choose
an invariant that depends on the prophecy of a mutable
borrow. This is not a strong limitation: as we explain in ğ4,
one practical use case of Cell is memoization, which does
not require to lift this restriction.

Finally, we have also proven sound similar invariant-based
specs for the Mutex API, a thread-safe variant of Cell which
uses a lock to control mutable access to the shared cell.

3 Proving Semantic Soundness of the
Type-Spec System

We now proceed to explain how we prove semantic sound-
ness of our type-spec system. After outlining our semantic

847

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

approach (ğ3.1), we present our a new prophecy framework
parametric prophecies (ğ 3.2) and show how we use it to
solve to the key challenge, modeling mutable borrows in the
RustHorn style (ğ3.3). We then sketch the soundness proofs
of several type-spec rules (ğ3.4), before concluding by briefly
discussing a technical issue concerning step-indexing (ğ3.5).

3.1 Basics of Our Semantic Approach

RustBelt’s approach. Inspired by earlier work on Foun-
dational Proof-Carrying Code [4, 5, 2, 3], RustBelt proved
soundness of Rust (or, to be precise, a simplified variant of
Rust called 𝜆Rust) by building a semantic model of its type sys-
tem. In particular, this semantic model modeled Rust types
as predicates in Iris, an expressive separation logic. We begin
by reviewing the big picture of how this works.
First, each Rust type T is associated with an ownership

predicate JTK(𝑡,v), a separation-logic predicate in Iris that
semantically models what it means to own an object of the
type T.8 The predicate takes low-level data v ∈ List LowVal
(a sequence of values like location/address ℓ , integer 𝑛, etc.)
as well as a thread identifier 𝑡 ∈ ThrId (for modeling concur-
rency). Then, using ownership predicates, RustBelt gives a
semantic model to judgments of Rust’s type system.
Finally, RustBelt semantically interprets Rust’s syntactic

typing rules and proves each of them as a separate lemma in
Iris. This amounts to Rust’s semantic type soundness (called
the fundamental theorem of logical relations). The proof is
extensible: when you add a new typing rule, all you need
is to prove the new rule’s semantic interpretation. Notably,
this approach can flexibly support various safe Rust APIs
implemented with unsafe code (like those discussed in ğ2.3),
by formulating each safe API as a set of new typing rules.

The semantics is validated by the adequacy theorem, which
says that a complete (i.e., closed) and semantically well-typed
Rust program will never encounter undefined behavior (for-
malized as a łstuck statež) under any execution trace.

RustHornBelt’s first step. Our work, RustHornBelt, ex-
tends RustBelt’s approach to tackle soundness of the type-
spec system, proving functional correctness beyond mere
safety. Before diving into our full model, we first show a
simplified model, which we evolve further in ğ3.3 and ğ3.5.
First, the ownership predicate has the form JTK(𝑎, 𝑡,v),

extending the original RustBelt ownership predicate with
a representation value 𝑎 ∈ ⌊T⌋, which is used for RustHorn-
style verification. In the (trivial) case of the integer type int,
this representation value precisely matches the underlying
physical value:9

JintK(𝑛, _, [𝑚]) ≜ 𝑛 =𝑚

8 Each Rust type T is also given a sharing predicate, which amounts to the

ownership predicate of &𝛼 T, but we omit the details here for space reasons.
9 It is defined to be False for cases where the low-level data is not of the

form [𝑚] (e.g., [ℓ, ℓ ′]). The same reading applies to other definitions.

More interesting is the case of boxed pointers (Box<T>):

JBox<T>K(𝑎, 𝑡, [ℓ]) ≜ ∃v.

ℓ ↦→ v ∗ Dealloc(ℓ, |T|) ∗ ⊲JTK(𝑎, 𝑡,v)

A boxed pointer fully owns the memory block at ℓ (along
with the right to deallocate it; |T| is the size of the low-level
data for T, equal to |v |), and also owns the target object (via
the target type T’s ownership predicate). The target object
ownership is protected by a later modality ⊲Ðdiscussed more
in ğ 3.5Ðwhich acts as a kind of łguardž so that one can
soundly define general recursive types such as:

enum List<T>{ Cons(T, Box<List<T>>), Nil }

The high-level point to take away concerning the above
model of Box<T> is that it is the same as in RustBelt but for
the threading through of the parameter 𝑎.
We are now ready to define a simplified version of the

semantics of our type-spec judgment, as follows:

J L | T ⊢ 𝐼 ⊣ r. L′ | T′
⇝ Φ K ≜

∀𝛹, 𝑡 .
{

∃𝑎. Φ𝛹 𝑎 ∗ JLK ∗ JTK(𝑎, 𝑡)
}

𝐼
{

r. ∃𝑏. 𝛹 𝑏 ∗ JL′K ∗ JT′K(𝑏, 𝑡)
}

(tysp-sem-0)

It is basically a Hoare triple over the instruction 𝐼 . We quan-
tify over an arbitrary postcondition 𝛹. The output objects’

values 𝑏 should satisfy 𝛹, and the input objects’ values 𝑎
should satisfy Φ𝛹, the precondition calculated by the predi-
cate transformer Φ. The semantics of a type context JTK(𝑎, 𝑡)
is simply the separating conjunction of each object’s seman-
tics Ja : ? TK(𝑎, 𝑡). For an active object a : T, the semantics is
JTK(𝑎, 𝑡, a). We give the semantics of frozen objects in ğ3.3.

3.2 Our Key Innovation: Parametric Prophecies

Background. One of the major challenges tackled by
RustBelt was building a semantic model of Rust’s mutable
and shared borrows. Toward this end, RustBelt relied on a
new łlogical APIž (which was derived within Iris) called the
lifetime logic, which made it possible to define the model of
Rust borrows at amuch higher level of abstraction. Inheriting
the infrastructure of RustBelt, we too rely on the lifetime
logic in our model of borrows (as we will explain in ğ3.3).

But RustHornBelt faces an additional challenge in model-
ing mutable borrows in particular, namely figuring out how
to account semantically for RustHorn-style prophecies. To
understand the challenge, consider what happens when we
try to prove soundness of rule mutbor for creation of a mu-
table borrow. We will see the proof in detail later in ğ3.3, but
roughly, following the structure of (tysp-sem-0), the proof
goal will look something like
{

(∀𝑎′ .𝛹 [𝑎′, (𝑎, 𝑎′)]) ∗ JBox<T>K(𝑎, 𝑡, a)
}

&mut a
{

b. ∃𝑎′ . 𝛹 [𝑎′, (𝑎, 𝑎′)] ∗

Ja : †𝛼 Box<T>K(𝑎′, 𝑡) ∗ J&𝛼 mut TK((𝑎, 𝑎′), 𝑡, b)
}

where 𝑎 and 𝑎′ represent the current and (prophesied) final
states of the borrow, respectively. The problem here is that, to

848

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

establish the post, we need to pick some instantiation for the
(existentially quantified) final state 𝑎′. How can we do this?
We clearly cannot just pick some random value: that would
mean committing up front to what the final state will be,
which would prevent us from later resolving the prophecy to
a potentially different value when the borrow is eventually
dropped (rule mutref-bye). Disaster!

Our solution. To solve this, we have developed a novel
prophecy framework in Iris, called parametric prophecies.
Its key idea is to consider all possible futures simultaneously.
This is achieved through the clairvoyant monad Clair 𝐴 ≜
ProphAsn → 𝐴, a reader monad over a prophecy assignment
𝜋 ∈ ProphAsn modeling one possible future (i.e., mapping
of prophecy variables to values). By embedding our rea-
soning about prophecies (especially the spec Φ) within this
monadÐi.e., parameterizing over every future 𝜋Ðwe can refer
to prophesied values while staying parametric w.r.t. what
they actually are until we are ready to resolve them. In partic-
ular, returning to the proof of mutbor, parametric prophecies
will enable us to instantiate𝑎′ with a freshly chosen prophecy
variable in the domain of 𝜋 , without having to commit to
how it is resolved until the borrow is dropped.

Basics. Formally, let a prophecy (variable) 𝑥 ∈ ProphVar𝐴
be simply a wrapper around a natural number 𝑛 ∈ N. As
ProphVar 𝐴 is infinite, we can at any point create a prophecy
token [𝑥]1 for a fresh prophecy 𝑥 . This token signifies that 𝑥
has not yet been resolved. Ownership of prophecy tokens
can be fractionally split and merged:

proph-intro

True ⇛ ∃𝑥 . [𝑥]1

proph-frac

[𝑥]𝑞+𝑞′ ⊣⊢ [𝑥]𝑞 ∗ [𝑥]𝑞′

A prophecy assignment 𝜋 ∈ ProphAsn, modeling one pos-
sible future, is a map that assigns a value 𝜋 𝑥 ∈ 𝐴 to every
prophecy 𝑥 ∈ ProphVar 𝐴 for any sort 𝐴. Now we have the
clairvoyant monad Clair 𝐴 ≜ ProphAsn → 𝐴, parameteriza-
tion over every future 𝜋 . A prophecy 𝑥 ∈ ProphVar 𝐴 lifts to
a clairvoyant value ↑𝑥 ≜ 𝜆𝜋 . 𝜋 𝑥 (∈ Clair 𝐴).
We mark clairvoyant values (i.e., values of sort Clair 𝐴)

with a hat ˆ (e.g., 𝑎). Also, we use the following functorial

notations with a star ★: 𝜙 ★∧ 𝜓 ≜ 𝜆𝜋 . 𝜙 𝜋 ∧𝜓 𝜋 , 𝑎 ★
= 𝑏 ≜

𝜆𝜋 . 𝑎 𝜋 = 𝑏 𝜋 , 𝑝★.1 ≜ 𝜆𝜋 . (𝑝 𝜋) .1 (similarly for ★.2), ★(𝑎,𝑏) ≜

𝜆𝜋 . (𝑎 𝜋,𝑏 𝜋), and ★[𝑎1, . . . , 𝑎𝑛] ≜ 𝜆𝜋 . [𝑎1 𝜋, . . . , 𝑎𝑛 𝜋].
For prophetic reasoning, we introduce a prophecy obser-

vation ⟨𝜙 ⟩ (where 𝜙 ∈ Clair Prop), which asserts that a pure

proposition 𝜙 𝜋 holds for every valid future 𝜋 (i.e., for every
𝜋 that respects the prophecy resolutions that have occurred
so far). The rules for reasoning about observations are fairly
straightforward:

proph-impl

∀𝜋. 𝜙 𝜋 → 𝜓 𝜋

⟨𝜙 ⟩ ⊢ ⟨𝜓 ⟩

proph-merge

⟨𝜙 ⟩ ∗ ⟨𝜓 ⟩ ⊢ ⟨𝜙 ★∧ 𝜓 ⟩

proph-true

∀𝜋. 𝜙 𝜋

⟨𝜙 ⟩

Prophecy resolution. For each prophecy 𝑥 , we can re-
solve it exactly once:10

proph-resolve

dep(𝑎,𝑌)

[𝑥]1 ∗ [𝑌]𝑞 ⇛ ⟨↑𝑥 ★
= 𝑎⟩ ∗ [𝑌]𝑞

Consuming the full token [𝑥]1, we can finally fix the value
of the prophecy 𝑥 to an arbitrary clairvoyant value 𝑎, getting
an observational equality: ⟨↑𝑥 ★

= 𝑎⟩. Internally, we prune
away all the futures in which 𝑥 is not equal to 𝑎.
Notably, the rule proph-resolve allows the clairvoyant

value 𝑎 to depend on other prophecies (the ones in the set
𝑌). This is essential in RustHornBelt for modeling borrow
subdivision. For example, let’s consider Vec’s index_mut

(ğ2.3). It subdivides the input mutable reference to the vec-
tor v : &𝛼 mut Vec<T> into the output mutable reference to
the 𝑖-th element &mut T. For this subdivision, the input’s
prophecy 𝑥 should be partially resolved to a value depending
on the newly created prophecy 𝑦 for the output, observ-
ing ⟨↑𝑥 ★

=
★[. . . , 𝑎𝑖−1, ↑𝑦, 𝑎𝑖+1, . . .] ⟩, where 𝑎𝑘 is the current

value of the vector’s 𝑘-th element.
Crucially, however, proph-resolve also imposes the con-

dition that the prophecies in the finite set 𝑌 (i.e., the ones 𝑎
depends on) must all be unresolved.11 This is ensured by con-
suming (and then immediately returning) fractional tokens
for the prophecies in 𝑌Ði.e., [𝑌]𝑞 ≜ ∗𝑦∈𝑌 [𝑦]𝑞 . The reason
we need this condition is to prevent prophecy resolution
from causing a paradox where there are no valid futures.

To see how this might happen, suppose we have [𝑥]1 and
[𝑦]1; if proph-resolve did not impose the ł[𝑌]𝑞ž condition,
we could use it to first resolve 𝑥 to ↑𝑦, and then resolve 𝑦
to 𝜆𝜋 . ↑𝑥 𝜋 + 1, which put together would yield the impos-
sible observation ⟨↑𝑥 ★

= 𝜆𝜋 . ↑𝑥 𝜋 + 1⟩. Thanks to the ł[𝑌]𝑞ž
condition, however, such a paradox is ruled out.
One important consequence of this paradox avoidance

is that we are able to additionally prove the following rule,
which establishes that reasoning in the clairvoyant monad
remains consistent (i.e., there always exists some valid 𝜋

under which our observations hold):

proph-sat

⟨𝜙 ⟩ ⇛ ∃𝜋. 𝜙 𝜋

In essence, proph-sat says that we can escape the clairvoy-
ant monad and convert our prophetic observation into a
łgroundž assertion (of type Prop) when needed. Concretely,
one key place where this rule is fundamentally needed is in
proving that certain branches of a proof or program are im-
possible (e.g., to prove that assert!(false) or panic! are
dead code). In such cases, our prophetic reasoning will get
us to a point where we have proven a contradiction within

10 The view shift 𝑃 ⇛ 𝑄 means that a resource of 𝑃 turns into a resource

of𝑄 by updating the internal state. It actually takes a łmaskž parameter E,

but we elide this detail in the paper to reduce noise.
11 Here, the predicate finding the dependencies dep(𝑎,𝑌) is defined as

dep(𝑎,𝑌) ≜ ∀𝜋, 𝜋 ′ . (∀𝑧 ∈ 𝑌 . 𝜋 𝑧 = 𝜋 ′ 𝑧) → 𝑎 𝜋 = 𝑎 𝜋 ′ .

849

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

the clairvoyant monad (i.e., ⟨𝜆_. False⟩), but in order to com-
plete the proof we need to obtain a bona fide contradiction
(i.e., to prove False outside the monad); proph-sat lets us do
precisely that by converting ⟨𝜆_. False⟩ to False.

3.3 RustHornBelt’s Model of Mutable Borrows

Review of RustBelt’s łlifetime logicž. As mentioned in
ğ3.2, in RustHornBelt we inherit RustBelt’s use of the lifetime
logic for modeling Rust borrows. Let’s briefly review the
lifetime logic (see the RustBelt’s paper for details; we didn’t
change the lifetime logic itself). The central mechanism of
the lifetime logic is the borrow proposition &

𝛼 𝑃 (specifically
called a full borrow), which reflects temporary ownership of
the Iris proposition 𝑃 but only during the lifetime 𝛼 . Two
selected lemmas about &𝛼 𝑃 :12

LftL-borrow

⊲ 𝑃 ⇛ &
𝛼 𝑃 ∗

(

[†𝛼] ⊲ 𝑃
)

LftL-bor-acc

&
𝛼 𝑃 ∗ [𝛼]𝑞 ⇛ ⊲ 𝑃 ∗

(

⊲ 𝑃 &
𝛼 𝑃 ∗ [𝛼]𝑞

)

Depositing ⊲ 𝑃 , we can create a borrow proposition &
𝛼 𝑃

along with the łinheritancež [†𝛼] ⊲ 𝑃 , which says that
we can retrieve ⊲ 𝑃 once 𝛼 has ended (where the death of 𝛼
is signaled by a dead lifetime token [†𝛼]). With &

𝛼 𝑃 in hand,
we can get temporary access to its content ⊲ 𝑃 by trading in
a fractional lifetime token [𝛼]𝑞 , which ensures that 𝛼 is still
alive (in the same way the prophecy token [𝑥]𝑞 ensures that
𝑥 has not yet been resolved). Remarkably, these lemmas work
for any Iris proposition 𝑃 , which exemplifies Iris’s higher-
order expressivity and is crucial for modeling Rust types.
The cost of this expressivity, however, is that 𝑃 must be put
under a later ⊲, which creates technical difficulties (see ğ3.5).

Given the lifetime logic, RustBelt models themutable refer-
ence type &𝛼 mut T simply as follows: J&𝛼 mut TK(𝑡, [ℓ]) ≜
&
𝛼
(

∃v. ℓ ↦→ v ∗ JTK(𝑡,v)
)

. It is a borrow proposition whose
content describes ownership of some low-level data v stored
at ℓ . Correspondingly, a frozen object a : †𝛼 T is modeled as
the object’s inheritance: Ja : †𝛼 TK(𝑡) ≜ [†𝛼] JTK(𝑡, a).
This enables the lender of a borrow (i.e., owner of the frozen
object) to unfreeze the object once it can prove 𝛼 is dead.

Lastly, the lifetime context’s semantics JLK is defined as the
iterated separating conjunction of a token [𝛼]1 (knowledge
that 𝛼 is alive) and the proposition [𝛼]1 [†𝛼] (the ability
to end 𝛼) over all 𝛼 in L.13

RustHornBelt’s model of mutable borrows. With the
lifetime logic and parametric prophecies in hand, we are now
ready to model mutable borrows in the RustHorn style.
First, we update the RustHornBelt ownership predicate

into the form JTK(𝑎, 𝑡,v), where the first parameter is now a
clairvoyant representation value 𝑎 ∈ Clair ⌊T⌋ rather than
an inhabitant of ⌊T⌋. The ownership predicate for Box<T>

12 The view-shift wand 𝑃 𝑄 denotes a resource 𝑅 satisfying the view

shift 𝑅 ∗ 𝑃 ⇛ 𝑄 . Again we elide the mask parameter E.
13 To be precise, the wand actually takes a later: [𝛼]1 ⊲ |⇛ [†𝛼].

doesn’t change (just 𝑎 is used instead of 𝑎). For int, we have
a slight update: JintK(�̂�, _, [𝑚]) ≜ �̂� = 𝜆_.𝑚.
We also update the semantics of the type-spec judgment

J L | T ⊢ 𝐼 ⊣ r. L′ | T′ ⇝ Φ K as follows, using clairvoyant

values 𝑎, 𝑏 and prophecy observations ⟨𝜆𝜋 . · · ·⟩:

∀�̂�, 𝑡 .
{

∃𝑎. ⟨𝜆𝜋 .Φ (�̂� 𝜋) (𝑎 𝜋) ⟩ ∗ JLK ∗ JTK(𝑎, 𝑡)
}

𝐼
{

r. ∃𝑏. ⟨𝜆𝜋 . (�̂� 𝜋) (𝑏 𝜋) ⟩ ∗ JL′K ∗ JT′K(𝑏, 𝑡)
}

(tysp-sem-1)
Now for the pièce de résistance, we model &𝛼 mut T, the

type of mutable references, as follows:

J&𝛼 mut TK(𝑝, 𝑡, [ℓ]) ≜ ∃ 𝑥 s.t. 𝑝★.2 = ↑𝑥 .

VO𝑥 (𝑝
★.1) ∗ &

𝛼
(

∃𝑎,v. ℓ ↦→ v ∗ JTK(𝑎, 𝑡,v) ∗ PC𝑥 (𝑎)
)

There is a lot going on here. First of all, as expected, the
RustHorn-style representation 𝑝 of a mutable reference is a
clairvoyant pair of the current and final states of the borrow,
where the latter is some prophecy 𝑥 (hence, 𝑝★.2 = ↑𝑥).

The other key difference from the RustBelt model of mu-
table references is the presence of two ghost state asser-
tions: the value observer VO𝑥 (𝑝

★.1) and the prophecy con-
troller PC𝑥 (𝑎). The purpose of these assertions is to make it
possible to refer to the current state of the borrow both inside
and outside of the borrow proposition. In particular, note that,
on the one hand, we need to existentially quantify over that
current state inside the borrow proposition because other-
wise the borrower would not be able to change it when they
mutate ℓ ; but on the other hand, we also need to be able to
connect the current state to the first component of the rep-
resentation value 𝑝★.1. The VO and PC assertions make this
possible using a fairly typical Iris-style łlinked ghost statež
construction, whereby two separately ownable propositions
can independently assert the identity of some shared state,
with the assurance that (a) their assertions must agree and
(b) they can be updated, but only jointly. Formally, we have:

mut-agree

VO𝑥 (𝑎) ∗ PC𝑥 (𝑎
′) ⊢ 𝑎 = 𝑎′

mut-update

VO𝑥 (𝑎) ∗ PC𝑥 (𝑎) ⇛ VO𝑥 (𝑎
′) ∗ PC𝑥 (𝑎

′)

Finally, we model a borrowed, frozen object a : †𝛼 T as:

Ja : †𝛼 TK(𝑏, 𝑡) ≜ [†𝛼] ∃𝑎. ⟨𝑏 ★
= 𝑎⟩ ∗ JTK(𝑎, 𝑡, a)

After the end of 𝛼 , we get back ownership of the object of
type T, whose actual value is 𝑎, together with the knowl-

edge that the prophesied value 𝑏 (typically of the form ↑𝑥) is

equivalent to 𝑎, via the prophecy observation ⟨𝑏 ★
= 𝑎⟩.14

14 This model is a bit simplified for presentation. Instead of an observational

equality ⟨𝑏 ★
= 𝑎 ⟩, we actually get ⊲𝑏 :≈ 𝑎, where a prophecy equalizer

𝑏 :≈ 𝑎 is what becomes an observational equality once we get a token of

𝑎’s dependencies, i.e., ∀𝑌 s.t. dep(𝑎,𝑌) . ∀𝑞. [𝑌]𝑞 ⟨𝑏 ★
= 𝑎 ⟩ ∗ [𝑌]𝑞 .

850

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

3.4 Proving Soundness of Type-Spec Rules

With our model in hand, let us now sketch the proofs of a
few key type-spec rules for mutable borrowing.

Borrow creation. First, let’s tackle creation of a mutable
borrow (mutbor). Unfolding the semantics of the type-spec
judgment, we reach the following Hoare-triple goal (for any

input value 𝑎, postcondition �̂�, and thread 𝑡):
{

⟨𝜆𝜋 . ∀𝑎′ . (�̂� 𝜋) [𝑎′, (𝑎 𝜋, 𝑎′)] ⟩ ∗ JBox<T>K(𝑎, 𝑡, a)
}

&mut a
{

b. ∃ 𝑐, 𝑏. ⟨𝜆𝜋 . (�̂� 𝜋) [𝑐 𝜋, 𝑏 𝜋] ⟩ ∗

Ja : †𝛼 Box<T>K(𝑐, 𝑡) ∗ J&𝛼 mut TK(𝑏, 𝑡, b)
}

The operation &mut a just returns the location a, so actually
b ≜ a. The proof goes as follows.
First, we create a prophecy 𝑥 and get the value observer

VO𝑥 (𝑎) and the prophecy controller PC𝑥 (𝑎) for 𝑥 :

mut-intro

True ⇛ ∃𝑥 . VO𝑥 (𝑎) ∗ PC𝑥 (𝑎)

Pick 𝑐 ≜ ↑𝑥 and 𝑏 ≜ ★(𝑎, ↑𝑥). From the input observation we
immediately get the output observation, simply by instanti-
ating 𝑎′ into the prophecy’s value ↑𝑥 𝜋 :

⟨𝜆𝜋 . ∀𝑎′ . (�̂� 𝜋) [𝑎′, (𝑎 𝜋, 𝑎′)] ⟩ ⊢ ⟨𝜆𝜋 . (�̂� 𝜋) [𝑐 𝜋, 𝑏 𝜋] ⟩

We then unfold the model of JBox<T>K(𝑎, 𝑡, a) to get:

a ↦→ v ∗ Dealloc(a, |T|) ∗ ⊲JTK(𝑎, 𝑡,v)

And let 𝑃 be ∃𝑎′, v. a ↦→ v ∗ JTK(𝑎′, 𝑡,v) ∗ PC𝑥 (𝑎
′).

By LftL-borrow, constructing and depositing ⊲ 𝑃 , we cre-
ate a borrow proposition &

𝛼 𝑃 and its inheritance [†𝛼]

⊲ 𝑃 . Now we have all we need to construct the required re-
sources for the mutable reference b:

VO𝑥 (𝑎) ∗ &
𝛼 𝑃 ⊢ J&𝛼 mut TK

(

★(𝑎, ↑𝑥), 𝑡, b
)

We use the remaining resources for the frozen box:

([†𝛼] ⊲ 𝑃) ∗ Dealloc(a, |T|) ⊢ Ja : †𝛼 Box<T>K(↑𝑥, 𝑡)

The frozen box is unfolded into [†𝛼] ∃𝑎′ . ⟨↑̂𝑥 ★
= 𝑎′ ⟩ ∗

JBox<T>K(𝑎′, 𝑡, a). To prove this, we łexecutež the given view-
shift wand with [†𝛼] to get ⊲ 𝑃 . Take out the value 𝑎′ out of 𝑃 .
Consuming PC𝑥 (𝑎

′) inside 𝑃 , we get the desired ⟨↑𝑥 ★
= 𝑎′ ⟩.

Using the remaining parts of 𝑃 and Dealloc(a, |T|), we can
construct the box.

Write. To write to a mutable reference *b = c (mutref-
write), we get access to the borrow proposition’s content by
LftL-bor-acc and actually update it, and accordingly renew
the observed current state by mut-update.

Borrow dropping. Consider dropping of a mutable refer-
ence (mutref-bye). First, by LftL-bor-acc, we get temporary
access to the borrow proposition’s content, which contains
the prophecy controller PC𝑥 (𝑎). We then use the following
ghost update rule to resolve the prophecy 𝑥 , disposing of the

value observer in the process (as we should only be able to
resolve once!):

mut-resolve

dep(𝑎,𝑌)

VO𝑥 (𝑎) ∗ PC𝑥 (𝑎) ∗ [𝑌]𝑞 ⇛ ⟨↑𝑥 ★
= 𝑎⟩ ∗ PC𝑥 (𝑎) ∗ [𝑌]𝑞

Now we get an observation ⟨↑𝑥 ★
= 𝑎⟩, which makes the

prophecy’s value ↑𝑥 effectively equal to the current state 𝑎.
We can use it for the postcondition to satisfy the rule’s spec
𝜆𝛹, [𝑏] . 𝑏.2 = 𝑏.1 →𝛹 [].

Unfreezing. Unfreezing of objects at a lifetime’s end
(endlft) can be proved easily. We first get a dead-lifetime
token [†𝛼] by consuming [𝛼]1 in the lifetime context. Using
it, we łexecutež the view-shift wand of each frozen object

[†𝛼] ∃𝑏. ⟨𝑏 ★
= 𝑎⟩ ∗ JTK(𝑏, 𝑡, a), to get an active object

JTK(𝑏, 𝑡, a). Thanks to the observation ⟨𝑏 ★
= 𝑎⟩ for each

object, we can prove the rule’s spec 𝜆𝛹, 𝑎.𝛹 𝑎.

Verifying specs for APIs with unsafe code. We can
also semantically verify all our RustHorn-style specs for safe
Rust APIs with unsafe implementations.
For an interesting example, let’s consider the iter_mut

method for converting a mutable reference &𝛼 mut Vec<T>

into a mutable iterator IterMut<𝛼,T> (ğ2.3). To verify the
method, it suffices to prove the following Hoare triple:

{ 〈

𝜆𝜋 . |↑𝑥 𝜋 | = |𝑣 𝜋 | → (�̂� 𝜋) [zip (𝑣 𝜋) (↑𝑥 𝜋)]
〉

∗

[𝛼]𝑞 ∗ J&𝛼 mut Vec<T>K
(

★(𝑣, ↑𝑥), 𝑡, v
) }

iter_mut(v)
{

it. ∃𝑏. ⟨𝜆𝜋 . (�̂� 𝜋) [𝑏 𝜋] ⟩ ∗

[𝛼]𝑞 ∗ JIterMut<𝛼,T>K(𝑏, 𝑡, it)
}

Here we sketch the proof. By Vec<T>’s semantics, the vec-
tor’s value 𝑣 decomposes into ★[𝑎1, . . . , 𝑎𝑛]. Now we cre-
ate new prophecies 𝑦1, . . . , 𝑦𝑛 along with a value observer
VO𝑦𝑖 (𝑎𝑖) and a prophecy controller PC𝑦𝑖 (𝑎𝑖) for each 𝑖 . We

then pick 𝑏 ≜ ★[★(𝑎1,↑𝑦1), . . . ,
★(𝑎𝑛,↑𝑦𝑛)], and construct the

mutable iterator JIterMut<𝛼,T>K(𝑏, 𝑡, it), which is equiv-
alent to iterated separating conjunction of the (imaginary)
mutable reference J&𝛼 mut TK

(

★(𝑎𝑖 ,↑𝑦𝑖), 𝑡, [ℓ +𝑖 · |T|]
)

to the
𝑖-th element, over 𝑖 ∈ 1..𝑛 (where ℓ is the head location). Also,
we need the observation ⟨↑𝑥 ★

=
★[↑𝑦1, . . . ,↑𝑦𝑛] ⟩. To achieve

this, we should split the borrow proposition of &𝛼 mut Vec<T>

to get the borrow propositions for IterMut<𝛼,T>, partially
resolving the old prophecy 𝑥 . Although we omit details here
for space reasons, even borrow subdivision like this can be
verified using our semantic model.

3.5 A Technical Problem Involving Step-Indexing

We now briefly describe a rather technical problem that we
encountered in developing RustHornBelt, which we over-
came by developing a more powerful model of the weakest
precondition in Iris.

851

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

łStep-index hellž. The problem pertains to a core feature
of Iris’s semantic foundation, namely step-indexing [5, 2]. The
model of Iris propositions is parameterized by a łstep-indexž,
which roughly determines the depth of definedness of the
proposition (the higher the step-index, the more defined).
Step-indexing is reflected into the Iris logic via the so-called
later modality ⊲ 𝑃 : this intuitively means ł𝑃 at one lower
step-indexž, which is weaker than 𝑃 itself. We have already
seen the later modality showing up in the model of Box<T>
(ğ3.1), as well as in the rules for borrow propositions &𝛼 𝑃

such as LftL-bor-acc. It is often used as a kind of łguardž to
ensure that recursive, higher-order constructions are well-
founded. The guard can be łstripped offž at certain moments
of łprogressž in a proof, notably when reasoning about a
physical step of computation, at which point one can strip
one later ⊲ off any proposition in the proof context.
Although step-indexing is responsible for much of Iris’s

expressivity (especially łhigher-order ghost statež [23]), it
can also lead to sticky situations. One such situation arises
in RustHornBelt when proving mutref-bye. We want to re-
solve the borrow’s prophecy to value 𝑎 using mut-resolve,
for which we need (for soundness, as explained in ğ3.2) to
produce [𝑌]𝑞 , the set of prophecy tokens for all prophecies
on which 𝑎 depends. However, in the case that the type of
borrowed data is a recursive type containing mutable refer-
ences, those prophecy tokens may be buried under statically
unbounded number of laters. This is a typical example of
the kind of łstep-index hellž one often encounters when
developing semantic models of rich type systems.15

Our solution. Our solution to this puzzle, in short, is to
strengthen the model of Iris weakest pre wp 𝑒 {𝛷} so that
reasoning about the 𝑛-th step of a program’s computation
can strip off 𝑛 laters, not just one. This works well thanks to
the following observation: it takes at least 𝑑 program steps
to construct an object of łpointer-nesting depthž 𝑑 . When
we want to unearth prophecy tokens from nested mutable
references inside an object after 𝑑 steps, the tokens could
be buried underneath at most 𝑑 laters, and so our improved
weakest pre can strip off all the laters we encounter.

Formally, we use a time receipt

▷◁ 𝑛 [34], which persistently
records the fact that 𝑛 program steps have passed. We get

▷◁

0 for free, and

▷◁ 𝑛 grows into

▷◁ (𝑛 + 1) in one step. When
we have

▷◁ 𝑛, we can strip off 𝑛 + 1 laters in one step:16

wp-laters-time

𝑒 is not a value

▷◁ 𝑛 ∗ |≡⇛▶⊲ 𝑛+1 𝑃 ∗ wp 𝑒 {𝛷} ⊢ wp 𝑒 {v. 𝑃 ∗𝛷 v }

15 The reader may wonder if we can use Transfinite Iris [41] instead of

Iris to solve this problem. Unfortunately we cannot, because in Transfinite

Iris we lose the ability to commute separating conjunction (∗) and later (⊲),

which our model (especially the lifetime logic) crucially relies on.
16 Here, instead of just ⊲𝑛+1 𝑃 we allow |≡⇛▶⊲ 𝑛+1 𝑃 , i.e., 𝑃 under 𝑛 + 1 laters

interleaved between fancy updates |⇛ (|⇛𝑄 is equivalent to True 𝑄).

We then add a pointer-nesting depth parameter 𝑑 to Rust-
HornBelt’s ownership predicate, which we connect to these
time receipts. For example, Box<T>’s semantics is updated to
JBox<T>K(𝑎, 𝑑 +1, 𝑡, [ℓ]) ≜ ∃v. · · · ∗⊲JTK(𝑎, 𝑑, 𝑡,v), where the
box pointer’s depth is set to one plus its target’s. Each object
is then equipped with a time receipt corresponding to the
depth: Ja : TK ≜ ∃𝑑.

▷◁ 𝑑 ∗ JTK(𝑎, 𝑑, 𝑡, a) (we similarly update
Ja : †𝛼 TK). This time receipt gives us sufficient ammunition
to strip off as many laters as we might need in order to access
tokens buried within the object.

Remaining challenge. Unfortunately, reference-counted
pointers (such as those provided by the Rc API) make it
possibleÐwhen used in conjunctionwith APIs like RefCellÐ
to increase pointer-nesting depth by an unbounded quantity
in only one execution step (e.g., by concatenating lists). This
violates our key observation above (the linking of pointer-
nesting depth with execution time). Handling of these APIs
thus remains an intriguing technical challenge, which we
leave to future work.

4 Evaluation and Case Studies

We evaluated our approach discussed in ğ3 by fully mecha-
nizing the semantic soundness proof of the type-spec system
in the Coq proof assistant, verifying various safe Rust APIs
that encapsulate unsafe code (ğ4.1). We also confirmed that
RustHornBelt’s specs for Rust APIs (such as IterMut and
Cell) are in fact usable for automated verification of Rust
programs, via a RustHorn-style verifier Creusot (ğ4.2).

4.1 Mechanization in Coq

We built RustHornBelt’s Coq development by extending that
of RustBelt [21]. It has ~19kLOC of Coq code in total. We
were able to reuse the key sub-components, the lifetime logic
(~2kLOC) and the untyped core calculus (𝜆Rust) (~3kLOC), as
well as the overarching proof structure for verifying the type
system. The development took two implementors ~6 months
to complete, adding ~7kLOC to the final proofs.
We first modeled basic Rust types and verified type-spec

rules for operations on them, extending RustBelt with func-
tional specs. The verified basic types include: box pointer
Box<T>, shared and mutable references &𝛼 (mut) T, tuple
(T1,. . .,T𝑛), sum T1 + · · · + T𝑛

17, array [T;𝑛], integer int,

boolean bool, function fn(T) -> T', and recursive types18.
Then we also modeled advanced Rust types and verified

type-spec rules for key API functions encapsulating unsafe
code, including:

• Vector Vec<T> Ð new, drop, len, push, pop,
index(_mut), as_(mut_)slice/iter(_mut)19

17 This amounts to Rust’s enum type.
18 This supports non-covariant recursion, e.g., recursion with self reference

under the mutable reference &𝛼 mut.
19 We equate the two methods, because we used the same model for the

shared/mutable slice and iterator.

852

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

LOC

API #Funs Type Code Proof

Vec 9 147 59 459
SmallVec 9 209 75 619
&𝛼 (mut) [T] / Iter(Mut) 9 253 38 428
Cell 8 102 20 188
Mutex / MutexGuard 7 258 30 222
JoinHandle 2 73 12 52
MaybeUninit 5 140 8 108
Misc 3 0 14 85

Figure 1.Coqmechanization of Rust APIs. #Funs: Number of
the functions verified. Type: LOC of the semantic model and
proof for the type(s). Code: LOC of the 𝜆Rust implementation
of the functions. Proof: LOC of the verification proof of the
type-spec rules.

• Small-vector SmallVec<T,𝑛> Ð new, drop, len, push,
pop, index(_mut), as_(mut_)slice/iter(_mut)19

• Shared/mutable slice &𝛼 (mut) [T] Ð len,
split_at(_mut), [T;𝑛]::as_(mut_)slice

• Shared/mutable iterator Iter(Mut)<𝛼,T>20 Ð
Iter(Mut)::next, Iter(Mut)::next_back

• Cell Cell<T> Ð new, into_inner, from_mut,
get_mut, get, set, replace

• Mutex Mutex<T> Ð new, into_inner, get_mut, lock
• Mutex guard MutexGuard<𝛼,T> Ð deref(_mut), drop
• Thread / JoinHandle<T> Ð spawn, join
• Maybe-uninitialized MaybeUninit<T> Ð new,
uninit, assume_uninit(_ref, _mut)

• Misc Ð swap, panic!,21 assert!21

We implemented each function in our core calculus 𝜆Rust.
As in RustBelt, our 𝜆Rust implementation of each function
is meant to extract the essence of the real-world Rust im-
plementation, simplifying away uninteresting details. For
example, our 𝜆Rust version of Vec::push uses a simpler real-
location strategy than the original Rust version.
In Fig. 1, we report the code size of the implementation

and proof of a selection of Rust APIs. A function with a
large implementation and involving mutable borrows tends
to require a larger code size and more significant proof effort.
Roughly speaking, modeling a Rust type took ~1 hour, and
verifying each function took about 10 minutesś2 hours for
us. We still need a large amount of boilerplate code for the
proof. Further automation of this part is left to future work.
We also validated our type-spec system by (somewhat

manually) verifying small Rust programs, with ~800 LOC of
Coq code. The verified programs include what correspond
to inc_vec and inc_cell shown in ğ2.3, demonstrating the
Rust APIs Vec, IterMut and Cell.

20 For simplicity, for the shared/mutable iterator Iter(Mut)<𝛼,T>, we used

the same model as the shared/mutable slice &𝛼 (mut) [T].
21 Abortion is implemented just as a stuck term.

LOC

Name Code Spec #VCs Time/VC

List-Reversal 22 10 1 0.09
All-Zero 12 6 2 0.05
Go-IterMut 14 11 1 0.23
Even-Cell 15 6 3 0.03
Fib-Memo-Cell 29 53 28 0.06
Even-Mutex 38 13 3 0.03
Knights-Tour 131 47 10 0.12

Figure 2. Creusot benchmarks. Code: LOC of the program
code verified. Spec: LOC of the specs added to the program,
including lemmas and definitions. #VCs: Number of the VCs
generated by Why3. Time/VC: Average time (seconds) to
solve each VC.

4.2 Case Studies in Creusot

We confirmed that our API specs verified by RustHorn-
Belt are useful by using them to semi-automatically ver-
ify several example client Rust programs in a pre-existing
RustHorn-style semi-automated verifier, Creusot [15] (avail-
able at https://github.com/xldenis/creusot/). Creusot takes as
input a Rust programwith spec annotations and then verifies
the program by generating VCs (verification conditions) fed
to SMT solvers, using Why3 [18] as a backend engine.

Benchmarks. We implemented a Rust library provid-
ing specifications for Vec, IterMut, Cell, and Mutex. Using
the library, we implemented seven verification benchmarks
totaling 407 lines of code, specs included. We verified the
benchmarks with Creusot, using Why3 configured with a
standard automated proof strategy, and using Z3 [13] 4.8.12
or CVC4 [7] 1.8.0 as the backend SMT solver. The bench-
marks were executed on Ubuntu 21.04 with an Intel Core
i5-10310U CPU and 16 GiB of RAM.
In Fig. 2, we present our benchmarks and evaluation re-

sults. List-Reversal proves in-place list reversal. All-Zero
uses a loop to zero each element of a mutably borrowed
vector. Go-IterMut increments each element of a vector
through a mutable iterator. Even-Cell and Even-Mutex per-
form invariant-based verification on Cell and Mutex, respec-
tively. Knights-Tour demonstrates scalability on a larger
example.

Defunctionalized invariants. In our Coq formalization
of RustHornBelt, each cell is represented as an invariant of
the predicate sort ⌊T⌋ → Prop. Since a higher-order structure
like that can’t be directly handled by today’s SMT solvers, we
defunctionalize such invariants for verification in Creusot.
We introduce a trait (analogous to type class in Haskell)
Inv<T> for a ghost type I that expresses an invariant over T:

trait Inv<T>: 'static {

#[predicate] fn inv(&self, a: T) -> bool; }

853

https://github.com/xldenis/creusot/

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

For example, we can make a ghost type Even that expresses
the łevennessž invariant on integers (u64 in Rust):

struct Even {}

impl Inv<u64> for Even {

#[predicate] fn inv(&self, a: u64) -> bool {

a % 2 == 0 } }

Then we construct a wrapper type Cell<T,I>, which anno-
tates the standard Cell<T> with the ghost object i : I for
the invariant. The methods get and set on Cell<T,I> are
given the invariant-based specs (which are trusted):

struct Cell<T,I> { c: std::cell::Cell<T>; i: I; }

impl<T: Copy, I: Inv<T>> Cell<T,I> {

#[trusted] #[ensures(self.i.inv(result))]

fn get(&self) -> T { self.c.get() }

#[trusted] #[requires(self.i.inv(a))]

fn set(&self, a: T) { self.c.set(a) } }

For example, we can automatically verify Even-Cell using
Cell<u64,Even>.

Fib-Memo-Cell. This benchmark Fib-Memo-Cell veri-
fies amemoized recursive function. It uses a vector of cells of
type Vec<Cell<Option<u64>,Fib>> for memoization, with
the invariant that the 𝑖-th Cell in the vector should either
store None or Some(fib 𝑖), where fib 𝑖 is the 𝑖-th Fibonacci
number. We encode this invariant on each Cell using the
ghost type Fib. Unlike Even, Fib actually wraps a (ghost)
payload of type usize, which represents the index 𝑖 at which
the cell is stored in the vector (and which we ensure matches
the actual index of the cell by placing an extra precondition
on the function).

Even-Mutex. The benchmark Even-Mutex is a concurrent
version of Even-Cell, proving that the concurrently shared
mutable value is always even. We represent each mutex
Mutex as a defunctionalized invariant, just like Cell. Lock-
ing a mutex returns a MutexGuard, which can be used to
read from and write to the mutex. For concurrency, we use
spawn/join to spawn and join several threads. In Rust, spawn
takes a closure which will be executed. Before we call spawn,
we should satisfy the closure’s precondition. After we call
join on the JoinHandle returned by spawn, we obtain a
result that satisfies the closure’s postcondition.

5 Related Work

Prophecies. First introduced to prove refinement between
state machines [1], prophecies have been studied for decades,
although they still remain a somewhat exotic technique.
Jung et al. [24] modeled prophecies in Iris (influenced by

existing literature [44, 46]), mainly to prove logical atomicity
of tricky concurrent data structures (though there have been
other applications [14]). In their approach, to ensure consis-
tency of prophecy reasoning, prophecy creation and reso-
lution take the form of ghost program instructions, which

provide a sort of łground truthž for the prophecy, but also re-
quire cumbersome user annotations. Moreover, their prophe-
cies distinguish between the name of a prophecy and the
value it resolves to (mediated by a kind of łprophecy heapž
mapping prophecy names to values). As such, they do not
provide a way to resolve a prophecy to a value that mentions
the values of other (as yet unresolved) prophecy variablesÐa
feature we require in RustHornBelt to model nested borrows
and borrow subdivisions.
For separation logic verification of fine-grained concur-

rency like Jung et al. aimed at, Turon et al. [42] and Liang
and Feng [29] employed a technique of speculation. Their ap-
proach allows the proof to speculate about multiple possible
logical states, combine them through the łspeculative choicež
connective 𝑃 ⊕𝑄 , and then cull the set of possible states once
more information becomes available later in the proof. How-
ever, it does not provide an analogue of prophecy variables.
In contrast, our prophecy framework provides persistent ob-

servations ⟨𝜙 ⟩, which can express knowledge of prophecy
variables’ values that holds under all possible futures.

Proof of RustHorn. Our work does not fully subsume
the original proof of RustHorn’s translation [32, 33], in that
they also proved completeness while we prove only sound-
ness. Completeness is in fact lost for APIs with interior muta-
bility like Cell and Mutex in the invariant style, as invariants
can’t precisely track dynamic state changes in general.

Verifying Rust programs. Prusti [6] analyzes type in-
formation from the Rust compiler to synthesize verification
conditions in the separation logic Viper [36], suited for au-
tomated verification. They directly reconstruct the flow of
ownership with the help of lifetime information from the
Rust compiler. To model a mutable borrow, they introduced
pledges, which models a property that is true at the bor-
row’s end. However, their approach struggles with certain
advanced use cases of mutable borrows, and they do not
support unsafe Rust code.

Electrolysis [43] developed a translation from a Rust pro-
gram to a purely functional program, which can then be
verified manually in a proof assistant. The translation works
for a few specific patterns of borrowing, but fails to handle
common usages like max_mut in ğ2.1. The translation has
also not been formally proved sound.

Acknowledgments

We thank Ralf Jung, Naoki Kobayashi, and the anonymous
reviewers for their helpful comments. This research was
supported in part by a European Research Council (ERC)
Consolidator Grant for the project łRustBeltž, funded under
the European Union’s Horizon 2020 Framework Programme
(grant agreement no. 683289), and in part by JSPS KAKENHI
Grant Number JP21J20459 łTheory and application for robust
and high-performance systems programming languagesž.

854

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement

Mappings. In Proceedings of the Third Annual Symposium on Logic

in Computer Science (LICS). IEEE Computer Society, 165ś175. https:

//doi.org/10.1109/LICS.1988.5115

[2] Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dis-

sertation. Princeton University.

[3] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N.

Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic foundations

for typed assembly languages. ACM Trans. Program. Lang. Syst. 32, 3

(2010), 7:1ś7:67. https://doi.org/10.1145/1709093.1709094

[4] Andrew W. Appel. 2001. Foundational Proof-Carrying Code. In 16th

Annual IEEE Symposium on Logic in Computer Science, Boston, Mas-

sachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society,

247ś256. https://doi.org/10.1109/LICS.2001.932501

[5] Andrew W. Appel and David A. McAllester. 2001. An indexed model

of recursive types for foundational proof-carrying code. ACM Trans.

Program. Lang. Syst. 23, 5 (2001), 657ś683. https://doi.org/10.1145/

504709.504712

[6] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.

Summers. 2019. Leveraging Rust Types for Modular Specification and

Verification. Proceedings of the ACM on Programming Languages 3,

OOPSLA (2019), 147:1ś147:30. https://doi.org/10.1145/3360573

[7] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana

Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare

Tinelli. 2011. CVC4. In Computer Aided Verification - 23rd International

Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings

(Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan

and Shaz Qadeer (Eds.). Springer, 171ś177. https://doi.org/10.1007/978-

3-642-22110-1_14

[8] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon

Peyton Jones, and Arnaud Spiwack. 2018. Linear Haskell: Practical

Linearity in a Higher-Order Polymorphic Language. PACMPL 2, POPL

(2018), 5:1ś5:29. https://doi.org/10.1145/3158093

[9] Nikolaj Bjùrner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey

Rybalchenko. 2015. Horn Clause Solvers for Program Verification. In

Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich

on the Occasion of His 75th Birthday (Lecture Notes in Computer Science,

Vol. 9300), Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz,

Bernd Finkbeiner, and Wolfram Schulte (Eds.). Springer, 24ś51. https:

//doi.org/10.1007/978-3-319-23534-9_2

[10] Arthur Charguéraud and François Pottier. 2008. Functional translation

of a calculus of capabilities. In Proceeding of the 13th ACM SIGPLAN

international conference on Functional programming, ICFP 2008, Victoria,

BC, Canada, September 20-28, 2008, James Hook and Peter Thiemann

(Eds.). ACM, 213ś224. https://doi.org/10.1145/1411204.1411235

[11] David G. Clarke, John Potter, and James Noble. 1998. Ownership Types

for Flexible Alias Protection. In Proceedings of the 1998 ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages &

Applications (OOPSLA), Bjùrn N. Freeman-Benson and Craig Chambers

(Eds.). ACM, 48ś64. https://doi.org/10.1145/286936.286947

[12] Coq Community. 2021. The Coq Proof Assistant. https://coq.inria.fr/

[13] Leonardo Mendonça de Moura and Nikolaj Bjùrner. 2008. Z3: An Effi-

cient SMT Solver. In Tools and Algorithms for the Construction and Anal-

ysis of Systems, 14th International Conference, TACAS 2008, Held as Part

of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings

(Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and

Jakob Rehof (Eds.). Springer, 337ś340. https://doi.org/10.1007/978-3-

540-78800-3_24

[14] Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan.

2020. Spy Game: Verifying a Local Generic Solver in Iris. Proceedings

of the ACM on Programming Languages 4, POPL (2020), 33:1ś33:28.

https://doi.org/10.1145/3371101

[15] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2021. The

Creusot Environment for the Deductive Verification of Rust Programs.

(2021). https://hal.inria.fr/hal-03526634

[16] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.

https://www.worldcat.org/oclc/01958445

[17] Dropbox. 2020. Rewriting the Heart of Our Sync Engine - Drop-

box. https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-

sync-engine

[18] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where

Programs Meet Provers. In Programming Languages and Systems -

22nd European Symposium on Programming, ESOP (Lecture Notes in

Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner

(Eds.). Springer, 125ś128. https://doi.org/10.1007/978-3-642-37036-

6_8

[19] Google. 2021. Rust in the Android platform. https://security.googleblog.

com/2021/04/rust-in-android-platform.html

[20] Ralf Jung. 2020. Understanding and Evolving the Rust Programming

Language. Ph. D. Dissertation. Saarland University, Saarbrücken,

Germany. https://publikationen.sulb.uni-saarland.de/handle/20.500.

11880/29647

[21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the Foundations of the Rust Programming

Language. Proceedings of the ACM on Programming Languages 2, POPL

(2018), 66:1ś66:34. https://doi.org/10.1145/3158154

[22] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2021. Safe systems programming in Rust. Commun. ACM 64, 4 (2021),

144ś152. https://doi.org/10.1145/3418295

[23] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the Ground Up: A Modular

Foundation for Higher-Order Concurrent Separation Logic. Jour-

nal of Functional Programing 28 (2018), e20. https://doi.org/10.1017/

S0956796818000151

[24] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna

Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020. The

Future is Ours: Prophecy Variables in Separation Logic. Proceedings

of the ACM on Programming Languages 4, POPL (2020), 45:1ś45:32.

https://doi.org/10.1145/3371113

[25] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL, Sriram K. Rajamani and David Walker

(Eds.). ACM, 637ś650. https://doi.org/10.1145/2676726.2676980

[26] Hari Govind V K, Sharon Shoham, and Arie Gurfinkel. 2022. Solving

ConstrainedHornClausesModuloAlgebraic Data Types and Recursive

Functions. Proceedings of the ACM on Programming Languages POPL

(1 2022).

[27] Steve Klabnik, Carol Nichols, and Rust Community. 2018. The Rust

Programming Language. https://doc.rust-lang.org/book/

[28] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

Proofs in Higher-Order Concurrent Separation Logic. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL, Giuseppe Castagna and Andrew D. Gordon (Eds.).

ACM, 205ś217. https://doi.org/10.1145/3009837

[29] Hongjin Liang and Xinyu Feng. 2013. Modular Verification of Lineariz-

ability with Non-Fixed Linearization Points. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI,

Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 459ś470.

https://doi.org/10.1145/2491956.2462189

[30] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.

In Proceedings of the 2014 ACM SIGAda annual conference on High

integrity language technology, HILT, Michael Feldman and S. Tucker

Taft (Eds.). ACM, 103ś104. https://doi.org/10.1145/2663171.2663188

855

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/1411204.1411235
https://doi.org/10.1145/286936.286947
https://coq.inria.fr/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3371101
https://hal.inria.fr/hal-03526634
https://www.worldcat.org/oclc/01958445
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3418295
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doc.rust-lang.org/book/
https://doi.org/10.1145/3009837
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2663171.2663188

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

[31] Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek

Dreyer. 2022. RustHornBelt: A Semantic Foundation for Functional

Verification of Rust Programs with Unsafe Code, Artifact. https://doi.

org/10.5281/zenodo.6501665 Latest version of the Coq mechanization

and the Creusot benchmarks available at https://gitlab.mpi-sws.org/

iris/lambda-rust/-/tree/masters/rusthornbelt and https://github.com/

xldenis/rhb-specs, respectively.

[32] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020.

RustHorn: CHC-based Verification for Rust Programs. In Programming

Languages and Systems - 29th European Symposium on Programming,

ESOP (Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.).

Springer, 484ś514. https://doi.org/10.1007/978-3-030-44914-8_18

[33] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2021.

RustHorn: CHC-Based Verification for Rust Programs. ACM Trans.

Program. Lang. Syst. 43, 4, Article 15 (October 2021), 54 pages. https:

//doi.org/10.1145/3462205

[34] Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time

Credits and Time Receipts in Iris. In Programming Languages and

Systems - 28th European Symposium on Programming, ESOP (Lecture

Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 3ś29.

https://doi.org/10.1007/978-3-030-17184-1_1

[35] Mozilla. 2021. Rust language Ð Mozilla Research. https://research.

mozilla.org/rust/

[36] PeterMüller, Malte Schwerhoff, andAlexander J. Summers. 2016. Viper:

A Verification Infrastructure for Permission-Based Reasoning. In Ver-

ification, Model Checking, and Abstract Interpretation - 17th Interna-

tional Conference, VMCAI (Lecture Notes in Computer Science, Vol. 9583),

Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer, 41ś62.

https://doi.org/10.1007/978-3-662-49122-5_2

[37] npm. 2019. Rust Case Study: Community Makes Rust an Easy Choice for

npm. https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.

pdf

[38] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local

Reasoning about Programs that Alter Data Structures. In Computer

Science Logic, 15th International Workshop, CSL 2001. 10th Annual Con-

ference of the EACSL (Lecture Notes in Computer Science, Vol. 2142),

Laurent Fribourg (Ed.). Springer, 1ś19. https://doi.org/10.1007/3-540-

44802-0_1

[39] Rust Community. 2021. Rust Programming Language. https://www.

rust-lang.org/

[40] Rust Community. 2021. Sponsors Ð Rust Programming Language. https:

//www.rust-lang.org/sponsors

[41] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert

Krebbers, Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris:

resolving an existential dilemma of step-indexed separation logic. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation, Virtual Event, Canada, June

20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 80ś95.

https://doi.org/10.1145/3453483.3454031

[42] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal,

and Derek Dreyer. 2013. Logical Relations for Fine-Grained Concur-

rency. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL, Roberto Giacobazzi and Radhia

Cousot (Eds.). ACM, 343ś356. https://doi.org/10.1145/2429069.2429111

[43] Sebastian Ullrich. 2016. Simple Verification of Rust Programs

via Functional Purification. Master’s thesis. Karlsruhe Insti-

tute of Technology. https://pp.ipd.kit.edu/uploads/publikationen/

ullrich16masterarbeit.pdf

[44] Viktor Vafeiadis. 2008. Modular Fine-Grained Concurrency Verification.

Ph. D. Dissertation. University of Cambridge, UK. http://ethos.bl.uk/

OrderDetails.do?uin=uk.bl.ethos.612221

[45] Philip Wadler. 1990. Linear Types Can Change the World!. In Pro-

gramming concepts and methods: Proceedings of the IFIP Working Group

2.2, 2.3 Working Conference on Programming Concepts and Methods,

Manfred Broy (Ed.). North-Holland, 561.

[46] Zipeng Zhang, Xinyu Feng, Ming Fu, Zhong Shao, and Yong Li. 2012. A

Structural Approach to Prophecy Variables. In Theory and Applications

of Models of Computation - 9th Annual Conference, TAMC (Lecture Notes

in Computer Science, Vol. 7287), Manindra Agrawal, S. Barry Cooper,

and Angsheng Li (Eds.). Springer, 61ś71. https://doi.org/10.1007/978-

3-642-29952-0_12

856

https://doi.org/10.5281/zenodo.6501665
https://doi.org/10.5281/zenodo.6501665
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/rusthornbelt
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/rusthornbelt
https://github.com/xldenis/rhb-specs
https://github.com/xldenis/rhb-specs
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-030-17184-1_1
https://research.mozilla.org/rust/
https://research.mozilla.org/rust/
https://doi.org/10.1007/978-3-662-49122-5_2
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/sponsors
https://www.rust-lang.org/sponsors
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/2429069.2429111
https://pp.ipd.kit.edu/uploads/publikationen/ullrich16masterarbeit.pdf
https://pp.ipd.kit.edu/uploads/publikationen/ullrich16masterarbeit.pdf
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1007/978-3-642-29952-0_12
https://doi.org/10.1007/978-3-642-29952-0_12

	Abstract
	1 Introduction
	2 Overview of RustHornBelt
	2.1 Key Idea of RustHorn: Mutable Borrows Expressed in FOL via Prophecies
	2.2 Type-Spec System: Our Formalization of RustHorn-Style Verification
	2.3 Rust APIs with Unsafe Code

	3 Proving Semantic Soundness of the Type-Spec System
	3.1 Basics of Our Semantic Approach
	3.2 Our Key Innovation: Parametric Prophecies
	3.3 RustHornBelt's Model of Mutable Borrows
	3.4 Proving Soundness of Type-Spec Rules
	3.5 A Technical Problem Involving Step-Indexing

	4 Evaluation and Case Studies
	4.1 Mechanization in Coq
	4.2 Case Studies in Creusot

	5 Related Work
	Acknowledgments
	References

