
Maximum colored trees in edge-colored graphs

V.Borozan∗ W. Fernandez de La Vega∗ Y. Manoussakis∗ C. Martinhon†

R. Muthu∗ R. Saad‡§

Abstract

We consider maximum properly edge-colored trees in edge-colored graphs G
c. We also consider

the problem where, given a vertex r, determine whether the graph has a spanning tree rooted at

r, such that all root-to-leaf paths are properly colored. We consider these problems from graph-

theoretic as well as algorithmic viewpoints. We prove their optimization versions to be NP-hard in

general and provide algorithms for graphs without properly edge-colored cycles. We also derive some

nonapproximability bounds. A study of the trends random graphs display with regard to the presence

of properly edge-colored spanning trees is presented.

Keywords: c-edge-colored graph, colored spanning tree, maximum colored tree.

1 Introduction, Notation and Terminology

Here we consider the problem of properly colored spanning trees of graphs colored with any number of

colors, and also a related question which allows a slight relaxation. We look at these questions from a

graph-theoretic as well as an algorithmic perspective. They are also useful in many practical applications.

Much of the earlier related work was with rainbow spanning trees, i.e., spanning trees in which each pair

of edges differ in color (see [3, 7, 8, 17]). Some work on algorithmic aspects of paths and cycles in

edge-colored graphs can be found in [2, 4, 5, 15, 16]. A recent survey paper on heterochromatic graphs

(rainbow colored graphs) can be found in [14].

Formally, let χc = {1, 2, . . . , c} be a given set of colors, c ≥ 2. Throughout the paper, Gc denotes an

edge-colored simple graph, where each edge is assigned some color i ∈ χc. The vertex and edge-sets of Gc

are denoted V (Gc) and E(Gc), respectively. The order n, of Gc, is the number of its vertices. The size

m, of Gc, is the number of its edges. For a given color i, Ei(Gc) denotes the set of edges of Gc colored i.

When no confusion arises, we write V, E and Ei instead of V (Gc), E(Gc) and Ei(Gc), respectively. For

edge-colored complete graphs, we write Kc
n instead of Gc. If H is a subgraph of Gc, then N i

H(x) denotes

the set of vertices of H , joined to x with an edge in color i. The colored i-degree of x in H , denoted

by di
H(x), corresponds to |N i

H(x)|, i.e., the cardinality of N i
H(x). Whenever H ∼= Gc, for simplicity, we

write N i(x) (resp. di(x)) instead of N i
Gc(x) (resp. di

Gc(x)).

An edge between two vertices x and y is denoted by xy, its color by c(xy) and its weight (if any) by

weight(xy). The weight of a subgraph is the sum of the weights of its edges. A subgraph of Gc is said

∗University of Paris-XI, OrsayLRI, Bât. 490, 91405 Orsay Cedex, France
†Fluminense Federal University, Institut of Computation, Niteroi, RJ, 24210-240, Brazil. Sponsored by Conselho Na-

cional de Desenvolvimento Cient́ıfico e Tecnológico - CNPq
‡CMR Saint-Jean, Campus Saint-Jean, C.P.100 Succursale Bureau-chef, Richelain (QC) J0J 1R0, Canada.
§E-mails: yannis@lri.fr, mart@dcc.ic.uff.br, muthu@lri.fr, r.saad@st-jean.rmc.ca

1

to be properly edge-colored (or just proper) if any two incident edges in this subgraph differ in color. A

proper path (trail) is any proper subgraph whose underlying non-colored graph is a path (trail). The

length of a path (trail) is the number of its edges. A proper cycle in Gc is a proper subgraph whose

underlying non-colored graph is a cycle. An edge-colored graph is said to be acyclic if it does not contain

proper cycles.

A tree in Gc is a subgraph such that its underlying non-colored graph is connected and acyclic. A

spanning tree is one covering all vertices of Gc. Following the convention introduced in the previous

paragraph, a proper tree is one such that no two incident edges are of the same color. A tree T in Gc

with fixed root r is said to be weakly proper if every path in T , from the root r to any leaf, is a proper

one. To facilitate discussions, in the sequel, a weakly proper tree will be called a weak tree. Notice

that in the case of weak trees, incident edges may have the same color, while this may not happen for

proper trees. We use pt and wt to denote respectively, proper tree and weak tree. pst and wst refer

to the corresponding spanning trees, while mpt and mwt represent maximum proper and weak trees,

respectively. A proper spanning subgraph, whose underlying non-colored graph is a forest is called a

proper spanning forest psf.

A tree-cycle factor C0, C1, C2, . . . , Ck is a collection of k + 1 pairwise vertex-disjoint subgraphs of

Gc such that C0 is a proper tree and all other subgraphs Ci, i 6= 0, are properly edge-colored cycles in

Gc satisfying
⋃

i V (Ci) = V (Gc). Similarly, a forest-cycle factor T1, . . . , Tl, C1, . . . , Ck is a collection of

l + k pairwise vertex-disjoint subgraphs of Gc, such that T1, . . . , Tl are proper trees and the remaining

subgraphs C1, . . . , Ck, are proper cycles in Gc, satisfying
⋃

i V (Ci) = V (Gc). We utilise these concepts

to develop some of our results in Section 5.

We state below a theorem due to Yeo [18] which we use in Section 3. This theorem characterizes

precisely the class of edge-colored graphs, on any number of colors, which contain no properly colored

cycles. A simpler version for graphs whose edges are colored using two colors was obtained by Grossman

and Häggkvist [12].

Theorem 1.1 (Yeo). If Gc is an edge-colored acyclic graph then it has a vertex u, such that the edges

between u and any component of Gc \ {u} are monochromatic.

The paper is organised as follows. In Section 2, we prove the NP-completeness of various problems

of colored trees in edge-colored graphs, and also derive some non-approximability bounds. In Section 3

we provide algorithms to solve the pst and wst problems on acyclic graphs. Our algorithms in that

section yield maximum sized trees, in case a spanning one does not exist. In Section 4 we provide an

algorithm that produces a psf with the maximum possible number of edges. The difference from the

earlier section is only in the case when the graph does not contain a pst. In Section 5 we present some

precise mathematical characterizations of edge-colored complete graphs which contain a pst. Section 6

studies the trends random graphs display with respect to containment of a pst. We conclude with a

summary and open problems in Section 7.

2

2 NP-completeness, nonapproximability results for the Colored

Tree Problems

Initially consider a c-edge-colored graph Gc on n vertices. If the number of colors c is constant, it is

easy to see that the pst problem is NP-hard since it generalises the Maximum Degree-Constrained Tree

problem (mdct) (see [11]), which in turn generalizes the Longest Path problem. In this case, the number

of edges with different colors incident to node v ∈ V , denotes the maximum degree dv associated with

node v in the mdct problem. The next result shows that the proper tree problem remains NP-hard even

for graphs with c = Ω(n2) colors.

Theorem 2.1. The maximum proper tree problem on Gc is NP-hard even for c = Ω(n2).

Proof. Let Gc be an instance of the mpt problem with n nodes and c colors. Construct a complete graph

Kc′

n with n nodes and color each of its edges with a different color. Add new edges between some fixed

vertex of Kc′

n and all vertices of Gc and give them all the same color different from those used on Gc and

Kc′

n . Clearly, this new graph has c = Ω(n2) colors and contains a proper tree on n + t nodes if and only

if Gc has one on t nodes.

Next we consider the mwt problem.

Theorem 2.2. Given a vertex r in Gc, c ≥ 2, the mwt problem rooted at r is NP-hard.

Proof. The mwt problem obviously belongs to NP. To show that mwt is NP-hard we construct a re-

duction from the MAX-3-SAT problem as follows. Consider a boolean expression B in the CNF with

variables x1, . . . , xs and clauses c1, . . . , ct. In addition, suppose that B constains exactly 3 literals per

clause (actually, we may also consider clauses of arbitrary size). We show how to construct a 2-edge-

colored graph Gc associated with any such formula B, such that, there exists a truth assignment to the

variables of B satisfying t′ clauses if and only if G contains a wt with root r, covering 2s + t′ + 1 nodes.

The vertex set V (Gc) consists of 2s + t + 1 nodes and is defined as:

V = {r, a11, a12, a21, a22, . . . , as1, as2, c
′

1, . . . , c
′

t}.

The vertex r is the root, vertices ai1, ai2 for i = 1, . . . , s are associated respectively with variables xi

of B, and all vertices c′j (for j = 1, . . . , t) are associated with the clauses cj of B.

The edge set E(Gc) is constructed in the following way. All edges between the root r and the vertices

ai1, ai2, for each i ∈ {1, . . . , s}, are added with color blue. Each pair ai1, ai2, for each i ∈ {1, . . . , s}, is

connected by a red edge. For each occurrence of xi in the positive form in the clause cj we add a blue

edge ai2c
′

j . Analogously, for each ocurrence of xi in the negative form in the clause cj we add a red edge

ai2c
′

j . See the example of Figure 1 (a).

Therefore given a truth assignment for B, we obtain a Weak Tree T in Gc as follows. For each variable

xi which is true, we select edges rai1, ai1ai2 and all blue edges incident to ai2. Similarly, for each variable

xi which is false, we select edges rai2 and all red edges incident to ai2.

Conversely, if T is a Weak Tree rooted at r covering t′ + 2s + 1 nodes, an assigment for all variables

of B is obtained as follows. Observe first, that by our construction, every weak tree rooted at r can be

3

Figure 1: Redution 3-SAT formula B = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x4) to wst (fig.(a)) and pst (fig.(b)).

extended to include all the nodes ai1, ai2, i ∈ {1, . . . , s}, and thus covers at least 2s + 1 nodes. In such

an extended tree, if the last edge on the path from the root r to some c′j , namely ai2c
′

j is colored blue,

then the corresponding variable xi is set to true, otherwise it is set to false.

In the rest of this section, we present nonapproximability results for the mwt and mpt problems.

Recall that in the mwt, the objective is to maximize the number of nodes covered by a tree T with

root r. Initially, consider the following auxiliary result relating the maximum number of covered vertices

Opt(G) and the maximum number of satisfied clauses Opt(B).

Lemma 2.3. Opt(G) = Opt(B) + 2s + 1.

Proof. Consider the construction described in the proof of the previous theorem, correlating a 3-CNF-

formula and a corresponding graph. As in that proof, for every assignment of values to the variables of the

formula, we have a weak tree rooted at r, covering all the a11, a12, . . . , as1, as2 and all c′j associated with

the set of satisfied clauses of B. Conversely, given any weak tree rooted at r, we obtain an assignment of

values to the variables in B, such that we satisfy at least as many clauses as the number of paths from r

to c′j . It follows that Opt(G) = Opt(B) + 2s + 1.

Theorem 2.4. The mwt problem is nonapproximable within 63/64 + ǫ, for ǫ > 0, unless P = NP .

Proof. Again, consider a boolean expression B with s variables and t clauses. In addition, suppose that

B constains exactly 3 literals per clause. Then, by the gap reduction technique we prove that:

4

1) if Opt(B) ≥ t then Opt(G) ≥ f(s, t), where f(s, t) = 2s + t + 1 and,

2) if Opt(B) < (7/8 + ǫ)t then Opt(G) < (63/64 + ǫ)f(s, t), for ǫ > 0.

Observe, in this case, that we are using a classical negative result for the MAX-3-SAT problem. As

proved in Hastad [13], the MAX-3-SAT cannot be approximated within 7/8 + ǫ, unless P=NP.

The first condition follows directly since Opt(G) = Opt(B) + 2s + 1 by Lemma 2.3. Thus, consider

Opt(B) < (7/8+ ǫ)t. From this inequality, and Lemma 2.3, it follows that Opt(G) < (7/8+ ǫ)t+2s+1 =

(7/8 + ǫ)t + f(s, t) − t. Therefore Opt(G) < (ǫ − 1/8)t + f(s, t).

Now, from the definition of the 3-SAT problem it follows that 3 ≤ s ≤ 3t. Therefore, f(s, t) ≤

2s + t + s/3 = 7s/3 + t ≤ 8t. Thus, for 0 < ǫ < 1/8, it follows that Opt(G) < (ǫ − 1/8)f(s, t)/8 + f(s, t)

= (ǫ/8 − 1/64 + 1)f(s, t). Finally, Opt(G) < (63/64 + ǫ′)f(s, t) where ǫ′ = ǫ/8.

Now, we deal with the mpt problem.

Lemma 2.5. Opt(G) = Opt(B) + 2s

Proof. We construuct a tree associated with any formula in 3-CNF as follows. We have three vertices

yi, ai1, ai2, for each variable xi, 1 ≤ i ≤ s, in the formula. We also have vertices c′1, . . . , c
′

t corresponding

to each of the t clauses in the formula. We have a red edge between ai1 and c′i if variable xj occurs

in positive form in the clause Cj . In case the variable xi occurs in the negative form in clause Cj , we

put a red edge between ai2 and c′j . We have blue edges between yi and ai1 and yi and ai2, for each

i ∈ {1, . . . , s}. The vertex pairs yi and yi+1 are connected each by different colors other than red and

blue for each i ∈ {1, . . . , s − 1}.

It can be easily deduced by looking at Figure 1 (b), that for any i ∈ {1, . . . , s}, at most two of

yi, ai1, ai2 can be covered by a proper tree. The vertices corresponding to the satisfiied clauses can always

be covered. Thus, clearly Opt(G) ≥ Opt(B) + 2s.

Now suppose that we are able to also cover a vertex corresponding to an unsatisfied clause. This

implies that the vertex, say c′j is connected to some ai1 or ai2, only one of which is present in the tree.

Also, every satisfied clause is covered, and this is independent of the assignment made to the variable

xi. This means we can satisfy an extra clause contradicting the optimality of the assignment. Thus

Opt(G) ≤ Opt(B) + 2s.

Theorem 2.6. The mpt problem is non approximable within 55/56 + ǫ, for ǫ > 0, unless P = NP .

Proof. Consider a boolean expression B with s variables, t clauses and exactly 3 literals per clause. We

want to show that:

1) if Opt(B) ≥ t, then Opt(G) ≥ f(s, t), where f(s, t) = 2s + t and,

2) if Opt(B) < (7/8 + ǫ)t, then Opt(G) < (53/54 + ǫ)f(s, t), for ǫ > 0.

Case (1) follows immediately from Lemma 2.5.

For case (2), we again apply the gap reduction technique using the MAX-3-SAT problem. Clearly,

Opt(G) = Opt(B) + 2s < (7/8 + ǫ)t + 2s = (7/8 + ǫ)t + (f(s, t) − t) = (ǫ − 1/8)t + f(s, t). Now, from

the definition of the 3-SAT problem it follows that 3 ≤ s ≤ 3t. Therefore, f(s, t) ≤ 2s + t ≤ 6t + t = 7t.

5

Thus, for 0 < ǫ < 1/8, it follows that Opt(G) ≤ (ǫ− 1/8)f(s, t)/7+ f(s, t) = (ǫ/7− 1/56)f(s, t)+ f(s, t).

Finally, Opt(G) < (55/56 + ǫ′)f(s, t) where ǫ′ = ǫ/7.

3 Maximum colored trees in acyclic edge-colored graphs

As mentioned and proved in an earlier section, the problem of determining whether an edge-colored

graph has a pst is NP-Complete. This is also the case with the wst problem. In this section, we prove

that these problems can be solved efficiently when we restrict our attention to the class of colored acyclic

graphs. When there is no spanning tree, our algorithms can be directly adapted to find a tree of maximum

cardinality.

While some ideas are common, the proofs and conditions for the pst and wst problems on acyclic

edge-colored graphs, differ significantly. Consequently, we have divided the presentation into two seperate

subsections, for the sake of clarity.

3.1 pst

We begin with a very simple theorem which shows, when a given acyclic graph has a pst. The algorithm

which results from this proof has complexity O(cn2.5). Subsequently, we present an alternative, more

complicated, proof but with a much better algorithmic complexity of O(n2.5). Since that proof is more

involved, we divide it into two parts. We prove the result first for acyclic complete graphs and then

generalize it to all acyclic graphs. In addition to the superior running time, in case the graph does not

contain a pst this latter algorithm can be modified to produce a mpt. Finally, it is possible that the

ideas used in the latter results can be adapted to develop approximation algorithms for the mpt problem

on general graphs.

Theorem 3.1. An acyclic graph Gc has a pst if and only if the union of maximum matchings of each

of the colors in χc contains exactly (n − 1) edges.

Proof. We use, here, Mi to denote a maximum matching in color i and Ti to denote the edge set of color

i in a pst. Any subgraph induced by
⋃c

i=1 Mi is clearly a proper one. Thus if |
⋃c

i=1 Mi| ≥ n, then the

subgraph contains a proper cycle, contradicting the acyclicity of Gc. Now suppose |
⋃c

i=1 Mi| < (n − 1).

Clearly, if Gc has a pst then for some color i, |Mi| < |Ti|, since |
⋃c

i=1 Mi| < (n − 1) = |
⋃c

i=1 Ti|. This

is a contradiction of the maximality of Mi.

We now provide alternative results specifying conditions under which an acyclic graph has a pst.

We also develop an efficient algorithm to construct one if it exists. If the given graph does not have an

pst, then our algorithm can be adapted in a straightforward manner to produce a proper spanning forest

(psf) with the smallest possible number of components (trees). Among others, this forest also contains

an mpt. This adaptation is just a greedy procedure, which finds a tree of largest size, and then repeats

the procedure on the subgraph induced by the residual vertices. We first prove all these results for acyclic

edge-colored complete graphs and then extend them for general acyclic edge-colored graphs.

6

Let G1, . . . , Gp, p ≥ 1 be the components of Gc \ {u}. By Theorem 1.1 if Gc is acyclic, for some

vertex u, the edges between u and Gi are monochromatic, for all i ∈ {1, . . . , p}. We call such a vertex u,

a yeo-vertex. We refer to a yeo-vertex which uses different colors for the edges to different components

as a rainbow-yeo-vertex. We call any other yeo-vertex non-rainbow-yeo, if the need arises to distinguish

them.

We first prove an elementary result on colored acyclic graphs, which we use later.

Lemma 3.2. For any colored acyclic graph Gc, c ≤ n − 1.

Proof. Assume, Gc is an acyclic colored graph with c ≥ n. Consider a subgraph induced by a set of n

edges of distinct colors. Since, this subgraph has at most n vertices, the presence of n edges implies a

cycle. It is a properly colored cycle as the set of selected edges are all of distinct colors. This contradicts

the assumption that Gc is acyclic.

Based on Theorem 1.1, we state below an easy lemma.

Lemma 3.3. If an acyclic edge-colored graph contains a non-rainbow-yeo vertex, then it has no pst.

Proof. This is because there are at least two components in the graph obtained by deleting this vertex

which must be connected to each other in a potential pst by a path of length two through this vertex.

These edges are necessarily of the same color and hence the resulting spanning tree is not a proper

one.

In Theorem 3.5 we characterize acyclic edge-colored complete graphs having proper spanning trees.

With a view to proving that result, we first give a structural characterization of acyclic edge colored

complete graphs.

Proposition 3.4. An acyclic edge-colored complete graph consists of a unique sequence of induced cliques

(called blocks) B1, . . . ,Bk such that:

i) each Bi is a maximal monochromatic clique in the subgraph induced by
⋃k

j=i Bj,

ii) all edges between each Bi and
⋃k

j=i+1 Bj are monochromatic in the same color as the edges of Bi.

Proof. For a complete graph, the induced subgraph obtained by deleting any vertex has exactly one

component, because it is again a complete graph with one fewer vertex. Thus for any such graph which is

acyclic, a yeo-vertex is necessarily a rainbow-yeo-vertex. In other words it is a monochromatic vertex (all

edges incident to it are of the same color). Thus if there is more than one yeo-vertex in the given graph,

then they are monochromatic in the same color, since they also have a direct edge between themselves

(as the graph is complete).

Thus, the entire set of yeo-vertices of an acyclic edge-colored complete graph induce a monochromatic

clique, and additionally, they are all connected to every other vertex in the graph by edges of this same

color.

Note that if we remove this entire clique of vertices, the resultant smaller graph is also an acyclic

edge-colored complete graph on fewer vertices.

7

Thus, it follows, that there exists a similar clique (of a color distinct from the one just removed) in

the remainder of the graph. We delete this clique and place the constituent vertices in a second group.

We repeat this procedure of collecting vertices in this type of groups and obtaining a smaller graph until

all the vertices have been removed. The partial order we use in finding a pst, is precisely the order

determined by these groupings.

We now state a theorem, which given an acyclic edge-colored complete graph, determines whether or

not it contains a pst. The decision is made on the basis of the cardinalities of the blocks B1, . . . ,Bk in

the ordering described in Proposition 3.4. To facilitate the description of our results we let the color of

the ith block be denoted ci. For any fixed i, 1 ≤ i ≤ k, we let ti denote the total number of vertices in

the set of blocks from Bi to Bk, i.e., ti = |V (Bi)|+ . . . + |V (Bk)|. We define Si = {Bj|i ≤ j ≤ k; cj = ci}.

Define Si

′

=
⋃

x ∈ Si. Now, we define tci

i =
∣

∣

∣
Si

′

∣

∣

∣

With the terminology above, we may state the following.

Theorem 3.5. An acyclic edge-colored complete graph has a pst if and only if :

i) The last block Bk has two vertices, and

ii) for each i < k, if block Bi has the same color as the last one Bk, then tci

i ≤ ti

2 + 2. Else tci

i ≤ ti

2 .

Proof. First assume that the given graph has a pst, and let T represent any such possible pst. Notice

that in the partial ordering of the vertices according to Proposition 3.4, the group of vertices in block Bi

are necessarily leaves in the subtree induced by the vertices of
⋃k

j=i Bj . Moreover, each of these vertices

are attached to distinct internal vertices of the subtree (since all edges incident to these vertices in the

subgraph induced by
⋃k

j=i Bj are of the same color). A necessary condition is, thus, that there is a proper

tree Ti spanning
⋃k

j=i Bj for each i ∈ {1, . . . , k}.

Thus, in order to add the vertices of Bi+1 as leaves to the subtree Ti, to construct Ti+1, there must

be at least |Bi+1| vertices not having any edge of color ci incident to them in Ti. However, all vertices, in

blocks i, . . . , k whose color is ci+1 necessarily use an edge of this color in the tree. Additionally, each of

them (except if they are in the last block Bk), are also appended to some other vertex in the tree Ti, with

color ci. The vertices of Bi+1 must therefore be attached as leaves to |Bi+1| distinct vertices different

from the vertices accounted for above. This proves the second condition of the theorem.

The first condition states that the last block Bk must be of size exactly two. From the earlier

arguments, these vertices must contain a proper tree spanning them. Since they induce a monochromatic

clique, it is possible only if there are exactly two vertices.

Conversely, if the conditions are on the cardinalities are satisfied, we show that a pst exists. We

construct a partial tree consisting of the edge between the two vertices of the last block Bk. Subsequently,

we consider in order the vertices of the blocks Bk−1, . . . ,B1 and at each stage, we pick a set of vertices of

size |Bi| in the partial tree Ti−1, which are free of the color ci and attach the vertices of Bi as leaves to

distinct vertices in this set, to augment the tree to Ti.

Now based on Theorem 3.5 we describe, an algorithm which computes a pst for any acyclic edge-

colored complete graph, if one exists. If one does not exist then the algorithm can easily be adapted to

8

produce a psf with the minimum possible number of components.

We now describe our algorithm to construct the pst.

Algorithm 1 pst for Kc
n-acyclic

1: compute the order described above
2: if last block Bk has more than two vertices then return “No pst”
3: if last block Bk has two vertices then connect the two vertices of Bk to get an initial Proper Tree
4: for i = k − 1 to 1 do
5: if condition 2 of Lemma 3.5 is true then
6: join the vertices of Bi as leaves, to distinct vertices already incorporated in the tree which have

not used an edge of color ci in the partial proper tree obtained in the previous iteration.
7: else
8: return ”no pst”
9: end if

10: end for
11: return the pst

The running time of the above algorithm is O(n2). This is the cost using Breadth-First-Search (BFS),

to compute the order in Step 1. The rest of the algorithm consists in finding for each new block of vertices,

a certain type of matching saturating them, which enables them to be attached as leaves of the partial

tree. If there is no pst, our algorithm finds a maximum size proper tree, and then repeats the procedure

on the subgraph induced by the residual vertices, resulting in an ssf with the fewest possible number of

trees.

We now show how Theorem 3.5 as well as the algorithm can be extended to find a pst in a general

acyclic graph, if one exists. We define a canonical auxiliary tree associated with any acyclic edge-colored

graph. It is similar to the linear order for acyclic edge-colored complete graphs. We assume that the

graph has no non-rainbow-yeo-vertex. The root of the auxiliary tree is any yeo-vertex of the graph. The

number of children of the root is the number of components resulting from the deletion of this vertex

from the graph. The root of the auxiliary tree is connected to each subtree using an edge of the same

color as the edge between the original yeo-vertex and the corresponding component. The root of the

subtrees are likewise computed recursively. Thus we get an auxiliary rooted edge-colored tree T .

First we need to define some associated auxiliary graphs, which we use to characterize acyclic edge-

colored graphs that have a pst.

Definition 3.6 (auxiliary tree). Given an acyclic edge-colored graph Gc, we define an associated auxiliary

tree T as follows.

i) n(T) = n(Gc).

ii) The root r(T) is associated with a yeo-vertex v0 of Gc.

iii) There is one subtree corresponding to each component Gc \ {v0}.

iv The roots of these subtrees are computed recursively and are attached as children of v0.

v) The color of the edge between two nodes of T is the same as the color of the edges between the

corresponding component and yeo-vertex in Gc.

vi) Note that the presence of an edge between two nodes in T does not imply the presence of an edge

between the corresponding vertices in Gc.

9

We now define a set of bipartite graphs one for each color in {1, . . . , c}.

Definition 3.7. Associated with each color l ∈ χc we have a bipartite graph as follows.

i)If a node in the auxiliary tree (of Definition 3.6) corresponding to a vertex has a child of color l then it

is placed in the left part of the bipartite graph corresponding to color l.

ii) Any other vertex with an edge of color l incident to it in the graph Gc is placed in the right part.

iii) The edges are all those in the original graph of the color l, crossing this partition.

Theorem 3.8. An acyclic edge-colored graph has a pst if and only if for each color in χc the corre-

sponding bipartite graph has a matching saturating the vertices of the left partite set.

Proof. By Lemma 3.3, if there exists a non-rainbow-yeo-vertex, then we immediately conclude that the

given graph has no pst. It follows that we need only consider the case where all the yeo-vertices are of

the rainbow type. Assume that v0 is one such vertex. Let the components of Gc \ {v0} be C1, . . . , Ct. It

is straightforward to verify that Gc has a pst if and only if the subgraph of Gc induced by the vertex set

V (Ci) ∪ {v0} has a pst for each i ∈ {1, . . . , t}.

We are in effect able to use a rainbow-yeo-vertex to divide the problem into smaller and independent

subproblems. This immediately suggests a recursive appproach to solving the problem. We use the

recursion tree of Definition 3.6 and the corresponding bipartite graphs of Definition 3.7 to divide the

problem.

In fact, if any Ci does not have a pst then Gc also does not have a pst. We conclude that Gc has a

pst if and only if each Ci has a pst which can be extended to include the vertex v0. The connection of

component Ci to v0 must be by an edge of color i. The feasibility of this is checked using cardinalities, like

in the case of complete acyclic graphs. We do not have a simple linear structure here, unlike in that case,

and hence check the condidions using matching in the auxiliary bipartite graph instead. The existence

and computation of the matching can be done using any of the standard algorithms. The subtrees rooted

at the children of v0 are computed recursively in the same way.

Thus, using the recursion tree obtained, we construct the bipartite graphs described above and then

solve the pst problem by transforming it to a series of matching problems.

Suppose the graph Gc does not have a pst. This either means that there is no rainbow yeo-vertex,

or the cardinality conditions fail.

In the former case, let us denote the components of Gc \ v0, by C1, . . . , Ct. We find the maximum

proper trees for each Ci. We also compute the maximum proper trees for each Gi ∪ v0, which use touch

vertex v0. From the latter set of trees, we pick the ones of largest cardinality corresponding to distinct

colors of the edge incident to v0 and take their union. A maximum proper tree is the largest among the

first set of trees and the tree obtained by combining the second set as described above.

The second case is merely a special case of the previous one, wherein, when we compute the tree

combining the second sequence, we consider all the components.

The next theorem follows easily from the preceeding analysis and results.

Theorem 3.9. Given an acyclic edge-colored graph Gc, a pst, if any, can be found in Gc in time O(n2.5).

10

Proof. This cost is dominated by the time to compute matchings in graphs bipartite graphs, which we

use in the algorithm for pst.

3.2 wst

We now show how to construct a wst, if one exists, in an acyclic edge-colored graph Gc, with a given

root vertex r. Like we did for the case of the pst, we define here as well, an associated auxiliary tree.

Definition 3.10 (auxiliary tree). Given an acyclic edge-colored graph Gc, and a specified vertex r, we

define an associated auxiliary tree T ′ as follows.

i) The tree T is computed according to the Definition 3.6.

ii) The tree T ′ is then obtained by re-rooting T at the node R, corresponding to the vertex r in Gc.

Theorem 3.11. An acyclic edge-colored graph Gc, has a wst if and only if in the auxiliary tree T ′ every

path from the root R to any leaf is properly colored.

Proof. The above auxiliary tree T ′, obtained by re-rooting at the vertex corresponding to the specified

root of the wst provides a direct way to compute a wst if one exists. A wst rooted at r is computed

for each subgraph induced by {r} ∪ Ci, i ∈ {1, . . . , t}. Here, C1, . . . , Ct are the components of Gc \ {r}.

These trees are then merely fused together at their only common vertex r, to get a wst. Such a tree is

a weak one rooted at r, because in the auxiliary tree any path from R to any leaf is a properly colored

one.

Theorem 3.12. Given an acyclic edge-colored graph Gc, a wst, if any, can be found in Gc in time

O(n2.5).

Proof. It is almost identical to the proof of Theorem 3.9.

4 Proper spanning forests in acyclic graphs

In this section, we show how to find in polynomial time, a maximum proper spanning forest (mpsf) in

Gc, the maximality being in terms of the number of edges. If the graph has a pst, then naturally, one

is produced by our algorithm for maximum forest. This section differs from the previous one, for graphs

which do not contain a pst. In the previous section, the algorithm we describe produces a largest possible

tree, whereas, here the algorithm produces a forest with, possibly, many trees, in such a way that the

total number of edges is maximized. We conclude the section by showing how to decide, in polynomial

time, whether Gc contains a proper spanning forest (psf), satisfying given degree constraints on each

vertex. We also show how to construct the forest if one exists in this latter case.

Basically, for the mpsf problem, the idea is to construct a new colored multigraph Gc′ , with color set

χc′ = χc ∪ {0} (where 0 is a new color) and an associated non-colored weighted graph G, which always

contains a perfect matching. The multigraph Gc′ , has multiplicity at most two. Moreover, the color

of two edges between the same pair of vertices always differ. If there are two edges between a pair of

vertices, then one of them is always colored 0. We prove that a maximum weight perfect matching in

11

Figure 2: Redution 3-SAT α wst problem. Example using B = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x4)

G, whose construction is described below, is associated with a set of properly edge-colored closed trails

in Gc′ , such that the number of edges with a color from χc is maximized. As a result, deleting all edges

colored 0 in this set, directly produces a maximum proper spanning forest in Gc.

Gc′ is constructed by taking the union of Gc with a complete monochromatic graph (in color 0) on the

same vertex set. Let K0
n denote the resulting monochromatic complete subgraph of Gc′ with the edges

of color 0. Thus, we have V (Gc′) = V (Gc) = V (K0
n) and E(Gc′) = E(Gc) ∪ E(K0

n).

Before we describe the construction of G, we first define gadgets Gi associated with each vertex vi of

Gc, as depicted in the sequel (see Figure 2). We use these gadgets in our construction of G. Formally:

• V (Gi) = (
⋃

γ∈χ
c′
{vi,γ , v′i,γ : Nγ

Gc′
(vi) 6= ∅}) ∪ (

⋃

α,β∈χ
c′
{pi

α,β, qi
α,β : α < β, Nα

Gc′
(vi) 6= ∅ and

Nβ

Gc′
(vi) 6= ∅})

• E(Gi) = (
⋃

γ∈χ
c′
{vi,γv′i,γ : Nγ

Gc′
(vi) 6= ∅}) ∪ (

⋃

α,β∈χ
c′
{v′i,αpi

α,β, pi
α,βqi

α,β,

qi
α,βv′i,β : α < β})

Now, the weighted non-colored graph G = (V ′, E′) with w : E′ → {0, 1} is constructed as follows:

• V ′ =
⋃

vi∈V (Gc′) V (Gi), and

• E′ = (
⋃

vi∈V (Gc′) E(Gi)) ∪ (
⋃

γ∈χ
c′
{vi,γvj,γ : vivj ∈ Eγ(Gc′)})

• w(vi,γvj,γ) = 1, for every vi,γvj,γ ∈ E′ with γ ∈ χc. The remaining edge weights of E′ will be

settled to 0, i.e., w(vi,0vj,0) = 0 for every vi,0vj,0 ∈ E′ and w(xy) = 0, for every xy ∈ E(Gi).

After constructing Gc′ and G as above, we solve the maximum perfect matching problem over G

(see [9]). Observe that graph G always contains a perfect matching. To see that, it suffices to exhibit a

perfect matching (with weight 0) by only choosing edges of E(Gi). Thus, if Mi denotes a perfect matching

in Gi (which is unique in this case), the subset M =
⋃

vi∈V (Gc′) Mi obviously defines a perfect matching

in G. Therefore, we can establish the following result:

12

Theorem 4.1. Let Gc be an acyclic c-edge-colored graph. Then, the maximum proper spanning forest

problem can be solved in time O(n7.5).

Proof. Basically, the idea is to prove that maximum proper spanning forests in Gc are associated with

maximum perfect matchings in G, and vice-versa. Initially, suppose we have a proper spanning forest T ∗

in Gc with the maximum number of edges. Let T ∗

1 , T ∗

2 , . . . , T ∗

k (for k ≥ 1) be the subtrees of T ∗. Note

that, for every subtree T ∗

i of T ∗, the number of vertices of T ∗

i with odd degree is even. As a consequence

of that, the total number of vertices with odd degrees in T ∗ is also even. Let PT∗ be this subset of

vertices. Now, consider the multigraph Gc′ as above, obtained after the addition of edges with color 0 to

Gc. Further, consider H0 (with all edges colored 0) the complete subgraph of Gc′ induced by the vertices

of PT∗ . Let M0 ⊆ E(H0) be an arbitrary perfect matching of H0 and Hc′ = (V , E) with V = V (Gc′)

and E = M0 ∪ E(T ∗), the associated subgraph. Note that subgraph Hc′ is not necessarily connected

and all edges incident to v ∈ V have a different color. Further, notice that all vertices of Hc′ have an

even degree and each connected component, say CTi (for 1 ≤ i ≤ k′ and k′ ≤ k), contains a properly

edge-colored closed trail, i.e., each CTi defines an eulerian trail.

Now, given E, we construct a perfect matching M∗ in G = (V ′, E′) as described in the sequel.

Initially, we set M∗ = ∅ and add to M∗ all edges vi,0vj,0 of E′ with vivj ∈ M0. Now, we increase M∗ by

choosing all edges vi,γvj,γ of E′ with vivj ∈ Eγ(T ∗) and γ ∈ χc. The remaining edges in the gadgets Gi

(with weight 0) are now directly obtained. Note that c(M∗) = |E(T ∗)|. Finally, we prove that M∗ is a

maximum perfect matching in G. Suppose, by contradiction, we have some new perfect matching M ′ with

weight c(M ′) > c(M∗) and an associated proper edge-colored subgraph H ′ of Gc with c(H ′) > |E(T ∗)|.

In this case, there are two possibilities: a) If H ′ defines a new proper spanning forest, this contradicts

the fact that T ∗ is a maximum proper forest in Gc; b) If H ′ does not define a proper spanning forest, we

would have some properly edge-colored cycle in H ′, contradicting the fact that Gc is acyclic.

Conversely, consider the weighted graph G = (V ′, E′) associated to Gc as above, and M∗ a maximum

perfect matching with weight c(M∗) in G. Let M = (E′ \ E(Gi)) ∩ M∗ be a subset of M∗. Now, to

obtain Gc′ from G it suffices to color edges vi,γvj,γ of G with γ ∈ χc′ and contract all gadgets Gi to

vertex vi. Note that all edges of Gc′ associated to M define a subset of proper spanning closed trails in

Gc (denoted by CT1, . . . , CTk′) with the maximum number of edges with colors in χc. Hence, since Gc

is acyclic, all properly edge-colored cycles in CTi (for i ∈ {1, . . . , k′}) contain at least one edge-colored

0. After deleting all these edges, one directly obtains a proper spanning forest T ∗ =
⋃k

ℓ=1 Tℓ in Gc with

weight c(T ∗) = c(M∗) and k ≥ k′. Finally, note that T ∗ contains a maximum number of edges since no

edges with unitary weights in G were eliminated in the process.

Now, we show that the algorithm above has a polynomial time complexity in the order of Gc. Initially,

observe that each gadget Gi of G (with c ≥ 2) contains at most c(c + 1) vertices. From Lemma 3.2, we

know that c = O(n). Thus, the non-colored graph G contains Θ(n3) vertices, in the worst-case. However,

note that a maximum perfect matching in any graph G can be obtained in time O(|V (G)|2.5) (see [9] for

details). Therefore, the algorithm for the proper spanning forest has total complexity equal to O(n7.5).

Now, we conclude with the following result regarding proper spanning forests with given degrees.

13

Theorem 4.2. Let Gc be a c-edge-colored acyclic graph and d : V (Gc) → {0, 1, . . . , n − 1}, an integer

function. In addition, consider 0 ≤ d(vi) ≤ |{γ ∈ χc : Nγ
Gc(vi) 6= ∅}|. Then we can find in polynomial

time, provided that one exists, a proper spanning forest in Gc satisfying d.

Proof. Initially, given an acyclic edge-colored graph Gc, we construct a non-colored graph G, as described

in the sequel. For each vi ∈ V (Gc) with d(vi) > 0 we define gadgets Gi in the following manner:

• V (Gi) = (
⋃

γ∈χc
{vi,γ , v′i,γ : Nγ

Gc(vi) 6= ∅}) ∪ {vi
1, . . . , v

i
d(vi)

}

• E(Gi) = (
⋃

γ∈χc
{vi,γv′i,γ : Nγ

Gc(vi) 6= ∅}) ∪ (
⋃

γ∈χc
{v′i,γvi

j : j = 1, . . . , d(vi)}

Above, if d(vi) = 0 for some vi ∈ V (Gc), we just set V (Gi) = (
⋃

γ∈χc
{vi,γ , v′i,γ : Nγ

Gc(vi) 6= ∅}) and

E(Gi) = (
⋃

γ∈χc
{vi,γv′i,γ : Nγ

Gc(vi) 6= ∅}).

Now, a non-colored graph G = (V ′, E′) is constructed as follows:

• V ′ =
⋃

vi∈V (Gc) V (Gi), and

• E′ = (
⋃

vi∈V (Gc) E(Gi)) ∪ (
⋃

γ∈χc
{vi,γvj,γ : vivj ∈ Eγ(Gc))

We show that Gc contains a proper spanning forest T satisfying the degree constraint d, if and only if,

G = (V ′, E′) contains a perfect matching. Hence, our result follows since the perfect matching problem

can be solved polynomial time.

Initially, consider M∗, a perfect matching in G, if any. In this case, we can obtain a proper spanning

forest Hc′ in Gc (for c′ ≤ c) in the following manner. Initially, let M = (E′ \ E(Gi)) ∩ M∗ be a subset

of M∗. Now, we color all edges vi,γvj,γ ∈ E′ with color γ ∈ χc and contract all gadgets Gi to vertex vi.

Finally, we construct Hc′ by choosing all edges of Gc associated to M . Notice by the construction of Gi,

that we have exactly d(vi) > 0 edges incident to vi in the resulting edge-colored subgraph Hc′ . Further,

all edges incident to vi have a different color and vi is isolated if d(vi) = 0. Therefore, since Gc is an

acyclic edge-colored graph, the subgraph Hc′ contains no properly colored cycles and defines a proper

spanning forest in Gc satisfying d.

Conversely, consider Hc′ a proper spanning forest in Gc, and the graph G as above. Initially, set

M∗ = Ø in G. Now, we obtain the associated matching M∗ in two steps:

(1) For every edge vivj ∈ Eγ(Hc′) with γ ∈ χc we add edges vi,γvj,γ to M∗;

(2) The remaining edges of M∗ present in the gadgets Gi are now directly obtained.

It is easy to see that M∗ constructed as above defines a perfect matching in G.

5 Proper trees in edge-colored complete graphs

Recall that the wst problem is trivial for complete graphs, since such a graph always has a star rooted

at any vertex, constituting a wst. As for the pst problem on edge-colored complete graphs, the NP-

completeness proved in Section 2 for general edge-colored graphs, holds here as well. In this section, we

14

prove this hardness result. We provide a nice graph-theoretic characterization for edge-colored complete

graphs Kc
n which have proper spanning trees. However, in view of the afore-mentioned hardness result, the

conditions implied by this characterization have only mathematical interest, so they cannot be computed

in polynomial time.

Recall that when we restrict the focus to acyclic edge-colored complete graphs, the problem becomes

tractable, as proved in Section 3. Also, the problem is polynomial for Kc
n, c = 2. This latter case, is the

same as the proper hamiltonian path problem, which is known to be efficiently solvable [5].

Theorem 5.1. The pst is NP-complete for complete graphs Kc
n, colored with c ≥ 3 colors.

Proof. Let Gc be an instance of the pst problem with n nodes and c ≥ 2 colors. Construct a new colored

complete graph Kc+1
2n on 2n vertices and (c+1)-colors, as follows. Add all edges in the complement graph

Gc using a new color, and retain the edges of Gc with their original color. Also, use the extra color to

form a complete graph on a new set of n vertices as well as a complete bipartite graph between the old

vertices and new vertices.

Observe, that all the new vertices, being monochromatic, are necessarily leaves in any pst. Addition-

ally, no two of them may be adjacent to the same vertex, since all edges incident to the entire set of new

vertices are of the same color. Thus, it is necessary for the original graph Gc to have a pst. It is also a

sufficient condition, since a pst of Gc does not use any edges of the new color, and hence the set of new

vertices can be attached as leaves to such a tree to get a pst of Kc+1
2n .

Since the pst problem is NP-complete for arbitrary graphs colored with two or more colors, it is also

NP-complete for complete graphs colored with three or more colors.

The following two lemmas both of algorithmic nature, are simple but of fundamental importance.

These lemmas, proved by some authors of this paper, were first announced in [1], but for the sake of

completeness, we include their proofs here. By repeated application of the second lemma inductively, we

obtain a theorem which provides an interesting mathematical characterization of complete graphs with

a pst.

Lemma 5.2. Let T be a proper tree and C be a properly edge-colored cycle, such that T and C are

vertex-disjoint in Kc
n. Assume that for some edge e = xy of T , c(x, C) = c(e) and for some vertex

z ∈ C, c(yz) = c(e). Then Kc
n admits a proper tree with vertex set V (T) ∪ V (C).

Proof. Set C : x1x2 · · ·xi(= z) · · ·xk−1xkx1. Let T1 (resp. T2) denote the subtree of T − e with root x

(resp. y). Assume first that either c(xi−1xi) = c(e) or c(xixi+1) = c(e), say c(xixi+1) = c(e). Then the

tree T1 ∪ [xxi+1xi+2 · · ·xiy] ∪ T2 is a proper one. Assume next c(xi−1xi) 6= c(e) and c(xixi+1) 6= c(e).

Let xrxr+1 be an edge on C (not incident to xi) such that c(xrxr+1) 6= c(e). Clearly such an edge exists,

since C is proper. Consider first the proper tree T1 ∪ [xxr+1xr · · ·xixi−i · · ·xr+2]. Now join T2 to this

tree by using the edge xiy. The resulting proper tree is the required one.

Lemma 5.3. Assume that the vertices of Kc
n are covered by a proper tree T and a properly edge-colored

cycle C, such that T and C are pairwise vertex-disjoint in Kc
n. Then Kc

n admits a proper spanning tree.

15

Proof. Set C : x1x2 · · ·xi · · ·xk−1xkx1 within a clockwise orientation. Let t1, tp be two leaves of T , and

let t1t2 · · · tp−1tp denote the (unique) path from t1 to tp on that tree. To facilitate discussions let us

set ei = titi+1, i = 1, 2, · · · , p − 1. Observe first that c(t1C) = c(e1), for otherwise if for some vertex

xi of C, c(t1xi) 6= c(e1), then obviously we may join T to C through the edge t1xi and going around

the cycle C clockwise or anticlockwise depending on whether c(t1xi) 6= c(xixi−1) or c(t1xi) 6= c(xixi−1),

respectively (all indices are considered modulo k). It follows that c(t1C) = c(e1), thus by Lemma 5.2,

applied on e1, for any vertex xi of C, c(xit2) 6= c(e1), for otherwise we are finished. Note here, that if

d(t2) ≥ 3, then, a similar argument can be applied starting from all leaves reachable from t2, not using

the edge t2t3. In other words, all edges between C and t2 are on a same color different from the color

of the edge e1, and the colors of all other edges incident to t1, except e2. Thus, we will prove, in fact,

that c(t2, C) = c(e2). Assume by contradiction that c(t2, C) 6= c(e2). Let xixi+1 be an edge of C such

that c(xixi+1) 6= c(t2xi). Clearly such an edge exists since C is properly edge-colored. But then, the

tree T together with the segment [t2xixi+1 · · ·xi−1] define a proper spanning tree in Gc. Consequently

assume that c(t2C) = c(e2). Now by replacing edge ei by ei+1 and applying all above arguments we may

conclude that all edges between tk and C are on a same color and c(tkC) 6= c(tk−1tk). At this final step,

it suffices to join apropriately T and C by using any arbitrary edge between tk and C.

Theorem 5.4. Kc
n has a proper spanning forest with at most p trees, if and only if its vertices are covered

by p ≥ 1 proper trees T1, . . . , Tp and a set of k ≥ 1 properly edge-colored cycles, say C1, C2 · · · , Ck all

these components being pairwise vertex-disjoint in Kc
n.

Proof. By Induction on k. Case k = 1, is solved by Lemma 5.3, since the cycle can be merged with

any tree Ti to get a new tree T ′

i and the number of cycles in the decomposition now becomes k − 1. By

induction, C1, C2 · · · , Ck−1 and T may be merged successively with any tree in the collection, the number

of trees always being p, so that eventually we have a proper spanning forest with exactly p trees.

Unfortunately, as a consequence of the NP-completeness result for pst in complete graphs, it follows

that we are unlikely to be able to find an algorithm to compute the tree-cycle factor inpolynomial time.

There is still, however, scope to develop approximation algorithms. However we are able to obtain the

following.

Corollary 5.5. There is a polynomial algorithm for finding in Kc
n a proper tree of order min(n, M +2),

where M denotes the order of a maximum proper cycle-factor F of Kc
n.

Proof. It is well known that finding a maximum proper cycle-factor in an edge-colored graph is polynomial

(see [4]). If F is perfect or almost perfect (it spans n−1 vertices), then by previous theorem we may find

a proper spanning tree in Kc
n. On the other hand, if F spans less than n − 2 vertices, then consider an

edge in Kc
n − F and then apply again previous theorem.

Theorem 5.6. Kc
n has a pst if and only if its vertices are covered by a proper tree T and a set of properly

edge-colored cycles, say C1, C2 · · · , Ck all these components being pairwise vertex-disjoint in Kc
n.

Proof. This is a straightforward consequece of the previous theorem.

16

6 Random graphs

Let c ≥ 3 be a fixed integer and let G(n, p) be the random graph on n vertices where each edge is present

with independent probability p. We define Gc(n, p) as the edge union of c independent copies of G(n, p
c
)

where for each j ∈ {1, . . . , c}, the edges of the jth copy are colored by j.

Theorem 6.1. If p = λ log n
n

, where λ is a sufficiently large constant, then with probability tending to 1

as n tends to infinity, Gc(n, p) contains a proper spanning tree.

Proof. Set G = Gc(n, p). Let c0 be a fixed color. We describe an algorithm to prospectively construct

a proper spanning tree in our graph and prove that it works with probability close to 1. The algorithm

proceeds in two stages.

(1) Construct a sequence of proper trees T0, T1, T2, ...Tt. Here, T0 is a star with an arbitrary root and

with ν edges with colors pairwise distinct and different from c0. We define t and ν later. For each

i ∈ {1, . . . , t}, Ti is obtained from Ti−1 by expanding a pendant vertex with edges of all the colours

distinct from c0, and also distinct from the color of the edge incident to this vertex in Ti−1.

(2) From Tt obtain a proper spanning tree by adding a pairing of the internal vertices of Tt other than

the root with the remaining vertices of G using edges of color c0.

This concludes the description of the algorithm.

Note that Tt has a total of t(c−2)+ν+1 vertices among which exactly t are internal vertices, distinct

from the root. We want to match these t vertices with the remaining vertices of G, that is, we want

t = n − t(c − 2) − ν − 1

or, t =
n − ν − 1

c − 1
,

and this will be an integer for precisely one value of ν with 1 ≤ ν ≤ c − 1. We fix this value for ν.

To prove the correctness of the first stage of the algorithm it suffices to prove that at each point in

the construction we can find with probability 1− o(1/n) an edge with any particular fixed colour linking

a point v, say, already in the current tree and the external set which has size at least t. Now, when we

look for such an edge of colour j, say, we have not looked previously at the edges of colour j linking v to

the remaining vertices. Hence, the conditional distribution of these edges given the previous steps of the

algorithm is the same as their unconditional distribution, namely, each is present with probability λ log n
cn

and they are independent. Therefore the probability that at least one is present is at least

1 − (1 −
λ log n

cn
)t ≥ 1 − exp(−

λ log n

c(c − 1)
)

= 1 − o(1/n)

if λ ≥ c2.

We turn now to the second stage. Since we have not looked yet at the edges of colour c0, we just have

to check that with high probability, there exists in a random graph with edge probability p, a pairing

between two given disjoint sets with sizes t. This amounts to asking for a perfect matching in the random

17

bipartite graph B(t, p). Now p = λ log n
cn

≥ θ log n
t

with θ = 2λ
3c(c−1) . This graph is known to have, almost

surely, a perfect matching for any fixed θ greater than 1/2 and thus for λ ≥ c(c − 1)/2 (see Corollary

13, page 159 in [6]). Putting together this estimate with the bound already found, we infer that the

theorem holds for λ ≥ c2. On the other direction, the theorem does not hold for λ ≤ c by connectivity

considerations.

7 Conclusions

In this paper we recapitulate the notion of various types of colored trees in edge-colored graphs. We obtain

results reflecting the computational difficulties involved in their solution and provide efficient algorithms

for the specific family of acyclic graphs. We give a mathematical characterization of complete graphs

which contain a pst. We study the trends of random graphs with reference to the problem of pst.

We list here some possible future directions for research in this area.

(1) Algorithms to solve the pst and wst problems on other special classes of graphs like planar graphs

or hypercubes.

(2) We conjecture the existence of approximation algorithms with performance guarantee of at least

logarithm of the optimal solution.

(3) Given an edge-colored (complete) graph, determine the minimum number of edges whose colors

need to be changed in order to render the graph acyclic. This problem resembles the feedback arc

set problem on digraphs.

8 Acknologements

We thank the CNPq/Brazil and the French Ministry of Education for their financial support.

References

[1] A. Abouelaoualim, Exploration des graphs aretes-colorees: topologie, algorithmes, complixite et

(non)-approximabilite, Ph.D. Thesis, Universite Paris Sud, 2007.

[2] A. Abouelaoualim, K. Ch. Das, L. Faria, Y. Manoussakis, C. Martinhon, R. Saad, Paths and trails

in edge-colored graphs,Theoretical Computer Science, 409, 2008, 497-510.

[3] N. Alon, R. A. Brualdi, B. L. Shader, Multicolored forests in bipartite decompositions of graphs,

Journal of Combinatorial Theory, Series B, 53, 1991, 143-148.

[4] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, 2002.

[5] A. Benkouar, Y. Manoussakis, V. T. Paschos, R. Saad, On the complexity of some hamiltonian

and eurelian problems in edge-colored complete graphs RAIRO - Operations Research, 30, 1996,

417-438.

18

[6] Bollobás, Random graphs, Academic Press, 1985

[7] R. A. Brualdi, S. Hollingsworth, Multicolored trees in complete graphs, Journal of Combinatorial

Theory, Series B, 68, 1996, 310-313.

[8] R. A. Brualdi, S. Hollingsworth, Multicolored trees in complete bipartite graphs, Discrete Mathe-

matics, 240, 2001, 239-245.

[9] S. Even, O. Kariv, An (O(n2.5) algorithm for maximum matching in general graphs, Proceeding of

the 16th Annual Symposium on Foundations of Computer Science, Berkeley, CA, IEEE Computer

Society Press, New York, 1975, 100-112.

[10] H.N. Gabow, Z. Galil, S. Micali, An O(EV logV) Algorithm for Finding a Maximal Weighted Match-

ing in General Graphs, Network Models,SIAM Journal on Computing, 15(1), 1986, 120-130.

[11] M. R. Garey David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, 1979.

[12] J. Grossman and R. Häggkvist, Properly Edge Colored Cycles in Edge-Partioned Graphs, Journal

of Combinatorial Theory, Series B, 34, 1983, 77-81.

[13] J. Hästad, Some optimal inapproximability results, Proceedings of the 28th Annual ACM Symposium

on Theory of Computing, El Paso, Texas, 1997, 1-10.

[14] M. Kano, X. Li, Monochromatic and Heterochromatic Subgraphs in Edge-Colored Graphs - A

Survey, Graphs and Combinatorics, 24(4), Springer-Verlag, 2008, 237–263.

[15] Y. Manoussakis, Alternating paths in edge-colored complete graphs, Discrete Applied Mathematics,

56, 1995, 297-309.

[16] R. Saad, Finding a longest properly edge-colored hamiltonian cycle in an edge colored complete

graph is not hard, Combinatorics, Probability and Computing, 5, 1996, 297-306.

[17] K. Suziki, A Necessary and Sufficient Condition for the Existence of a Heterochromatic Spanning

Tree in a Graph, Graphs and Combinatorics, Springer-Verlag, 22, 2006, 261-269.

[18] A. Yeo, A Note on Alternating Cycles in Edge-colored Graphs, Journal of Combinatorial Theory,

Series B, 69, 1997, 222-225.

19

