Optimizing DSP and media benchmarks for Pentium 4:
har dwar e and softwar e issues

Daniel Etiemble

Department of Electrical and Computer Engineering
University of Toronto

ABSTRACT

By examining the speed-up resulting from using SMD
instructions for DSP kernels (FFT) and two different
multimedia programs (MPEG2 and a Matching Pursuit video
codec), we discuss the hardware and software issues that limit
performance. Some features in present implementation of Intel
SMD instructions limit the efficiency of dot products. C
programmer’s habits also complicate the compiler tasks or in-
lining of assembly code in many DSP and multimedia
applications.

1. INTRODUCTION

SIMD instructions have been introduced in 1995 in
general purpose microprocessors to improve the

performance of multimedia applications. Intel has
successively introduced MMX [1], SSE [2] and SSE2 [3].
The impact of SIMD instructions on DSP or multimedia
kernels has been widely covered [4]. Intel has published
many application notes [5] for FIR/IIR, FFT, DCT/IDCT,
motion estimation, RGB Alpha Saturation, etc. But very
few results have been published on the speed-up for the
overall applications that result from using SIMD
instructions, either automatically by the compiler, or by
in-lining assembly code. In this paper, we consider the
optimization issues of significant DSP kernels (FFT) and
multimedia programs (MPEG2 and a Matching Pursuit
Experimental Video CODEC) on a Pentium 4. These
benchmarks either use integer data or simple precision
floating point numbers

After this introduction, the second section presents the
methodology and the overall results. The third section
details the optimization of the FFT. The fourth section
examines the optimization issues in the MPEG2 decoder,
which is representative of the “integer” case. The fifth
section examines some specificities of the floating point
dot product. The last section concludes our findings.

2.METHODOLOGY AND OVERALL RESULTS

2.1 Benchmarks

The benchmarks that have been used are:

The SP complex FFT benchmark comes from
Embree's book [5]. It has different lengths: 64, 256 and
1024 points and don’t use the bit reversal step.

The encoder and the decoder for MPEG2 from the
Software Simulation Group [7] mainly uses integer
formats. For the test, we have used 15 yuv frames of three
different sequences: Coast Guard, Paris and Paris QCIF.
The last two sequences come from the Research Group of
PictureTel Corporation [8]. The chroma format is 4:2:0.
Only 15 frames have been used as they are sufficient to
exercise the different components of the encoder. These
frames fit in the Disk cache of the Pentium 4, which
means that successive run is executed with data in
memory.

The experimental matching pursuit video codec
provided by the Video and Image Processing Laboratory
of University of California at Berkeley [9] uses simple
precision floating point data. The program has been
tested with three sequences of frames: contl0.bit,
hall10.bit and mom10.hit.

FFT and MPEG2 benchmarks are representative and
widely used. The Berkeley MP codec is less known, but
raises some interesting issues for vectorization. Together,
they illustrate most of the hardware and software issues
for an efficient use of SIMD instructions.

2.2 Measurements

All the measurements have been done on a 1.4 GHz
Pentium 4 PC with 512MB memory running Windows
2000. We have used the Intel C++ 6.0 beta compiler
through Microsoft Visual C++ environment with the
“maximize speed” and QxW option. The QxW option
generates specialized code for the Pentium 4. Each tested
program has been measured at least 10 times and we have
taken the averaged value. All the measures have been
done with only one running application (Visual C++).
The execution time has been measured with the RDTSC
(read-time stamp counter) instruction available with 1A32
[10]. The results are provided either as execution time

(sec) or as speed-ups (old_execution time/new_execution
time).
2.3 Overall results

Table 1 presents the overall results. The speed-up is
significant for large complex FFTs (1.49 for 256 points,
1.66 for 1024 points). It ranges from 1.17 to 1.28 for the
MPEG2 encoder and decoder. It is less than 1.12 for the
Berkeley MP encoder (the decoder cannot be optimized).
In the next sections, we briefly explain what is needed to
get these results and why better results are not obtained.

void fft_c(int n, float x_r[], float x_i[], float w_r[], float w_i[])
{register float t_r,t _i;
inti,j,lewindex, k;
windex = 1;k=0;
for(le=n/2 ; le > 0 ; le/=2,k++) {
for(i=0;i<n;i=i+2*le{
for(=0;j<le;j++){
tr=x_r[i+j]-x_r[i+j+l€];
ti=x_i[i+]-x_i[i+j+l€];
X_1[i+H]=x_r[i+]+x_r[i+j+€];
X_i[i+]=x_i[i+]+x_i[i+j+l€];
x_r[i+j+el=t_r*w_r[(n/2)*k+]-t_i*w_i[(n/2)*k+];
x_i[i+jHel=t_r*w_i[(n/2)*k+j]+t_i*w_r[(n/2)*k+];}}
windex = 2*windex }}

BENCH. INPUT ORIG. OPT. SU
FFT 64 6,500 c 5,700 c 1.15
FFT 256 29,800 c 20,000 ¢ 1.49
FFT 1024 153,900 ¢ 92,700 ¢ 1.66

MPEG-E CG 244s 193s 1.26

Paris 195s 161s 121

Paris qcif 0.54 s 0.46 s 1.17

MPEG-D CG 277.1ms 216.5ms 1.28
Paris 272.8 ms 212.8 ms 1.28

Paris qcif 104.3 ms 87.2ms 1.19

MP- E Cont10 594 s 556 s 1.07
Hall10 6.78 s 6.30s 1.08

Mom10 2.81ls 250s 112

Table 1: Execution times (clock cycles, msor s) for
original and optimized version with speed-up

3.OPTIMIZATION OF THE FFT

In the origina version of the complex FFT [6],. three
features prevent its vectorization by the compiler. First, it
uses pointer to access arrays, according to the common
mistake that believes that the compiler will aways
generate better target code [11]. Second, complex
numbers are defined as a structure. Third, inner loops are
non-unit stride. To alow vectorization, we have
converted pointer to array accesses and replaced any
occurrence of complex structures by two separated arrays
of real and imaginary parts. It is more challenging to get
unit-stride for the inner loop. Middle and inner loops
must be interchanged and the coefficient array must be
pre-computed in such a way that accesses to the
coefficient are also unit-stride, as shown in the fina
simplified version of the vectorized code (Figure 1). In
the complete version, the vectorization is prevented for
the last two iterations of the outer loop (le=2 and le=1).
For the FFT, the first obstacle to the efficient use of
the SIMD instructions is the DSP programmer’ s habits to
use pointers to access arrays and structure to define
complex numbers. Then restructuring code to get inner
loops with unit-stride is a classical vectorization issue.

Figure 1:Vectorized code for the FFT

4. MPEG2 CODEC

MPEG2 encoder and decoder programs raise issues that
are characteristic of integer multimedia programs. In the
encoder, one function (the motion estimation called dist1)
consumes more than 50% of the execution time. It
basically computes the sum of absolute values of the
difference between two array of 16 bytes (chars). The
function is so important that a specific SIMD instruction
has been defined in the IA32 ISA, PSADBW, to compute
the sum of absolute differences between 8 (resp. 16)
successive unsigned bytes in the Pentium Il (resp.
Pentium 4) and to deliver an unsigned integer word (resp.
two successive integer words). Using intrinsics to in-line
SIMD instructions, the speed-up for the critical part of
the dist function is 3 for the frames that we have used.
One problem remains with this optimized version. The
arrays of unsigned bytes are accessed by pointers and
there is no way to insure that these pointers are aligned
on 16-byte boundaries. Unaligned 16-byte transfers are
far less efficient than aligned ones. We will be faced
again to this problem with the post-filter functions of the
Matching Pursuit Codec.

The dist function is a very specific case. A most
common situation is illustrated by an extract of the code
of the dct_type estimation function in the encoder
(Figure 2). This function is not a critical one but it
outlines an intrinsic problem that prevents a direct use of
integer SIMD instructions. The second loop computes
several dot products of short integers. The results are 32-
bit integers. These integers are converted to double FP by
the next C line. Arithmetic operations on integer formats
always deliver results that don't fit into the source format.
With integer format, addition and multiplication of n-bit
operands provide respectively n+1 and 2n bits results.
Packed addition is possible when the final result allows
either wraparound or saturation. When the exact result is
needed, there is no possibility to use SIMD instruction as

the carry out of each sub-word islost. The normal version
of integer multiplication or division is not easy to
manipulate and is slower than the corresponding FP
version. On the other hand, addition, multiplication and
division of FP number always deliver a result with the
same number of bits as the source operands.

void dct_type_estimation(pred,cur,mbi)
unsigned char *pred,* cur;

{short blk0[128], blk1[128];

inti,j,i0, jO, k, offs, 0, s1, sq0, sql, s01;
doubled, r;

for (j=0; j<8; j++)

{ offs = width* ((j<<1)+j0) + i0;

for (i=0; i<16; i++)

{blkO[16*j+i] = cur[offg] - pred[offs];
blk1[16*j+i] = cur[offs+width] - pred[offs+width];
offs++;}}

0=s1=500=s01=501=0;

for (i=0; i<128; i++)

{s0+= bIkOQ[i];

sg0+= blkO[i]* bIkO[i];

sl+= blk1][i];

sgl+= blkd][i]*blk[i];

s01+= blkO[i]*blk[i];}

d = (sg0-(s0* s0)/128.0)* (sg1-(s1*s1)/128.0); ...}

integer length is generally unspecified. For using SIMD
instructions, it makes a huge difference if the integer is
16-bit or 32-bit long. Without an in-depth knowledge of
the program, it is not straightforward to determine the
exact range of each integer variable.

5.BERKELEY MATCHING PURSUIT CODEC

The Berkeley MP codec has also the motion estimation as
a critical function. Other critical functions are the post-
filter functions that operate on FP data. There are several
instances of the post-filter functions, each implementing
3 different instances of the dot products with different
array lengths. Figure 3 shows a simplified version of the
corresponding code (only one of the three middle loopsis
shown).

void postfiltn(//........)
{float *basis; *ppm,* ppm_end;
for(ppm=premult+bshift,y=0; y<sr; ppm+=ppm_yinc, ++y) {
for (ppm_end = ppm+((tmp3<sr) 2mp3:sr);
ppm < ppm_end; ++ppm, --tmp3){
norm = mpb->leftnorm[hbase][tmp3-1]* ynorm;
ip=0;
for (k=0; k<n; k++)
ip+= basigk]*ppm[K];.....}
// two similar “middle” loops}

Figure 2: Extract from function dct_type estimation

Each loop in Figure 2 iterates 128 times. In the second
loop, converting the short integers into float before
entering the loop alows the vectorization of the dot
products. With the “coast guard” sequence, the execution
time of the original version of the loop and the next C
line is 2060 cycles, while the modified version execution
time is 1060 cycles. The speedup is close to 2. This
should be balanced with the overhead of the conversion.
In that specific function, the arrays blk0[128], blk1[128]
are computed as the difference between arrays of chars.
The first loop can be dightly modified to store its results
into integers instead of shorts. A supplementary loop is
used to convert the two integer arrays into the float arrays
needed for the third loop. This conversion is realized by
the corresponding packed conversion instruction (4
conversions per instruction). The original version of the 2
loops use 3850 cycles while the optimized version with 3
loops use 2550 cycles (speedup = 1.51).

In many cases where arithmetic operations on
different formats of integers are involved, converting the
integers to floats benefits loop vectorization and
significantly reduces the execution time.

Another issue with integer multimedia programs is
that declaration of integer variables. Programmers will
generally distinguish between char and int, but the actua

Figure 3: Extract of the postfilter function

This extract of the code is sufficient to understand the
optimization issues. There are two important features.
First, the array lengths are small: 1, 3, 5, 7, 9, 11, 13, 15,
21, 23, 27, 29 and 35. Second, all the dot products are
inserted into middle loop that is controlled by a float
pointer (ppm), which is used to access one of the two
arrays of the dot products. As the middle loop increments
the pointer, it means that the access to ppm cannot be
aligned on a 16-byte boundary, which is a requirement for
an efficient use of 16-byte data transfer instructions.

There are two ways to “vectorize” the dot products.
Thefirst oneis equivalent to unroll 4 times the inner loop
as shown in Figure 4. The final dot product needs to sum
the four parts of an XMM register. As there is no MMX
instruction to sum the four parts of an XMM register, six
data-dependent instructions are needed to get the fina
sum in the XMM register and one more is needed for the
memory transfer. The second technique computes four
successive dot products simultaneously by unrolling four
times the middle loop (Figure 5). The overhead of the
final sum is suppressed. The alignment issue can aso be
suppressed.

Each “packed” iteration of the inner loop needs four
times basis[k] in a XMM register. At the beginning of the
function, the basis array is 4 times expanded and copied

in another data-aligned array. The other XMM register
must contain ppm[k] ppm[k+1], ppmk+2], ppm[k+3].
For the next iteration, the register is shifted left by 8 bytes
and the new ppm[k+3] is loaded by the scalar movss
instruction. Except for the initialization phase that needs
four scalar loads (and three shifts), all the subsequent
accesses to ppm only require one scalar load and one shift
per iteration. The final ppm iterations (when ppm % 4 =
0) are computed by using the first version. Although this
version is more efficient than the previous one, there is
still cost for generating the data-aligned duplicated basis
array and to initialy fill up the “ppm” XMM register.
Both versions have similar drawbacks: the unaligned 16-
byte access that comes from the pointer loop index and
the overheads make vectorization inefficient when the
array length is less than 23.

ip[0] = 0.0; ip[1] = 0.0; ip[2] = 0.0; ip[3] = 0.;

for (k=0; k<n/4; k+=4){
ip[0]+= basis[K]* ppm[K];
ip[1]+= basigk+1]* ppm[k+1];
ip[2]+= basis[k+2]* ppm[k+2];
ip[3]+= basis[k+3]* ppm[k+3]; }
ip=ip[O]+ip[1]+ip[2]+ip[3];

for(k<n;k++)
ip+= basik]* ppm[K]; //epilogue when n%4 !'= 0

Figure 4: Unroalling 4 timesthe inner loop

for(ppm_end=ppm-+((tmp3<sr)2mp3:sr); ppm<ppm_end-4;
ppm+=4, tmp3-=4){
ip[0] = 0; ip[1] = 0; ip[2] = 0; ip[3] =O;
for (k=0; k<n; k++){
ip[0]+= basis[k]* ppm[k];
ip[1]+= basigk]* ppm[k+1];
ip[2]+= basigk]* ppm[k+2];
ip[3]+= basigK]*ppm[k+3]; } ...}

Figure5: Unrolling four timesthe middle loop

6. CONCLUSION

SIMD instructions can provide a spectacular speedup on
some specific functions as the motion estimation of the
MPEG encoder. The impact of SIMD instructions is more
limited overall. The Amdahl law is a natural explanation
as only part of the code can be vectorized. However, there
are some issues to solve to improve the efficiency of
SIMD instructions for DSP and multimedia applications.
A limitation comes from the present implementation
of SIMD instructions in the Pentium 4. The most critical
issues are the poor performance of the unaligned 16-byte
move instructions and the lack of “horizontal” operations
such as the sum of the 4 32-bit words of a XMM register,

which makes the vectorization of the dot products
inefficient for small arrays.

Another issue is the nature of integer arithmetic
computations that prevent using SIMD instructions when
exact computation is needed. Converting integer data into
FP data can overcome the issue as SIMD instructions can
be employed.

One other limitation comes from the C programmer’s
habits. The systematic use of pointers and structure
prevents compiler vectorization. A precise choice of
integer formats would also help. As the present programs
have not been written considering the SIMD instructions,
the optimization is difficult. Considering the SIMD
instructions while writing the programs will significantly
improve their efficiencies.

7. REFERENCES

[1] Intel, “MMX technology architecture overview”. Intel
Technology Journal, September 1997

[2] Intel, “Streaming SIMD extensions’, Intel Technology
Journal, January 1999

[3] http:/devel oper.intel.com/sof tware/products/collegefia32/sse2/

[3] R.Bhargava, L.K. John, B. L. Evans, R.Radhakrishnan,
“Evauating MMX Technology Using DSP and Multimedia
Applications’, In Proc. of the IEEE Symposium on
Microarchitecture, pages 37-46, 1998.

[4] http://www.intel.com/software/products/itc/strmsimd/

[5] P.M. Embreg, “C Algorithms for Real-Time DSP’, Prentice-
Hall, ISBN 0-13-337353-3, 1995

[6] http://www.mpeg.org/M PEG/M SSG/#source

[7] http://standard.pictel.com/ftp/video-site/sequences/.

[8] Sen-Ching Sanson Cheung, Avideh Zahkor, “Matching
Pursuit Experimental Video Codec”, http://www-
video.eecs.berkel ey.edu/downl oad/mp.

[9] Intel, “Using the RDTSC Instruction for Performance
Monitoring”, Application Note, www.intel.com

[10] B. Frande and M. O'Brien, Compiler transformation of
pointers to explicit array accesses in DSP applications, in Proc.
of the ETAPS Conf. On Compiler Construction, LNCS 2027,
pages 69-85, 2001.

