
Caches multiprocesseurs

Daniel Etiemble de@lri.fr

Caches et cohérence des caches

- Rôle clé des caches
 - Réduisent le temps d'accès moyen aux données
 - Réduisent les besoins en bande passante sur l'interconnexion partagée.
- Les caches privés des processeurs posent problème
 - Les copies d'une variable peuvent être présentes dans plusieurs caches
 - Une écriture par un processeur peut ne pas être visible aux autres
 - Problème de la cohérence des caches
 - Actions nécessaires pour assurer la visibilité

M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble 4

Cohérence des caches avec un bus

- Construite au dessus de deux fondements des systèmes monoprocesseurs
 - Les transactions de bus
 - Le diagramme de transitions d'états des caches
- La transaction de bus monoprocesseur
 - Trois phases : arbitrage, commande/adresse, transfert de données
 - Tous les composants observent les adresses ; un seul maître du bus
- Les états du cache monoprocesseur
 - Ecriture simultanée sans allocation d'écriture
 - Deux états : valide et invalide
 - Réécriture
 - Trois états : valide, invalide, modifié
- Extension aux multiprocesseurs pour implémenter la cohérence

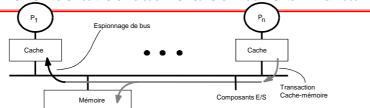
M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble

La cohérence par espionnage de bus

• Idée de base

- Les transactions bus sont visibles par tous les processeurs.
- Les processeurs peuvent observer le bus et effectuer les actions nécessaires sur les évènements importants (changer l'état)


• <u>Implémenter un protocole</u>

- Le contrôleur de cache reçoit des entrées de deux côtés :
 - Requêtes venant du processeur, requêtes/réponses bus depuis l'espion
- Dans chaque cas, effectue les actions nécessaires
 - Mise à jour des états, fourniture des données, génération de nouvelles transactions bus
- Le protocole est un algorithme distribué : machines d'états coopérantes.
 - Ensemble d'états, diagramme de transitions, actions
- La granularité de la cohérence est typiquement le bloc de cache

M2R NSI-SETI 2013-14

Architectures avanc D. Etiemble 7

Cohérence avec cache à écriture simultanée

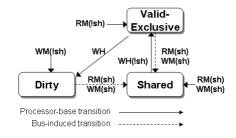
- Extension simple du monoprocesseur : les caches à espionnage avec invalidation ou propagation d'écriture
 - Pas de nouveaux états ou de transactions bus
 - Protocoles à diffusion d'écriture
- Propagation des écritures
 - la mémoire est à jour (écriture simultanée)
- Bande passante élevée nécessaire

M2R NSI-SETI 2013-14

Architectures avancée D. Etiemble

Les actions du cache à écriture simultanée (monoprocesseur)

Etat présent	Succès lecture	Succès écriture	Echec lecture	Echec écriture	
Invalide			Valide	Valide	Etat futur
			Echec lecture sur Bus	Echec écriture sur Bus	Action
Valide	Valide	Valide	Valide	Valide	Etat futur
	CPU lit le cache	Ecriture bus CPU écrit dans le cache	Echec lecture sur Bus	Echec écriture sur Bus	Action


M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble

9

Protocole Firefly

• Ecriture simultanée – Diffusion d'écriture

http://en.wikipedia.org/wiki/Firefly_protocol

M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble

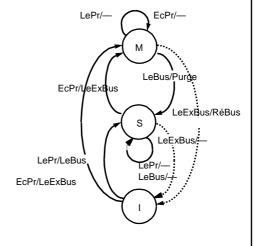
Les actions du cache à réécriture (monoprocesseur)

Etat présent	Succès lecture	Succès écriture	Echec lecture	Echec écriture	
Invalide			Valide	Modifié	Etat futur
			Echec lecture sur Bus	Echec écriture sur bus	Action CPU
Valide	Valide	Modifié	Valide	Modifié	Etat futur
	CPU lit le cache	CPU écrit dans le cache	Echec lecture sur Bus	Echec écriture sur bus	Action CPU
Modifié	Modifié	Modifié	Valide	Modifié	Etat futur
	CPU lit le cache	CPU écrit dans le cache	Bloc éjecté et copié en MP Echec lecture sur Bus	Bloc éjecté et copié en MP Echec écriture sur bus	Action CPU

M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble 11

Le protocole de base MSI : réécriture et invalidation

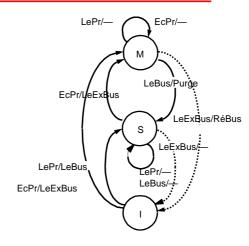

- Etats
 - Invalide (I)
 - Partagé (S): un ou plusieurs
 - Modifié (M): un seul
- Les évènements processeurs :
 - LePr (lecture)
 - EcPr (écriture)
- Les transactions bus
 - LeBus: demande une copie sans vouloir la modifier
 - LeExBus: demande une copie pour la modifier
 - RéBus : Mise à jour de la mémoire
- Actions
 - Modifie l'état, effectue une transaction bus, envoie les données sur le bus

M2R NSI-SETI 2013-14

Architectures avancée D. Etiemble

MSI: Succès local lecture

- Le bloc doit être dans l'un des états M ou S
- C'est la valeur correcte (si M, elle a été modifiée par une écriture locale)
- · Renvoie la valeur au CPU
- Pas de changement d'état

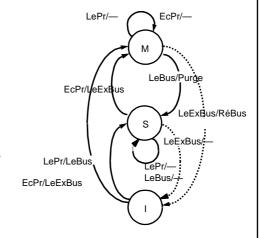


M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble 13

Défaut local en lecture

- Plusieurs caches ont une copie S
 - Le processeur fait une requête bus vers la mémoire
 - Un cache met une copie sur le bus
 - L'accès mémoire est abandonné
 - Le cache local obtient la copie (S).
 Les autres copies restent (S)
- Un cache a une copie M
 - Le processeur fait une requête bus vers la mémoire
 - Un cache met la copie M sur le bus
 - L'accès mémoire est abandonné
 - Le cache local obtient la copie (S).
 - Le bloc M est écrit en mémoire.
 - Le bloc M passe à S.



M2R NSI-SETI 2013-14

Architectures avancé D. Etiemble

MSI: succès local en écriture

- Les blocs doivent être M ou S
- - le bloc est déjà modifiée
 - mettre à jour la valeur locale
 - Pas de changement d'état
- S
 - Le processeur diffuse sur le bus LeExBus
 - L'état du bloc local passe de S à
 - Les caches avec une copie S passent à I
 - Le bloc local est mis à jour

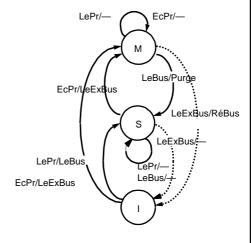
M2R NSI-SETI 2013-14

D. Etiemble

15

MSI: Echec local en écriture

- Pas d'autres copies
 - Valeur lue depuis la mémoire vers cache local
 - Etat bloc local à M
- D'autres copies à S
 - Valeur lue depuis la mémoire vers cache local (LeExBus)
 - Les autres caches mettent leur copie à I
 - La copie locale est mise à jour et état M
- Une autre copie M
 - Le processeur local envoie LeExBus
 - Le cache avec copie M la voit, bloque LeExBus, prend contrôle du bus et écrit sa copie en mémoire. Le bloc M et les blocs S passent en I.
 - Le processeur local réémet LeExbus : c'est maintenant le cas sans copie
 - Valeur lue depuis la mémoire vers cache
 - Etat bloc local à M


LePr/— EcPr/— Μ LeBus/Purge EcPr/LeEx LeExBus/RéBus S LePr/LeBus LeBus/-EcPr/LeExBus

M2R NSI-SETI 2013-14

D. Etiemble

Le protocole MSI à invalidation : Diagramme de transitions

- Ecriture à un bloc modifié
 - A déjà la valeur la plus récente ; peut utiliser la mise à jour (BusUpgr) au lieu de la LeExBus
- Un remplacement change l'état de deux blocs : le bloc remplacé et le bloc arrivant

M2R NSI-SETI 2013-14

Architectures avanc D. Etiemble 17

Comparaison avec un seul cache à réécriture

- Similarités
 - Succès lecture invisible sur le bus
 - Tous les échecs sont visibles sur le bus
- Différences
 - Avec un seul cache WB, tous les blocs provoquant un échec sont fournis par la MP. Dans le protocole à trois états, les blocs sont fournis soit par la MP ou par le seul bloc de cache contenant la seule copie Modifié
 - Avec un seul cache WB, un échec écriture est invisible sur le bus. Dans le protocole à trois états, un succès en écriture sur un bloc *Valide* invalide tous les autres blocs Valide par un Echec écriture Bus (action nécessaire)

M2R NSI-SETI 2013-14

Architectures avancée
D. Etiemble

Validation du protocole à trois états

- *Problème*: la transition d'état d'un automate est supposée être atomique, mais ce n'est pas le cas dans ce protocole à cause du bus
- Exemple : Echec lecture CPU sur un bloc Modifié
 - 1. L'accès CPU au cache détecte l'échec
 - 2. Requête bus
 - 3. Acquisition du bus, et changement de l'état du bloc de cache
 - 4. Eviction du bloc du cache et copie en MP
 - 5. Positionnement de l'Echec lecture bus sur le bus
 - 6. Réception du bloc demandé depuis la MP ou un autre cache
 - Libération du bus, et lecture à partir du bloc de cache que l'on vient de recevoir
- L'arbitrage du bus peut provoquer un écart entre les étapes 2 et 3
 - Toute la séquence n'est plus atomique.
 - Le protocole fonctionne correctement si les étapes 3 à 7 sont atomiques, c'est à dire si l'on n'a pas un bus à transactions éclatées

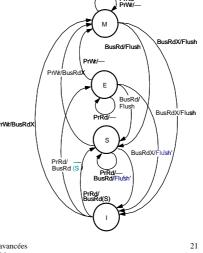
M2R NSI-SETI 2013-14

Architectures avance D. Etiemble 19

Le protocole MESI

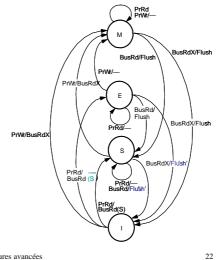
- Quatre états, à invalidation d'écriture
- Version améliorée du protocole à 3 états
 - L'état Valide est séparé en Exclusif et Modifié
 - Exclusif : seule copie identique au bloc en MP
 - Partagé : plusieurs copies -identique au bloc en MP
- Différentes versions légèrement différentes du protocole MESI
 - Le protocole MESI du PowerPC 601 ne supporte pas les transferts de bloc de cache à cache.

M2R NSI-SETI 2013-14


Architectures avancée
D. Etiemble

Le protocole MESI

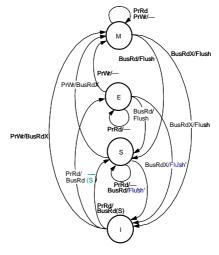
- 4 états
 - Exclusif
 - Seule copie du bloc
 - Non modifié (= Mémoire)
 - Modifié
 - Modifié (!= Mémoire)
 - Partagé
 - Copie dans plusieurs blocs
 - Identique en mémoire
 - Invalide
- Actions
 - Processeurs
 - Bus


M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble

MESI – Succès local lecture

- Le bloc doit être dans l'un des états M, E ou S
- C'est la valeur correcte (si M, elle a été modifiée par une écriture locale)
- · Renvoie la valeur
- Pas de changement d'état

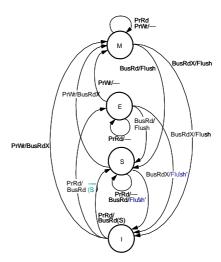


M2R NSI-SETI 2013-14

Architectures avancée D. Etiemble

MESI – Défaut local en lecture (1)

- Pas d'autres copies dans un cache
 - Le processeur fait une requête bus vers la mémoire
 - Valeur lue dans le cache local (E)
- Un cache a une copie E
 - Le processeur fait une requête bus vers la mémoire
 - La copie E est mise sur le bus.
 - La requête mémoire est stoppée
 - Le cache local récupère la valeur
 - Les deux blocs passent à S

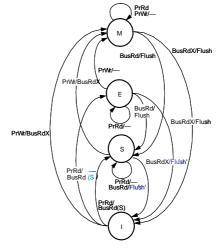

M2R NSI-SETI 2013-14

Architectures avance
D. Etiemble

23

MESI – Défaut local en lecture (2)

- Plusieurs caches ont une copie S
 - Le processeur fait une requête bus vers la mémoire
 - Un cache met une copie sur le bus
 - L'accès mémoire est abandonné
 - Le cache local obtient la copie (S).
 Les autres copies restent (S)
- Un cache a une copie M
 - Le processeur fait une requête bus vers la mémoire
 - Un cache met la copie M sur le bus
 - L'accès mémoire est abandonné
 - Le cache local obtient la copie (S).
 - Le bloc M est écrit en mémoire.
 - Le bloc M passe à S.



M2R NSI-SETI 2013-14

Architectures avancé D. Etiemble

MESI – Succès local en écriture

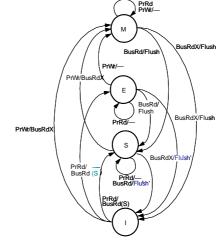
- Les blocs doivent être M, E ou S
- M
 - le bloc est exclusive et déjà modifiée
 - mettre à jour la valeur locale
 - Pas de changement d'état
- F
 - Mettre à jour la valeur locale
 - L'état passe de E à M
- . 9
 - Le processeur diffuse une invalidation sur le bus
 - Les caches avec une copie S passe à I
 - Le bloc local est mis à jour
 - L'état du bloc local passe de S à M.

M2R NSI-SETI 2013-14

Architectures avancées D. Etiemble 25

Echec local en écriture

- · Pas d'autres copies
 - Valeur lue depuis la mémoire vers cache local
 - Etat bloc local à M
- D'autres copies, soit E (1) soit S (n)
 - Valeur lue depuis la mémoire vers cache local
 - Transaction bus RWITM (lecture avec intention de modifier)
 - Les autres caches mettent leur copie à I
 - La copie locale est mise à jour et état M


PrRd/PrW//
BusRd/Flush
PrW//
BusRd/Flush
PrRd/BusRd/Flush
BusRd/Flush
PrRd/BusRd/Flush
PrRd/BusRd/Flush
BusRd/Flush
BusRd/Flush
BusRd/Flush
BusRd/Flush
BusRd/Flush

M2R NSI-SETI 2013-14

Architectures avancé D. Etiemble

Echec local en écriture (2)

- Une autre copie M
 - Le processeur local envoie une Transaction bus RWITM (lecture avec intention de modifier)
 - Le cache avec copie M la voit, bloque RWTIM, prend contrôle du bus et écrit sa copie en mémoire. Le bloc passe en I.
 - Le processeur local réémet RWITM : c'est maintenant le cas sans copie
 - Valeur lue depuis la mémoire vers cache local
 - Etat bloc local à M

M2R NSI-SETI 2013-14

rchitectures avanc D. Etiemble 27

Le problème du faux partage

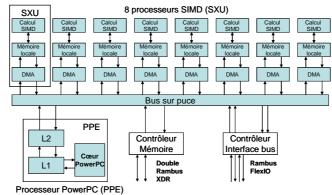
- Un processeur écrit dans une partie d'une ligne de cache.
- Un autre processeur écrit dans une autre partie d'une ligne de cache
- Même si chaque processeur ne modifie que sa « partie » de la ligne de cache, toute écriture dans un cache provoque une invalidation de « toute » la ligne de cache dans les autres caches.

M2R NSI-SETI 2013-14

Architectures avancée D. Etiemble

Alternatives aux caches

- Approche des processeurs vectoriels
 - Chargement/rangement de vecteurs dans des registres vectoriels
 - Utilisation de mémoires SRAM multi-bancs
- Approche « mémoire scratch pad » (processeurs embarqués)
 - Zone mémoire contrôlée par logiciel
 - Préchargement par logiciel des données nécessaires
 - Instructions de manipulation de blocs


M2R NSI-SETI 2013-14

Architectures avance D. Etiemble 29

"Caches logiciels"

- Utilisation de mémoires locales
- Transferts gérés par logiciel (avec DMA)

Processeur Cell

M2R NSI - 2013-14