

Abstract— We have simulated the implementation of 16-bit
floating point instructions on a Pentium4 and PowerPC G5 to
evaluate the performance impact of these instructions in
embedded processors for graphics and multimedia applications.
Both accuracy of the computations and the execution time have
been considered. For low-end embedded processors without
SIMD instructions, the 16-bit FP instructions deliver a larger
dynamic range than 16-bit integer with the same memory
footprint. For high-end embedded processors with SIMD
instructions, we add the speed up coming from wider SIMD
instructions.

Index Terms—16-bit floating point instructions, SIMD
extensions, vision and multimedia, embedded processors and
applications.

I. INTRODUCTION

Graphics and media applications have become the dominant

ones for general purpose microprocessors and correspond to a
very large segment of embedded applications. They have led to
the introduction of specific instruction set extensions such as
the SIMD extensions which are available both for general
purpose processors (such as SSE/SSE2/SSE3 extensions for
IA32, Altivec for PowerPC) or embedded processors (such as.
SIMD extensions for ARM ISA implemented in Xscale
processors).

Image processing generally need both integer and FP
formats. For instance, vImage [1], which is the Apple image
processing framework, proposes four image types with four
pixel types: the first two pixel types are unsigned byte (0 to
255) and float (0.0 to 1.0) for one color or alpha value and the
two other pixel types are a set of four unsigned char or float
values for Alpha, Red, Green and Blue. Convolution
operations with byte inputs need 32-bit integer formats for the
intermediary results. Geometric operations need floating point
formats.

For media processing, the debate between integer and FP
computing is also open. On one hand, people argue for using
fixed-point computation instead of floating point computation.
For instance, G. Kolly justifies “using Fixed-Point Instead of

1 IEF, CNRS and Université Paris Sud, email : lacas@ief.u-psud.fr
2 LRI, CNRS and Université Paris Sud, email : de@lri.fr

Floating Point for Better 3D Performance” in the Intel
Graphics Performance Primitives library in [2]. Techniques for
automatic floating-point to fixed-point conversions for DSP
code generations have been presented [3]. On the other hand,
people propose lightweight floating point arithmetic to enable
FP signal processing applications in low-power mobile
applications [4]. Using IDCT as benchmark, the authors show
that FP numbers with 5-bit exponent and 8-bit mantissa are
sufficient to get a Peak-Signal-to-Noise-Ratio similar to the
PSNR with 32-bit FP numbers. These results illustrate one case
for which a format using less than 16 bits would deliver
performance equivalent to the 32-bit FP format. This debate is
important for embedded applications, for which the needed
performance should be obtained with the minimum memory
occupation and minimum power dissipation.

A 16-bit floating point format would combine the memory
occupation of 16-bit integer and provide a larger dynamic
range. Such formats have been defined a long time ago in some
DSP processors. For instance, the TMS 320C32 [5] has an
internal 16-bit type with 1 sign bit, a 4-bit exponent and an 11-
bit fraction that can be used as an immediate value by FP
instructions and an external 16-bit type with 1 sign bit, a 8-bit
exponent field and a 7-bit fraction which is used for storage
purposes. By they are rarely used. Recently, a 16-bit floating
point format called “half” has been introduced in the OpenEXP
format [6] and in the Cg language [7,8] defined by NVIDIA. It
is currently used in some NVIDIA GPU. It is justified by ILM,
which developed the OpenEXP graphics format, as a response
to the demand for higher color fidelity in the visual effect
industry: “16-bit integer based formats typically represent color
component values from 0 (black) to 1 (white), but don’t
account for over-range value (e.g. a chrome highlight) that can
be captured by film negative or other HDR displays…
Conversely, 32-bit floating-point TIFF is often overkill for
visual effects work. 32-bit FP TIFF provides more than
sufficient precision and dynamic range for VFX images, but it
comes at the cost of storage, both on disk and memory”.
Similar arguments are used to justify the “half” format in Cg
language.

In [9], we have presented some preliminary results on the
performance evaluation of a “half” SIMD extension for the
Intel IA-32 ISA and the PowerPC Altivec extension. The
context was the extension of “multimedia” capabilities of
general purpose microprocessors, and we mainly focused on
the speed-up resulting from wider SIMD instructions and the

16-bit floating point operations for low-end and
high-end embedded processors

L. Lacassagne1, D. Etiemble2

“vectorization issues”. In this paper, after a brief summary of
the prior results, we focus on the impact of 16-bit FP
instructions for embedded processors. A scalar version of these
instructions is considered for low-end embedded processor
while the impact of SIMD instructions is still considered for
high-end embedded processors. While prior results only
considered the execution time, we now both consider the
accuracy issues and the execution time for the different
benchmarks.

II. SUMMARY OF PREVIOUS RESULTS

In [9,10], we have considered the speed-up between
versions using SIMD 16-bit floating point instructions (called
F16) and versions using 32-bit floating point instructions
(called F32). The speed-ups have been measured on general
purpose processors: Pentium 4 and PowerPC G5. The
following benchmarks have been used:

- Horizontal and Horizontal-Vertical versions of the
Deriche filters.

- Deriche gradient
- Scans: +scan and +*scan.
- Bounding boxes of triangle in tri-strip format

(OpenGL).
For Deriche filters, the Pentium SIMD F16 versions exhibit

a speed-up close to 2 versus the float versions and the speed-
up between F16 and 32-bit FP versions ranges from 2.2 to 4.2
for the G5 processors.

For the +scan, which is memory-bounded and has execution
times close to the execution time of a simple copy, F16
instructions are useless. For +*scan, which accumulate both
the values and the square of values of all the image pixels, both
Pentium 4 and PowerPC G5 exhibit a speed-up slightly less
than 2 with F16 versus F32.

For the OpenGL benchmark, the speed-up is 1.8 for Pentium
4 and 2 for the G5.

In any case, the speed-up derives from the wider SIMD
instructions (two times more operations per SIMD instruction)
and the smaller data cache footprint (16-bit format versus 32-
bit format). Due to the instruction latencies that are used, the
Pentium 4 results are slightly pessimistic while the G5 results
are slightly optimistic.

A rough evaluation of the 16-bit FP operators has also been
given. Based on a cell-based estimated implementation derived
from a VHDL description of the operators, it was shown that
the chip area for 8 16-bit FP functional units (Addition-
subtraction, Multiplication, Division and Square root) would
be about 11% of the corresponding chip area of 4 64-bit FP
functional units.

III. METHODOLOGY

To evaluate the interest of adding one F16 format within
embedded processors, several issues must be considered:

- The accuracy of F16 computations compared to integer
ones or usual single precision or double precision IEEE
floating point formats for graphics and multimedia applications

- The execution times for different benchmarks when using
F16 formats compared to F32 formats without and with SIMD
instructions.

- The hardware cost for the F16 operators in embedded
systems. As F16 will be used for specific applications, the
hardware evaluation must be considered for reconfigurable
hardware (FPGAs including processor on chip), SoCs or
customizable architectures such as the Xtensa processor.

- Only the two first issues are considered in this paper. The
third issue has not yet been extensively studied. The results will
be published later.

A. The NVIDIA Half format
The “half” format is presented in figure 1. A number is

interpreted exactly as in the other IEEE FP formats. The
exponent is biased with an excess value of 15. Value 0 is
reserved for the representation of 0 (Fraction =0) and of the
denormalized numbers (Fraction ≠ 0). Value 31 is reserved for
representing infinite (Fraction = 0) and NaN (Fraction ≠ 0).
For 0<E<31, the general equation for calculating the value in a
floating point number is (-1)S x (1.fraction) x 2(Exponent field-15).
When using denormals, the range of the format extends from
2-24 = 6 x 10-8 and (216-25) = 65504. Without denormals, the
range extends from 2-15 to 65504. To tackle the dynamic
problem, the F16 numbers can be "normalized" during
conversion by changing the pixel range from [0 - 255] to [0.0-
1.0] as for the other floating-point formats. In the remaining
part of this paper, this 16-bit floating point format will be
called half or F16 and the IEEE-754 32-bit FP simple precision
format will be called F32.

S Exponent Fraction

1 5 10

S Exponent Fraction

1 5 10

FIGURE 1 : NVIDIA “HALF” FORMAT

B. Accuracy issues
For checking the F16 accuracy compared to usual 32-bit FP

accuracy, we started with the original 32-bit FP version of
different benchmarks and we wrote different functions to
simulate the 16-bit FP range within 32-bit FP numbers. With
this approach, we were able to run the different benchmarks by
just inserting the appropriate function before any program use
of a “float” variable and after any program computation on
“float” numbers: any “float” source operand and any “float”
result of a “float” operation remains “float” numbers, but with
the precision and accuracy of “half” number. This approach is
machine independent. The following functions have been
tested:

- Truncation without denormals: the fraction is
truncated from 23 bits to 10 bits by discarding the 13
low-order bits. Denormals are transformed into zero.

- Rounding to nearest without denormals: the fraction
is reduced from 23 bits to 10 bits with rounding to
nearest according to IEEE-754 standard. Denormals
are transformed into zero.

- Truncation with denormals: truncation of the fraction
and standard definition for denormals

- Rounding to nearest with denormals: rounding of the
fraction and standard definition of denormals.

By using each one of these functions on the different
benchmarks, we compared the different images that were
transformed by each benchmark with the “Peak-Signal-to-
Noise-Ratio” metrics. Different hardware implementations of
the F16 arithmetic operators would correspond to the different
function. If truncation without denormals gives similar results
compared to the other solutions, then the simplest hardware
implementation would be possible, which is the ideal situation
for embedded hardware.

C. Execution time of scalar versions
As in [9,10], we used measured execution times on actual

processors to evaluate the performance of the F16 version of
the considered benchmarks. Pentium 4 and PowerPC G5
processors were used. The Pentium 4 is a 2.4 GHz Xeon
processor with 1 GB memory running Windows XP. The
benchmarks have been compiled with the Intel C++ 8 compiler
and the QxW. The execution time has been measured with the
RDTSC (read-time stamp counter) instruction available with
IA-32. All the measures have been done with only one running
application (Visual C++). The PowerPC is a 1.6 GHz
PowerPC G5 with 768 MB DDR400 running Mac OS X.3.
The programs have been compiled with the Xcode
programming environment including gcc 3.3.

It may look strange to use general purposed processors to
evaluate extensions for embedded processors, but we do feel
that most results that we obtained can be extrapolated to
embedded processors. By using these processors, we basically
use the execution times of the different instructions that are
specific to these processors, and the cache hierarchies that are
also specific to these processors. Embedded processors would
have different instructions, different instruction latencies and
different data cache sizes. The quantitative results would be
different, but we do believe that the qualitative results would
be similar as the impact of the data cache and larger SIMD
instructions would be qualitatively the same when using 16-bit
floating point data instead of 32-bit floating point data. As
previously mentioned, further works will consider the actual
implementation of F16 operators in configurable hardware or
SoCs. One advantage of using general purpose processor is to
profit from the richer available SIMD extensions and software
tools (vectorizing compilers, SIMD intrinsics).

We are basically interested in the differences between the
execution times of the F16 version andthe 32-bit FP version of
the different benchmarks. Sometimes, the 16-bit integer version
(called I16) can be executed without transforming the
benchmark. In that case, the accuracy is generally insufficient
(and the program results are wrong) but it gives a good insight
on the lower bound for the execution time with 16-bit formats.

For scalar and SIMD versions of the F16 instructions, we
consider that the F16 versions of the arithmetic instructions
have the same latency and throughput than the F32

instructions. This assumption is pessimistic because F32
instructions are executed in a Pentium 4 by the same operators
as the 64-bit double precision instructions (SP and DP
instructions have the same latency and throughput). 16-bit FP
operators are obviously faster than 64-bit operators, but the
operation latency is only part of the overall instruction latency,
which is mainly determined by the insertion of the operator in
the processor data-path. Anyway, considering that F16 and
F32 instructions have the same latencies means that our results
are more pessimistic than optimistic.

When the 16-bit and 32-bit integer versions can be executed
on a benchmark, the execution time of the F16 version is
evaluated as follow:
TF16 = TI16 +TF32 –TI32
This formula derives from the following assumptions: The F16
instructions have the same latencies as the F32 ones, while the
cache behavior is the same as with I16 instructions. The term
(TF32-TI32) expresses the difference between the FP and integer
execution times, while TI16 considers the cache behavior with
16-bit integer. This cache behavior is the same with F16 data
and I16 data.

D. Execution time of SIMD versions
The methodology for SIMD versions is the same as in

[9,10]. For using SIMD instructions, we cannot only rely on
the compiler to vectorize. Intrinsics are assembly-coded
functions that enable the programmer to use expanded inline
C/C++ function calls and variables in place of assembly
mnemonics and registers. With “intrinsics” within C programs
to manually use the SIMD instructions, we can use different
“intrinsics” to simulate the F16 SIMD instructions with
different latencies.

The graphics and media benchmarks have a nice specificity:
the kernel computation consists in loop nests which are not
data dependant (the loop iterations only depend on the loop
bounds that are defined at compile time). In this situation, the
“simulated” instructions can be replaced by any “actual”
instruction with given latency and throughput figures. There
are basically three constraints:

- the cache accesses should be the same for the
simulated and actual memory instructions

- The data dependencies should be strictly enforced.
- As it is no longer possible to check the results, we

must carefully check that the compiler generates all
the required instructions according to the data
dependencies.

For instance, the IA32 SIMD MULPS (packed floating
point multiplication) can be used to simulate a MULF16
(packed half multiplication with the same latency (6 cycles)
and throughput (2 cycles). The situation is the same for the
Altivec instructions of the PowerPC.

1) Pentium 4
As the reference processor, we considered the current

version of the Pentium 4 (without hyperthreading technology)
including the SSE3 extension.

We assume the currently available 128-bit XMM register

set. With 128-bit registers and data path, the number of
functional units for each SIMD F16 operation is 8. The issues
to solve are: the conversions between bytes to/from F16 data,
the type of FP operators and the permutation and formatting
operations that must be added for the F16 format.

Byte to F16 conversion means converting 8 packed bytes
into 8 packed F16 “half”. IA32 ISA having a (2,1) instruction
format, the source operand can be either a register or a
memory operand. One could define a conversion from a 64-bit
memory operand (or the lower part of an XMM register) into
an XMM register. The other option consists in defining two
different byte-to-F16 conversion instructions as shown in
Figure 2. After loading the XMM register with a 16-byte
memory access, the first conversion instruction would convert
the lower part of the XMM register into 8 packed F16 in
another register and the second one would convert the higher
part. This second conversion instruction is not absolutely
necessary, but avoids an intermediate move/shift from the
upper part to the lower part of the source register. These
conversion instructions are register only instructions. The
opposite F16 to byte conversion are needed. The second
option is more efficient. It leads to implicitly unroll two times
any loop (the lower 8-byte operands first, then the higher
ones).

I8

F16

F16

XMM

XMM

XMM

CBL2F16

CBH2F16

I8

F16

F16

XMM

XMM

XMM

CBL2F16

CBH2F16

FIGURE 2: BYTE TO F16 CONVERSION INSTRUCTIONS

To be able to deal with the complete F16 format, the FP

operators that are needed are the same as the ones that are
available for single and double precision formats: the packed
F16 addition/subtraction, multiplication, division and square
root operators. Obviously, only the needed operations would
be implemented in embedded applications. Bitwise logical
operations are the same for F16 formats as for any other
format. Shuffle and pack/unpack instructions can be more
efficiently executed on the original byte data before conversion
for byte stored arrays, but they are needed for “half” stored
arrays. When F16 data are stored, all the shuffle or
packing/unpacking instructions that are now available for 16-
bit data can be used but these operations should be extended to
the 8 different slots, which raise a small difficulty. The shuffle
or packing/unpacking operations are defined by an 8-bit
immediate in the IA-32 ISA, which is OK with four slots.
Keeping an 8-bit immediate with eight slots would need a
coding of the different operations on the eight slots. Table 1
lists the different F16 IA-32 instructions that we used in our
benchmarks. All the proposed instructions have a throughput
value of 2.

To be able to completely treat the 16-bit FP format, short
from/to half conversions are also needed. Load and store

packed instructions for half data are similar to the already
packed integer instructions.

A program using the F16 instructions is directly derived
from the corresponding F32 one by replacing the F32
instructions by F16 instructions. As previously mentioned, the
F16 instructions are presently simulated by actual instructions
fo the IA-32 or PowerPC ISA.

TABLE 1: 16-BIT FP INSTRUCTIONS FOR PENTIUM 4

Instruction Latency
(Max)

Meaning

ADDF16 4 Xmmd <- Xmmd+Xmms
SUBF16 4 Xmmd <- Xmmd-Xmms
MULF16 6 Xmmd <- Xmmd * Xmms
MAXF16 4 Xmmd <- Xmmd max Xmms
MINF16 4 Xmmd <= Xmmd min Xmms
CBL2F16 4 Xmmd <= BytetoF16 (Xmms low)
CBH2F16 4 Xmmd<= BytetoF16 (Xmms high)
CF162BL 4 Xmmd low<= F16toByte (Xmms)
CF162BH 4 Xmmd high<= F16toByte(Xmms)
SHUFF16 4 Xmmd <= shuffle (8 slots) Xmms

2) PowerPC G5

We consider the actual implementation of the G5 processor
[11] with Altivec extension and the instruction latencies [12]
given in Table 2

TABLE 2: G5 INSTRUCTION LATENCIES

Execution Unit: cycles
IU (+, -, logical, shift) 2-3
IU (multiplication) 5-7
FPU (+, -, *, MAF) 6
LSU (L1 hit) to GPR, FPR, VR 3,5,4-5
LSU (L2 hit, loads only) 11
VPERM 2
VSIU (part of VALU) 2
VCIU (part of VALU) 5
VFPU (part of VALU) 8

As the Altivec extension is rather complete, the only

supplementary needed F16 instructions are the F16 version of
the vector FP instructions and the byte to/from F16 conversion
instructions. All the packing/unpacking and permutation
instructions that are needed are already available for short
integer operands. The simulated conversion instructions have a
latency of 2, which may be a little bit optimistic. The F16
multiplication-accumulation instruction, which is used for F16
add, mul and mul-add, has a latency of 5. Compared to our
Pentium 4 simulation of F16 instructions that were pessimistic,
our G5 simulation are slightly optimistic.

E. Benchmarks
We considered three different benchmarks.
The first one has been furnished by Prof. A. Montanvert

(LIS, Grenoble) and has been written by a Ph. D student (L.
Condat). The benchmark consists in Image zooming and

interpolation by power of 2 by using splines [13]. The
benchmark has three zoom values: 1, 2 and 4. The first one is
used to validate the filters that are used.

The second one is the JPEG codec of Mediabench suite
[14]. It includes both a DCT (coder) and IDCT (decoder) with
three different versions: float, integer and “fast” integer. We
added the F16 version for the DCT and the IDCT. The third
one is a Wavelet benchmark, which uses the SPHIT (Set
Partitioning in Hierarchical Trees) [15]. It uses the same set of
filters than the wavelet transform used in JPEG2000, but the
compression stage is smaller than the one in the JPEG encoder.

We used a large set of images of different sizes:
- 1024x1024 images: man_1k
- 512x512 images: baboon, Barbara, Lena, lighthouse,

peppers
- 128x128 images: corridor, Einstein, Grenoble, Lena,

office, Titanic.

IV. MEASURED RESULTS

A. Zooming and interpolation benchmark
We focused on accuracy issues. With the x2 and x4 zoom

factors, the differences between the zoomed images computed
with F32 and F16 data is always greater than 55 dB. More, the
PSNR values are the same for truncated and rounded F16, with
or without denormals. This result is important as it shows that
the simplest version of F16 operators is sufficient.

For the useful zoom values, the F16 version is 19% faster
than the corresponding F32 one. Without zoom (x1), the speed
up is 1.8, which shows the impact of the reduced cache
footprint as there is few computation for this zoom value. As
expected, the speed-up comes from the better cache behavior.
The resulting speed-up depends on the ratio between data
accesses and computations.

The most time consuming function in the zooming
application exhibits a loop-carried dependency which prevents
using SIMD instructions.

B. JPEG codec
On this benchmark, we only considered the accuracy of

computations. Figures 3 and 4 and show the difference in dB
between the compressed/decompressed images and the original
one according to image sizes and the different versions of the
DCT and IDCT implementation. For 256x256 images, there
are no significant differences, which means that integer
implementation is the most efficient (even the faster one which
degrades accuracy for speed). For 512x512 images, the result
is image dependant. If Lighthouse exhibits the same behavior
as smaller images, Baboon and Lena shows the improvement
resulting from FP computations and that F16 has the same
accuracy as F32 while using half the memory occupation. The
evaluation of execution times remains to be done for this
benchmark.

0

5

10

15

20

25

30

35

40

45

Baboon Lena Lighthouse

DCT FAST DCT INT DCT FLOAT DCT F16

FIGURE 3: PNSR DIFFERENCE BETWEEN COMPUTED AND ORIGINAL 512X512

IMAGES

0

5

10

15

20

25

30

35

40

45

Corridor Einstein Office

DCT FAST DCT INT DCT FLOAT DCT F16

FIGURE 4: PSNR DIFFERENCE BETWEEN COMPUTED AND ORIGINAL

256X256 images

C. Wavelet transform
The wavelet transform is different from the previous

benchmarks, as the transform (low-pass & high-pass filter) is
recursively applied on a sub-quadrant of the image (figure 5).

0 n 1 n+1 n-1 2 n+2 n-2 3 n+3 n-3 4 n+4 n-4

0 n 1 n+1 n-1 2 n+2 n-2 3 n+3 n-3

L(n) = l x + l (x +x) + l (x +x) + l (x +x) +l (x +x)

H(n) = h x + h (x +x) + h (x +x) + h (x +x)

L filter is applied on even pixels and H filter to odd pixels to

create 2 half size images. ImageL(n) = L(X(2n)), ImageH(n) =
H(X(2n+1). To limit memory occupation, computations are
done in situ: a line X (respectively a column) is copied into a T
buffer for border symmetry; the filters are then applied as
follow: Y(k) = L(T(2k)), Y(k+k) = H(T(2k+1), with
k∈[0..n/2], or Y(k/2) = L(T(k)), Y(n/2+k/2) = H(T(k+1)) with
k∈[0..n]. Filters (figure 6) are applied down to 32x32 image
size, which means 6 iterations for 1024 x 1024 images, 5 for
512x512 and 4 for 256x256 images.

LL

HL

LH

HH

HL

HLLH

HH

LH

HHHL HL

HH

LH

HL HH

LH
LH

HH

LL
LL

FIGURE 5 : WAVELET TRANSFORM

Compared to the F32 version, the PSNR difference is about

3.5% for low compression factor (1 to 20) and less than 0.5%
for higher factors when using F16. In any case, the difference is
smaller than 3 dB.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 151234 121314 11

L(0)

L(2)
H(1)

H(3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15X

T

Y

L(4)
H(5)

L(6)
H(7)

L(8)

borders symetrization

FIGURE 6: WAVELET FILTERS

Because of the interlaced filter applications, vectorization is

a little bit more difficult than usually. There are 5 and 4
multiplications instead of 9 and 7 for non symmetric filter
coefficients. There is a large overlap of filter applications, with
each filter contributing to 9 filter computations. As the filter
sizes are not a power of 2, the SIMD reduction instructions are
un-efficient. We used the same technique as for the Deriche
benchmark (figure 7): a horizontal (respectively vertical) band
of pixels is copied into a B band for which the memory
accesses are horizontal. Such a band greatly reduces the cache
misses during the vertical application of filters (if the Loads are
not factorized, each pixel is reloaded 9 times). Then a block
transposition is applied to B to load the registers with values
orthogonal to the filter.

To explain the caches behavior, the non recursive wavelet
transform (only one iteration) has been applied to different size
images, which sizes vary from 32x32 to 1024*1024 (figure 8
and 9).

SIMD performances are shown in Tables 3 and 4 for
PowerPC and Pentium 4. The metrics is CPP (i.e. number of
clock cycles per pixel). The SIMD versus scalar speed-up is
shown in table 3 and 4. These results can be explained as
follow: the block transposition needs 8 instructions for four
vector 32-bit numbers and 24 instructions for 8 vectors of 16-
bits, that is 0.5 instruction per 32-bit pixel and 0.375
instruction per 16-bit. The speedup comes from the parallelism
increase and from the cache footprints. F16 parallelism
provides a speedup of about x2 compared to F32 parallelism

(same number of instructions and operation per vector, but
twice the number of processed pixels), while cache footprint
modifies this speedup from 1.8 to 4 for PowerPC. The maximal
speedup is achieved when F16 data fit in the cache, while F32
data do not (for 512x512 images). For the recursive wavelet
transform, the same remarks can be done.

320 1

131210 11

232220 21

333230 31
3

2

0

1

13

12

10

11

23

22

20

21

33

32

30

31
Bloc Transposition

7

6

5

4

17

16

15

14

27

26

25

24

37

36

35

34

7654

17161514

27262524

37363534

pitch = N

16

pitch = 16

FIGURE 7: BLOCK TRANSPOSITION USED IN DERICHE AND WAVELET
BENCHMARKS

TABLE 3: SIMD CPP FOR POWERPC AND PENTIUM 4

Image size 256 512 1024
PowerPC F32 7.9 15.7 22.8
PowerPC F16 4.2 5.2 9.3
PowerPC gain 1.9 3.0 2.5
Pentium F32 13.4 18.9 20.0
Pentium F16 6.9 8.2 11.6
Pentium gain 1.9 2.3 1.7

TABLE 4: SIMD VERSUS SCALAR SPEED-UP FOR POWERPC AND PENTIUM 4

Image size 256 512 1024

PowerPC F32/f32 3.3 2.5 2.4
PowerPC F16/f16 6.7 5.5 4.2
Pentium F32/f32 2.9 2.6 2.9
Pentium F16/f16 5.5 5.1 4.1

V. CONCLUDING REMARKS

We have continued the evaluation of 16-bit floating point
operators and instructions for graphics and multimedia
applications. While our prior results [9,10] mainly focused on
the impact of SIMD 16-bit FP instructions on general purpose
processors, we have extended the evaluation to the accuracy
issues and the impact of scalar versions for embedded
processors and applications.

It is obvious that the F16 format will be useful only if it
closes a gap between the 16-bit integer format and the 32-bit
floating point format by having the memory occupation of the

16-bit format and a larger dynamic range than the 16-bit
integer format. When “short” format is sufficient, there is no
need for the “half” format. This is true for scalar computation.
For SIMD computation, the situation is somewhat different as
floating point vectorization is far easier than integer
vectorization.

FIGURE 8 : F16/F32 SIMD SPEED-UP FOR PENTIUM 4 ACCORDING TO IMAGE

SIZES

FIGURE 9: F16/F32 SIMD SPEED-UP FOR POWERPC ACCORDING TO IMAGE

SIZES
For all the benchmarks that we have considered, F16 format

delivers the same accuracy as F32 when FP computations are
needed. More, we have shown than the F16 operators could be
simple. As truncation can be used instead of rounding,
denormals are useless. As embedded applications don’t need
the complete set of FP operators, this means that implementing
F16 computation in low-end embedded processors could be a
valuable solution, while the usual FP 32-bit format is too
costly. Compared to the F32 scalar execution time, the F16
scalar execution time speed-up is limited: it only comes from
the better cache behavior resulting from the smaller cache
footprint.

Considering the impact of SIMD F16 instructions, the
Wavelet benchmark confirms the previous results on Deriche,
scan, and OpenGL benchmarks: the combined effect of wider
SIMD instructions and smaller cache footprint gives a
significant speed-up, generally ranging from slightly less than 2
to more than 2.

This work will be continued by considering more
benchmarks. Experiments on actual embedded processors will

be done. Evolution of SoC technologies, including
customizable CPU architectures such as the Xtensa processor
[16], opens new opportunities for a more precise evaluation of
16-bit floating point instructions.

REFERENCES
[1] Apple, “Introduction to vImage”,

http://developer.apple.com/documentation/Performance/Conceptual/vIma
ge/

[2] G. Kolli, “Using Fixed-Point Instead of Floating Point for Better 3D
Performance”, Intel Optimizing Center,
http://www.devx.com/Intel/article/16478

[3] D. Menard, D. Chillet, F.Charot and O. Sentieys, “Automatic Floating-
point to Fixed-point Conversion for DSP Code Generation”, in
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES 2002)

[4] F. Fang, Tsuhan Chen, Rob A. Rutenbar, “Lightweight Floating-Point
Arithmetic: Case Study of Inverse Discrete Cosine Transform” in
EURASIP Journal on Signal Processing, Special Issue on Applied
Implementation of DSP and Communication Systems

[5] Texas Instruments,TMS 320C3x User’s guide,
http://focus.ti.com/lit/ug/spru031e/spru031e.pdf

[6] OpenEXP, http://www.openexr.org/details.html
[7] W.R. Mark, R.S.Glanville, K. Akeley and M.J. Kilgard, “Cg: A system

for programming graphics hardware in a C-like language.
[8] NVIDIA, Cg User’s manual,

http://developer.nvidia.com/view.asp?IO=cg_toolkit
[9] D. Etiemble, L. Lacassagne,“SIMD 16-bit FP instructions for image and

media processing on general purpose microprocessors”, ODES 2004,
Palo Alto, March 2004

[10] D. Etiemble, L. Lacassagne, “16-bit FP sub-word parallelism to facilitate
compiler vectorization and improve performance of image and media
processing”, in Proceedings ICPP 2004, Montreal, Canada

[11] T. R. Halfhill, “IBM trims Power4, adds Altivec”, in Microprocessor
Report, 10/08/02

[12] Apple Developer Connection, “G5 performance programming”,
http://developer.apple.com/hardware/ve/g5.html

[13] M. Unser, “Spline, A perfect fit for signal and image processing”, in
IEEE Signal Processing Magazine, November 99, pp 22-38.

[14] C. Lee, M. Potkonjak, W.H. Mongione-Smith, “Mediabench : A Tool for
Evaluating and Synthetising Multimedia and Communication Systems”,
Proceeding Micro-30 conference, Research Triangle Park, NC, December
1995.

[15] A. Said, W. A. Pearlman, "A New Fast and Efficient Image Codec Based
on Set Partitioning in Hierarchical Trees," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, pp. 243-250, June
1996.

[16] T.R. Haflhill, “Tensilica tackles bottleneck”, in Microprocessor Report,
May 31, 2004

