
 

 
 

Abstract— We have simulated the implementation of 16-bit 
floating point instructions on a Pentium4 and PowerPC G5 to 
evaluate the performance impact of these instructions in 
embedded processors for graphics and multimedia applications. 
Both accuracy of the computations and the execution time have 
been considered. For low-end embedded processors without 
SIMD instructions, the 16-bit FP instructions deliver a larger 
dynamic range than 16-bit integer with the same memory 
footprint. For high-end embedded processors with SIMD 
instructions, we add the speed up coming from wider SIMD 
instructions. 
 

Index Terms—16-bit floating point instructions, SIMD 
extensions, vision and multimedia, embedded processors and 
applications. 

I. INTRODUCTION 

Graphics and media applications have become the dominant 

ones for general purpose microprocessors and correspond to a 
very large segment of embedded applications. They have led to 
the introduction of specific instruction set extensions such as 
the SIMD extensions which are available both for general 
purpose processors (such as SSE/SSE2/SSE3 extensions for 
IA32, Altivec for PowerPC) or embedded processors (such as. 
SIMD extensions for ARM ISA implemented in Xscale 
processors).  

Image processing generally need both integer and FP 
formats. For instance, vImage [1], which is the Apple image 
processing framework, proposes four image types with four 
pixel types: the first two pixel types are unsigned byte (0 to 
255) and float (0.0 to 1.0) for one color or alpha value and the 
two other pixel types are a set of four unsigned char or float 
values for Alpha, Red, Green and Blue. Convolution 
operations with byte inputs need 32-bit integer formats for the 
intermediary results. Geometric operations need floating point 
formats. 

For media processing, the debate between integer and FP 
computing is also open. On one hand, people argue for using 
fixed-point computation instead of floating point computation. 
For instance, G. Kolly justifies “using Fixed-Point Instead of 
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Floating Point for Better 3D Performance” in the Intel 
Graphics Performance Primitives library in [2]. Techniques for 
automatic floating-point to fixed-point conversions for DSP 
code generations have been presented [3]. On the other hand, 
people propose lightweight floating point arithmetic to enable 
FP signal processing applications in low-power mobile 
applications [4]. Using IDCT as benchmark, the authors show 
that FP numbers with 5-bit exponent and 8-bit mantissa are 
sufficient to get a Peak-Signal-to-Noise-Ratio similar to the 
PSNR with 32-bit FP numbers. These results illustrate one case 
for which a format using less than 16 bits would deliver 
performance equivalent to the 32-bit FP format. This debate is 
important for embedded applications, for which the needed 
performance should be obtained with the minimum memory 
occupation and minimum power dissipation. 

A 16-bit floating point format would combine the memory 
occupation of 16-bit integer and provide a larger dynamic 
range. Such formats have been defined a long time ago in some 
DSP processors. For instance, the TMS 320C32 [5] has an 
internal 16-bit type with 1 sign bit, a 4-bit exponent and an 11-
bit fraction that can be used as an immediate value by FP 
instructions and an external 16-bit type with 1 sign bit, a 8-bit 
exponent field and a 7-bit fraction which is used for storage 
purposes. By they are rarely used. Recently, a 16-bit floating 
point format called “half” has been introduced in the OpenEXP 
format [6] and in the Cg language [7,8] defined by NVIDIA. It 
is currently used in some NVIDIA GPU. It is justified by ILM, 
which developed the OpenEXP graphics format, as a response 
to the demand for higher color fidelity in the visual effect 
industry: “16-bit integer based formats typically represent color 
component values from 0 (black) to 1 (white), but don’t 
account for over-range value (e.g. a chrome highlight) that can 
be captured by film negative or other HDR displays… 
Conversely, 32-bit floating-point TIFF is often overkill for 
visual effects work. 32-bit FP TIFF provides more than 
sufficient precision and dynamic range for VFX images, but it 
comes at the cost of storage, both on disk and memory”. 
Similar arguments are used to justify the “half” format in Cg 
language.  

In [9], we have presented some preliminary results on the 
performance evaluation of a “half” SIMD extension for the 
Intel IA-32 ISA and the PowerPC Altivec extension. The 
context was the extension of “multimedia” capabilities of 
general purpose microprocessors, and we mainly focused on 
the speed-up resulting from wider SIMD instructions and the 
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“vectorization issues”. In this paper, after a brief summary of 
the prior results, we focus on the impact of 16-bit FP 
instructions for embedded processors. A scalar version of these 
instructions is considered for low-end embedded processor 
while the impact of SIMD instructions is still considered for 
high-end embedded processors. While prior results only 
considered the execution time, we now both consider the 
accuracy issues and the execution time for the different 
benchmarks.  

II. SUMMARY OF PREVIOUS RESULTS 

In [9,10], we have considered the speed-up between 
versions using SIMD 16-bit floating point instructions (called 
F16) and versions using 32-bit floating point instructions 
(called F32). The speed-ups have been measured on general 
purpose processors: Pentium 4 and PowerPC G5. The 
following benchmarks have been used:  

- Horizontal and Horizontal-Vertical versions of the 
Deriche filters. 

- Deriche gradient 
- Scans: +scan and +*scan. 
- Bounding boxes of triangle in tri-strip format 

(OpenGL). 
For Deriche filters, the Pentium SIMD F16 versions exhibit 

a speed-up close to 2 versus the float versions and the speed-
up between F16 and 32-bit FP versions ranges from 2.2 to 4.2 
for the G5 processors.  

For the +scan, which is memory-bounded and has execution 
times close to the execution time of a simple copy, F16 
instructions are useless. For +*scan, which accumulate both 
the values and the square of values of all the image pixels, both 
Pentium 4 and PowerPC G5 exhibit a speed-up slightly less 
than 2 with F16 versus F32.  

For the OpenGL benchmark, the speed-up is 1.8 for Pentium 
4 and 2 for the G5.  

In any case, the speed-up derives from the wider SIMD 
instructions (two times more operations per SIMD instruction) 
and the smaller data cache footprint (16-bit format versus 32-
bit format). Due to the instruction latencies that are used, the 
Pentium 4 results are slightly pessimistic while the G5 results 
are slightly optimistic. 

A rough evaluation of the 16-bit FP operators has also been 
given. Based on  a cell-based estimated implementation derived 
from a VHDL description of the operators, it was shown that 
the chip area for 8 16-bit FP functional units (Addition-
subtraction, Multiplication, Division and Square root) would 
be about 11% of the corresponding chip area of 4 64-bit FP 
functional units.  

III. METHODOLOGY 

To evaluate the interest of adding one F16 format within 
embedded processors, several issues must be considered: 

- The accuracy of F16 computations compared to integer 
ones or usual single precision or double precision IEEE 
floating point formats for graphics and multimedia applications 

- The execution times for different benchmarks when using 
F16 formats compared to F32 formats without and with SIMD 
instructions. 

- The hardware cost for the F16 operators in embedded 
systems. As F16 will be used for specific applications, the 
hardware evaluation must be considered for reconfigurable 
hardware (FPGAs including processor on chip), SoCs or 
customizable architectures such as the Xtensa processor.  

- Only the two first issues are considered in this paper. The 
third issue has not yet been extensively studied. The results will 
be published later. 

A. The NVIDIA Half format 
The “half” format is presented in figure 1. A number is 

interpreted exactly as in the other IEEE FP formats. The 
exponent is biased with an excess value of 15. Value 0 is 
reserved for the representation of 0 (Fraction =0) and of the 
denormalized numbers (Fraction ≠ 0). Value 31 is reserved for 
representing infinite (Fraction = 0) and NaN (Fraction ≠ 0). 
For 0<E<31, the general equation for calculating the value in a 
floating point number is (-1)S x (1.fraction) x 2(Exponent field-15). 
When using denormals, the range of the format extends from  
2-24 = 6 x 10-8 and (216-25) = 65504. Without denormals, the 
range extends from 2-15 to 65504. To tackle the dynamic 
problem, the F16 numbers can be "normalized" during 
conversion  by changing the pixel range from [0 - 255] to [0.0-
1.0] as for the other floating-point formats. In the remaining 
part of this paper, this 16-bit floating point format will be 
called half or F16 and the IEEE-754 32-bit FP simple precision 
format will be called F32.  

S Exponent Fraction

1 5 10

S Exponent Fraction

1 5 10

 
 

FIGURE 1 : NVIDIA “HALF” FORMAT 

B. Accuracy issues 
For checking the F16 accuracy compared to usual 32-bit FP 

accuracy, we started with the original 32-bit FP version of 
different benchmarks and we wrote different functions to 
simulate the 16-bit FP range within 32-bit FP numbers. With 
this approach, we were able to run the different benchmarks by 
just inserting the appropriate function before any program use 
of a “float” variable and after any program computation on 
“float” numbers: any “float” source operand and any “float” 
result of a “float” operation remains “float” numbers, but with 
the precision and accuracy of “half” number. This approach is 
machine independent. The following functions have been 
tested: 

- Truncation without denormals: the fraction is 
truncated from 23 bits to 10 bits by discarding the 13 
low-order bits. Denormals are transformed into zero. 

- Rounding to nearest without denormals: the fraction 
is reduced from 23 bits to 10 bits with rounding to 
nearest according to IEEE-754 standard. Denormals 
are transformed into zero. 



 

- Truncation with denormals: truncation of the fraction 
and standard definition for denormals 

- Rounding to nearest with denormals: rounding of the 
fraction and standard definition of denormals. 

By using each one of these functions on the different 
benchmarks, we compared the different images that were 
transformed by each benchmark with the “Peak-Signal-to-
Noise-Ratio” metrics. Different hardware implementations of 
the F16 arithmetic operators would correspond to the different 
function. If truncation without denormals gives similar results 
compared to the other solutions, then the simplest hardware 
implementation would be possible, which is the ideal situation 
for embedded hardware.  

C. Execution time of scalar versions 
As in [9,10], we used measured execution times on actual 

processors to evaluate the performance of the F16 version of 
the considered benchmarks. Pentium 4 and PowerPC G5 
processors were used. The Pentium 4 is a 2.4 GHz Xeon 
processor with 1 GB memory running Windows XP. The 
benchmarks have been compiled with the Intel C++ 8 compiler 
and the QxW. The execution time has been measured with the 
RDTSC (read-time stamp counter) instruction available with 
IA-32. All the measures have been done with only one running 
application (Visual C++). The PowerPC is a 1.6 GHz 
PowerPC G5 with 768 MB DDR400 running Mac OS X.3. 
The programs have been compiled with the Xcode 
programming environment including gcc 3.3.  

It may look strange to use general purposed processors to 
evaluate extensions for embedded processors, but we do feel 
that most results that we obtained can be extrapolated to 
embedded processors. By using these processors, we basically 
use the execution times of the different instructions that are 
specific to these processors, and the cache hierarchies that are 
also specific to these processors. Embedded processors would 
have different instructions, different instruction latencies and 
different data cache sizes. The quantitative results would be 
different, but we do believe that the qualitative results would 
be similar as the impact of the data cache and larger SIMD 
instructions would be qualitatively the same when using 16-bit 
floating point data instead of 32-bit floating point data. As 
previously mentioned, further works will consider the actual 
implementation of F16 operators in configurable hardware or 
SoCs. One advantage of using general purpose processor is to 
profit from the richer available SIMD extensions and software 
tools (vectorizing compilers, SIMD intrinsics).  

We are basically interested in the differences between the 
execution times of the F16 version andthe 32-bit FP version of 
the different benchmarks. Sometimes, the 16-bit integer version 
(called I16) can be executed without transforming the 
benchmark. In that case, the accuracy is generally insufficient 
(and the program results are wrong) but it gives a good insight 
on the lower bound for the execution time with 16-bit formats.  

For scalar and SIMD versions of the F16 instructions, we 
consider that the F16 versions of the arithmetic instructions 
have the same latency and throughput than the F32 

instructions. This assumption is pessimistic because F32 
instructions are executed in a Pentium 4 by the same operators 
as the 64-bit double precision instructions (SP and DP 
instructions have the same latency and throughput). 16-bit FP 
operators are obviously faster than 64-bit operators, but the 
operation latency is only part of the overall instruction latency, 
which is mainly determined by the insertion of the operator in 
the processor data-path. Anyway, considering that F16 and 
F32 instructions have the same latencies means that our results 
are more pessimistic than optimistic.  

When the 16-bit and 32-bit integer versions can be executed 
on a benchmark, the execution time of the F16 version is 
evaluated as follow:  
TF16 = TI16 +TF32 –TI32 
This formula derives from the following assumptions: The F16 
instructions have the same latencies as the F32 ones, while the 
cache behavior is the same as with I16 instructions. The term 
(TF32-TI32) expresses the difference between the FP and integer 
execution times, while TI16 considers the cache behavior with 
16-bit integer. This cache behavior is the same with F16 data 
and I16 data. 

D. Execution time of SIMD versions 
The methodology for SIMD versions is the same as in 

[9,10]. For using SIMD instructions, we cannot only rely on 
the compiler to vectorize. Intrinsics are assembly-coded 
functions that enable the programmer to use expanded inline 
C/C++ function calls and variables in place of assembly 
mnemonics and registers. With “intrinsics” within C programs 
to manually use the SIMD instructions, we can use different 
“intrinsics” to simulate the F16 SIMD instructions with 
different latencies.  

The graphics and media benchmarks have a nice specificity: 
the kernel computation consists in loop nests which are not 
data dependant (the loop iterations only depend on the loop 
bounds that are defined at compile time). In this situation, the 
“simulated” instructions can be replaced by any “actual” 
instruction with given latency and throughput figures. There 
are basically three constraints:  

- the cache accesses should be the same for the 
simulated and actual memory instructions 

- The data dependencies should be strictly enforced.  
- As it is no longer possible to check the results, we 

must carefully check that the compiler generates all 
the required instructions according to the data 
dependencies.  

For instance, the IA32 SIMD MULPS (packed floating 
point multiplication) can be used to simulate a MULF16 
(packed half multiplication with the same latency (6 cycles) 
and throughput (2 cycles). The situation is the same for the 
Altivec instructions of the PowerPC. 

1) Pentium 4 
As the reference processor, we considered the current 

version of the Pentium 4 (without hyperthreading technology) 
including the SSE3 extension.  

We assume the currently available 128-bit XMM register 



 

set. With 128-bit registers and data path, the number of 
functional units for each SIMD F16 operation is 8. The issues 
to solve are: the conversions between bytes to/from F16 data, 
the type of FP operators and the permutation and formatting 
operations that must be added for the F16 format. 

Byte to F16 conversion means converting 8 packed bytes 
into 8 packed F16 “half”. IA32 ISA having a (2,1) instruction 
format, the source operand can be either a register or a 
memory operand. One could define a conversion from a 64-bit 
memory operand (or the lower part of an XMM register) into 
an XMM register. The other option consists in defining two 
different byte-to-F16 conversion instructions as shown in 
Figure 2. After loading the XMM register with a 16-byte 
memory access, the first conversion instruction would convert 
the lower part of the XMM register into 8 packed F16 in 
another register and the second one would convert the higher 
part. This second conversion instruction is not absolutely 
necessary, but avoids an intermediate move/shift from the 
upper part to the lower part of the source register. These 
conversion instructions are register only instructions. The 
opposite F16 to byte conversion are needed. The second 
option is more efficient. It leads to implicitly unroll two times 
any loop (the lower 8-byte operands first, then the higher 
ones).  
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FIGURE 2: BYTE TO F16 CONVERSION INSTRUCTIONS 

 
To be able to deal with the complete F16 format, the FP 

operators that are needed are the same as the ones that are 
available for single and double precision formats: the packed 
F16 addition/subtraction, multiplication, division and square 
root operators. Obviously, only the needed operations would 
be implemented in embedded applications. Bitwise logical 
operations are the same for F16 formats as for any other 
format. Shuffle and pack/unpack instructions can be more 
efficiently executed on the original byte data before conversion 
for byte stored arrays, but they are needed for “half” stored 
arrays. When F16 data are stored, all the shuffle or 
packing/unpacking instructions that are now available for 16-
bit data can be used but these operations should be extended to 
the 8 different slots, which raise a small difficulty. The shuffle 
or packing/unpacking operations are defined by an 8-bit 
immediate in the IA-32 ISA, which is OK with four slots. 
Keeping an 8-bit immediate with eight slots would need a 
coding of the different operations on the eight slots. Table 1 
lists the different F16 IA-32 instructions that we used in our 
benchmarks. All the proposed instructions have a throughput 
value of 2. 

To be able to completely treat the 16-bit FP format, short 
from/to half conversions are also needed. Load and store 

packed instructions for half data are similar to the already 
packed integer instructions. 

A program using the F16 instructions is directly derived 
from the corresponding F32 one by replacing the F32 
instructions by F16 instructions. As previously mentioned, the 
F16 instructions are presently simulated by actual instructions 
fo the IA-32 or PowerPC ISA. 

 
TABLE 1: 16-BIT FP INSTRUCTIONS FOR PENTIUM 4 

Instruction Latency 
(Max) 

Meaning 

ADDF16 4 Xmmd <- Xmmd+Xmms 
SUBF16 4 Xmmd <- Xmmd-Xmms 
MULF16 6 Xmmd <- Xmmd * Xmms 
MAXF16 4 Xmmd <- Xmmd max Xmms 
MINF16 4 Xmmd <= Xmmd min Xmms 
CBL2F16 4 Xmmd <= BytetoF16 (Xmms low) 
CBH2F16 4 Xmmd<= BytetoF16 (Xmms high) 
CF162BL 4 Xmmd low<= F16toByte (Xmms) 
CF162BH 4 Xmmd high<= F16toByte(Xmms) 
SHUFF16 4 Xmmd <= shuffle (8 slots) Xmms 

 
2) PowerPC G5 

We consider the actual implementation of the G5 processor 
[11] with Altivec extension and the instruction latencies [12] 
given in Table 2   

TABLE 2: G5 INSTRUCTION LATENCIES 

Execution Unit: cycles 
IU (+, -, logical, shift) 2-3 
IU (multiplication) 5-7 
FPU (+, -, *, MAF) 6 
LSU (L1 hit) to GPR, FPR, VR 3,5,4-5 
LSU (L2 hit, loads only) 11 
VPERM 2 
VSIU (part of VALU) 2 
VCIU (part of VALU) 5 
VFPU (part of VALU) 8 

 
As the Altivec extension is rather complete, the only 

supplementary needed F16 instructions are the F16 version of 
the vector FP instructions and the byte to/from F16 conversion 
instructions. All the packing/unpacking and permutation 
instructions that are needed are already available for short 
integer operands. The simulated conversion instructions have a 
latency of 2, which may be a little bit optimistic. The F16 
multiplication-accumulation instruction, which is used for F16 
add, mul and mul-add, has a latency of 5. Compared to our 
Pentium 4 simulation of F16 instructions that were pessimistic, 
our G5 simulation are slightly optimistic.  

E. Benchmarks 
We considered three different benchmarks.  
The first one has been furnished by Prof. A. Montanvert 

(LIS, Grenoble) and has been written by a Ph. D student (L. 
Condat). The benchmark consists in Image zooming and 



 

interpolation by power of 2 by using splines [13]. The 
benchmark has three zoom values: 1, 2 and 4. The first one is 
used to validate the filters that are used. 

The second one is the JPEG codec of Mediabench suite 
[14]. It includes both a DCT (coder) and IDCT (decoder) with 
three different versions: float, integer and “fast” integer. We 
added the F16 version for the DCT and the IDCT. The third 
one is a Wavelet benchmark, which uses the SPHIT (Set 
Partitioning in Hierarchical Trees) [15]. It uses the same set of 
filters than the wavelet transform used in JPEG2000, but the 
compression stage is smaller than the one in the JPEG encoder. 

We used a large set of images of different sizes: 
- 1024x1024 images: man_1k 
- 512x512 images: baboon, Barbara, Lena, lighthouse, 

peppers 
- 128x128 images: corridor, Einstein, Grenoble, Lena, 

office, Titanic. 

IV. MEASURED RESULTS  

A. Zooming and interpolation benchmark 
We focused on accuracy issues. With the x2 and x4 zoom 

factors, the differences between the zoomed images computed 
with F32 and F16 data is always greater than 55 dB. More, the 
PSNR values are the same for truncated and rounded F16, with 
or without denormals. This result is important as it shows that 
the simplest version of F16 operators is sufficient. 

For the useful zoom values, the F16 version is 19% faster 
than the corresponding F32 one. Without zoom (x1), the speed 
up is 1.8, which shows the impact of the reduced cache 
footprint as there is few computation for this zoom value. As 
expected, the speed-up comes from the better cache behavior. 
The resulting speed-up depends on the ratio between data 
accesses and computations. 

The most time consuming function in the zooming 
application exhibits a loop-carried dependency which prevents 
using SIMD instructions. 

B. JPEG codec 
On this benchmark, we only considered the accuracy of 

computations. Figures 3 and 4 and show the difference in dB 
between the compressed/decompressed images and the original 
one according to image sizes and the different versions of the 
DCT and IDCT implementation. For 256x256 images, there 
are no significant differences, which means that integer 
implementation is the most efficient (even the faster one which 
degrades accuracy for speed). For 512x512 images, the result 
is image dependant. If Lighthouse exhibits the same behavior 
as smaller images, Baboon and Lena shows the improvement 
resulting from FP computations and that F16 has the same 
accuracy as F32 while using half the memory occupation. The 
evaluation of execution times remains to be done for this 
benchmark. 
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FIGURE 3: PNSR DIFFERENCE BETWEEN COMPUTED AND ORIGINAL 512X512 
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FIGURE 4: PSNR DIFFERENCE BETWEEN COMPUTED AND ORIGINAL 

256X256 images 

C. Wavelet transform 
The wavelet transform is different from the previous 

benchmarks, as the transform (low-pass & high-pass filter) is 
recursively applied on a sub-quadrant of the image (figure 5). 
 

0 n 1 n+1 n-1 2 n+2 n-2 3 n+3 n-3 4 n+4 n-4

0 n 1 n+1 n-1 2 n+2 n-2 3 n+3 n-3

L(n) = l x  + l (x +x ) + l (x +x )  + l (x +x ) +l (x +x )

H(n) = h x  + h (x +x ) + h (x +x )  + h (x +x ) 
 

 
L filter is applied on even pixels and H filter to odd pixels to 

create 2 half size images. ImageL(n) = L(X(2n)), ImageH(n) = 
H(X(2n+1). To limit memory occupation, computations are 
done in situ: a line X (respectively a column) is copied into a T 
buffer for border symmetry; the filters are then applied as 
follow: Y(k) = L(T(2k)), Y(k+k) = H(T(2k+1), with 
k∈[0..n/2], or Y(k/2) = L(T(k)), Y(n/2+k/2) = H(T(k+1)) with 
k∈[0..n]. Filters (figure 6) are applied down to 32x32 image 
size, which means 6 iterations for 1024 x 1024 images, 5 for 
512x512 and 4 for 256x256 images. 
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FIGURE 5 : WAVELET TRANSFORM 
 
Compared to the F32 version, the PSNR difference is about 

3.5% for low compression factor (1 to 20) and less than 0.5% 
for higher factors when using F16. In any case, the difference is 
smaller than 3 dB. 
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FIGURE 6: WAVELET FILTERS 

 
Because of the interlaced filter applications, vectorization is 

a little bit more difficult than usually. There are 5 and 4 
multiplications instead of 9 and 7 for non symmetric filter 
coefficients. There is a large overlap of filter applications, with 
each filter contributing to 9 filter computations. As the filter 
sizes are not a power of 2, the SIMD reduction instructions are 
un-efficient. We used the same technique as for the Deriche 
benchmark (figure 7): a horizontal (respectively vertical) band 
of pixels is copied into a B band for which the memory 
accesses are horizontal. Such a band greatly reduces the cache 
misses during the vertical application of filters (if the Loads are 
not factorized, each pixel is reloaded 9 times). Then a block 
transposition is applied to B to load the registers with values 
orthogonal to the filter.  

To explain the caches behavior, the non recursive wavelet 
transform (only one iteration) has been applied to different size 
images, which sizes vary from 32x32 to 1024*1024 (figure 8 
and 9). 

SIMD performances are shown in Tables 3 and 4 for 
PowerPC and Pentium 4. The metrics is CPP (i.e. number of 
clock cycles per pixel). The SIMD versus scalar speed-up is 
shown in table 3 and 4.  These results can be explained as 
follow: the block transposition needs 8 instructions for four 
vector 32-bit numbers and 24 instructions for 8 vectors of 16-
bits, that is 0.5 instruction per 32-bit pixel and 0.375 
instruction per 16-bit. The speedup comes from the parallelism 
increase and from the cache footprints. F16 parallelism 
provides a speedup of about x2 compared to F32 parallelism 

(same number of instructions and operation per vector, but 
twice the number of processed pixels), while cache footprint 
modifies this speedup from 1.8 to 4 for PowerPC. The maximal 
speedup is achieved when F16 data fit in the cache, while F32 
data do not (for 512x512 images). For the recursive wavelet 
transform, the same remarks can be done.  
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FIGURE 7: BLOCK TRANSPOSITION USED IN DERICHE AND WAVELET 
BENCHMARKS 

 
TABLE 3: SIMD CPP FOR POWERPC AND PENTIUM 4 

 
Image size 256 512 1024 
PowerPC F32 7.9 15.7 22.8 
PowerPC F16   4.2 5.2 9.3 
PowerPC gain   1.9 3.0 2.5 
Pentium F32     13.4 18.9 20.0 
Pentium F16     6.9 8.2 11.6 
Pentium gain     1.9 2.3 1.7 

 
TABLE 4: SIMD VERSUS SCALAR SPEED-UP  FOR POWERPC AND PENTIUM 4 

 
Image size 256 512 1024 

PowerPC F32/f32 3.3 2.5 2.4 
PowerPC F16/f16 6.7 5.5 4.2 
Pentium F32/f32 2.9 2.6 2.9 
Pentium F16/f16 5.5 5.1 4.1 

V. CONCLUDING REMARKS 

We have continued the evaluation of 16-bit floating point 
operators and instructions for graphics and multimedia 
applications. While our prior results [9,10] mainly focused on 
the impact of SIMD 16-bit FP instructions on general purpose 
processors, we have extended the evaluation to the accuracy 
issues and the impact of scalar versions for embedded 
processors and applications.  

It is obvious that the F16 format will be useful only if it 
closes a gap between the 16-bit integer format and the 32-bit 
floating point format by having the memory occupation of the 



 

16-bit format and a larger dynamic range than the 16-bit 
integer format. When “short” format is sufficient, there is no 
need for the “half” format. This is true for scalar computation. 
For SIMD computation, the situation is somewhat different as 
floating point vectorization is far easier than integer 
vectorization.  

 

 
FIGURE 8 : F16/F32 SIMD SPEED-UP FOR PENTIUM 4 ACCORDING TO IMAGE 

SIZES 

 
FIGURE 9: F16/F32 SIMD SPEED-UP FOR POWERPC ACCORDING TO IMAGE 

SIZES 
For all the benchmarks that we have considered, F16 format 

delivers the same accuracy as F32 when FP computations are 
needed. More, we have shown than the F16 operators could be 
simple. As truncation can be used instead of rounding, 
denormals are useless. As embedded applications don’t need 
the complete set of FP operators, this means that implementing 
F16 computation in low-end embedded processors could be a 
valuable solution, while the usual FP 32-bit format is too 
costly. Compared to the F32 scalar execution time, the F16 
scalar execution time speed-up is limited: it only comes from 
the better cache behavior resulting from the smaller cache 
footprint. 

Considering the impact of SIMD F16 instructions, the 
Wavelet benchmark confirms the previous results on Deriche, 
scan, and OpenGL benchmarks: the combined effect of wider 
SIMD instructions and smaller cache footprint gives a 
significant speed-up, generally ranging from slightly less than 2 
to more than 2. 

This work will be continued by considering more 
benchmarks. Experiments on actual embedded processors will 

be done. Evolution of SoC technologies, including 
customizable CPU architectures such as the Xtensa processor 
[16], opens new opportunities for a more precise evaluation of 
16-bit floating point instructions. 
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