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Abstract

This paper discusses the relationship between computer arithmetic
and hardware implementation. First, we examine the impact of computer
arithmetic on the overall performance of today’s microprocessors. By
comparing their evolution over the last ten years, we show that the per-
formance of arithmetic operators is far less critical than the performance
of the memory hierarchy or the branch predictors. We then discuss the po-
tential for improvement in arithmetic performance, both for pipelined and
non-pipelined operations. We then examine the possible impact of new
technologies, such as MMX technology or asynchronous control of micro-
processors, on computer arithmetic. Finally, we show that programmable
logic devices now permit a cost-effective implementation of specific arith-
metic number representations, such as serial arithmetic or logarithmic
representations.
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1 Introduction

Performance of computers has climbed up steadily for more than fifty years
and the progression rate has increased with the developments of microproces-
sors in the last twenty-five years. The big gap between low-end computers and
high-end supercomputers is narrowing, because both use the same basic com-
ponents. Most notably, the first supercomputer to break the Teraflop ”wall”
on a typical ’LINPACK benchmark” was built with about 8,000 Pentium Pro
microprocessors. This Intel microprocessor is very close to the Pentium IT now
used in most of the desktop or workstation PCs. Computer users rarely hear
about computer arithmetic, although they hear a lot about caches, disks, 2D or
3D graphic cards, etc. The only opportunity to read about arithmetic in journal
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papers is when arithmetic bugs are discovered and revealed. The most famous
was the Pentium bug on division operations. Intel announced some other less
important arithmetic bugs for the Pentium II. In some sense, arithmetic looks
marginal in the overall performance of standard microprocessors. In the first
part of this paper, we will examine the different aspects of performance in ”main
stream” computers (PCs and workstations) and explain why the arithmetic is
not the driving factor for improving performance, by discussing the impact of
latencies of arithmetic operations on the instruction execution rate. Then, we
will show that performance of arithmetic operations is improving incrementally:
if there is still room for continuous progress in arithmetic performance, there are
very few possibilities for real breakthroughs. Next, we will discuss the possible
impact of new technologies: one is the multimedia extension of the instruction
sets that is now used in most of the modern microprocessors, and the other cor-
responds to the ”asynchronous approach” for controlling microprocessors. In
the last section, we show that ”special purpose” hardware can now be used for
implementing specific arithmetic number representations with a good perfor-
mance/cost ratio, using the efficient programmable logic components that are
now available.

2 Performance of ”off the shelf” microproces-
Sors

2.1 Overall performance

Overall performance of standard microprocessors has been climbing steadily.
Performance evaluation of computers is not straightforward and using bench-
marks is very debatable, as discussed in [HEN96]. However, benchmarks give
some insight into the evolution of performance over time. One difficulty with
benchmarks is that they become as obsolete as the computers, and they have
to be replaced by new benchmarks. One example is the famous SPEC suite.
The first instance of this suite is SPEC89, that was replaced by a new suite
called SPEC92 in 1992. The performance of computers that was measured be-
fore had to be reevaluated according to the new SPEC92 scores. The SPEC92
score indicates how many times a machine is faster than the reference machine,
which was a VAX-11 780. In 1995, a new version of the suite called SPEC95 was
defined, with extended versions of the previous benchmarks and a new reference
machine that totally changed the SPEC scores.

Figure 1 shows the relative integer performance (equivalent to the SPECint92
scores) for the best RISC microprocessors and the best Intel microprocessors
from 1986 to 1995. The scores for the last 3 years cannot be easily derived be-
cause there is no simple equivalence between SPECint92 and SPECint95 scores.
The figure shows that the integer performance increases at a 55%/year rate for
the best RISC processor, and at a 40% and then 50% per year rate for Intel



processors. If the integer performance of the best RISC processor is roughly
two times the performance of the Intel processor, this is not enough to menace
the predominance of Intel microprocessors on the PC market. Moreover, if we
compare RISC and Intel microprocessors of equivalent cost, the performance
gap is only 20 to 40%. What is important is the exponential increase of integer
performance.
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Figure 1: Relative integer performance for best RISC and Intel microprocessors.

The reference machine for the SPEC95 suite is a SparcStation 10/40 (1993)
with a 40-MHz SuperSparc microprocessor, no secondary cache and a 64-MB
main memory. The SPEC92 score for this machine is roughly 41 SPECint92 and
34 SPEC{p92. These two values cannot be used as a scaling factor between the
two scores, as SPEC95 and SPEC92 don’t use exactly the same benchmarks,
and when using the same benchmark they don’t use the same working set. The
SPEC{p95 performance for the best mid-97 workstations, together with the
forecast for 1998, are given in Table 1.

The increase in the rate of FP performance is greater than the one of integer
performance. However, as we will show in the next sections, these growing rates
don’t result from a spectacular progress in arithmetic operations. Just the op-



| Date | Machine | Processor | Clock | SPECIp95b |

mid-97 HP-9000 PA-8200 200 20.1
mid-97 | AlphaStation 600 21164 600 19.9
3Q-98 | Digital-Compagq 21264 600 60

Table 1: SPEC{p95b for today’s workstations.

posite, the performance of arithmetic operations have improved only slightly in
the last ten years. It is the progress in all aspects of processor microarchitecture
that explains the spectacular progress in performance : exponential growth of
clock frequency (about 35%/year), greater instruction rate (from several clock
cycles per instruction to several instructions per clock cycle), improved cache
hierarchy, improved memory bandwidth, etc.

2.2 Floating-Point operators and performance

Today, every standard microprocessor implements the same set of FP operators:
add, subtract, multiply, divide and square root, both with the IEEE-754 single
and double-precision formats. The square root operation defined in the Instruc-
tion Set Architecture (Alpha, HP-PA, 1A32, MIPS, PowerPC, and SPARC) has
been added to the most recent implementations of these ISAs. Some ISAs (HP-
PA, PowerPC) implement the multiplication-accumulation operation, which is
a four-operand one: Result = operandl X operand2 + operand3

In modern microprocessors, the clock cycle is determined either by the access
to the instruction/data primary cache, or by the execution time of the integer
arithmetic and logic unit for which the critical path is the subtract operation
time on 32-bit or 64-bit integer operands. As the FP operations are far more
complicated than the integer subtract, they all need several clock cycles to finish.
The latency parameter, i.e. the number of clock cycles from the beginning to
the end of an operation, depends on the complexity of the operation and on the
design philosophy that is used for implementing the ISA.

Most FP operations are pipelined: a new operation can start every clock cy-
cle. Addition and subtraction, multiplication and multiplication-accumulation
have a throughput of one instruction/cycle. More complex operations, using a
sequential scheme, cannot be pipelined and have roughly the same latency and
throughput figures. Table 2 and Table 3 give the corresponding numbers for
several well-known microprocessors.



| Microprocessor | FADD | FMUL | FMAC | FDIV | SQR |

Alpha 21064 6 6 na 61
Alpha 21164 4 4 na 22/60
Alpha 21264 4 4 na, 15 32
Ultra Sparc 1 3 3 na 22 22
Ultra Sparc 3 4 4 na 17 24
R 10000 2 2 na 19 33
PA-8000 3 3 3 31 31
IBM-P2SC 2 2 2 ? ?

Table 2: Latency (in clock cycles) of DP floating-point operations.

| Microprocessor | FADD | FMUL | FMAC | FDIV | SQR |

Alpha 21064 1 1 na, 61
Alpha 21164 1 1 na 22/60
Alpha 21264 1 1 na 13 30
Ultra Sparc 1 1 1 na 22 22
Ultra Sparc 3 1 1 na 17 24
R 10000 1 1 na 19 33
PA-8000 1 1 1 31 31
IBM-P2SC 1 1 1 ? ?

Table 3: Throughput (in clock cycles) of DP floating-point operations.

2.3 Impact on performance of three microprocessor fea-
tures

A good method to evaluate the impact of arithmetic operators on microprocessor
performance is to compare some features in the most recent microprocessors
with the same features in very old ones. For microprocessor history, 5 to 10-
years old corresponds to very old. The three features that we consider are the
FP operators, the memory hierarchy and the branch predictors. The rate of
evolution of each feature over time is a good indicator of its impact on the
overall performance.

2.3.1 Floating-Point operators

The implementation of FP operators strongly depends on the available transistor
budget. The first scalar RISC microprocessors, which were implemented in 1985
or 1986 (MIPS R2000 or R3000, Cypress CYC701 implementation of the SPARC



ISA) did not have enough transistors to implement the FP operators on the same
chip as the CPU: they used a FP coprocessor, implemented on a separate chip.
Some years later (1991), with more transistors, the MIPS R4000 implemented
the FP operators on the CPU chip, but there was not still enough transistors
to all implement FP operations with separate FP operators: several operations
shared some units. With this implementation, the FP latency and throughput
depend on the data dependencies, i.e. on the scheduling of the instructions by
the compiler.

All superscalar microprocessors since the beginning of the 1990’s use separate
on-chip FP units to implement FP operations. The number of operators of each
type is again a function of the transistor budget, which depends on the chip
area.

Table 2 presents the latency values and Table 3 presents throughput val-
ues both for different ISA implementations (Alpha, Sparc, MIPS, HP-PA and
PowerPC) and for different implementations of the same ISA. For instance,
21064, 21164 and 21264 are three successive Alpha chips and UltraSparc 1 and
UltraSparc 3 are the first and the last implementations of three different Sun
UltraSparc processors. One can compare the values for different ISAs, and the
evolution of values between successive generations of a given microprocessor.
Some observations can be derived from Table 2:

o Latencies of non-pipelined operations have decreased over time: the most
spectacular example is the division with Alpha architecture. There is a
four-time improvement between the latency of DP FP division between
21064 and 21264. There is also a slight improvement between US-1 and
US-3, with a counter-example for the square root operation.

e There is no clear trend for latencies of add and multiply operations. From
an older implementation to a newer one, operation latency can decrease
(21064 to 21164), remain constant (21164 to 21264) and even increase
(US-1 to US-3). It depends on the evolution of clock frequencies from one
generation to the next one.

We should point out that the clock latency is not significant by itself. FP
operation performance depends both on the operation latencies and the clock
frequency. Table 4 presents shows that similar FP performance on benchmarks
can be obtained with clock frequencies ranging from 135 MHz to 500 MHz. The
execution time for a given FP operation is approximately the same whatever
VLSI implementation is used for a given technology (we will show in this paper
that only slight incremental improvement is possible for the basic FP opera-
tions). If one processor with the clock frequency F needs 2 clock cycles for one
operation, another processor with the clock frequency 2F needs 4 clock cycles
for a similar operation. This corresponds to the well-known distinction between
the ”brainac” and the ”speed demon” approaches. As detailed in [SMI94], the
first philosophy focuses on powerful instructions and great flexibility in pro-



cessing order, where the second one depends on a very fast clock, with simpler
instructions and a more streamlined implementation structure.

| Microprocessor | Frequency (MHz) | Feature size (um) | SPECfp95b |

21164 500 0.35 18.3
R 10000 200 0.35 17.2
PA-8000 185 0.5 18.3

P2SC 135 0.29 14.5

Table 4: SPEC{p95 performance for processors with different clock frequencies.

2.3.2 Caches and performance

A

CPU <] L1
9 ‘ cache MM
System bus
b CPU L2
+ [t
L1 caches cache MM
System bus
Superscalar
c) CPU L2 | |
+ cache| [ MM
L1 caches
System bus
Special bus L2
Superscalar | cache
d) CPU
* MM
L1 caches

System bus

Figure 2: Evolution of the cache structure of standard microprocessors.

The significant improvement in transistor budgets available from mid-80’s
to now has also led to a significant evolution of the cache structure of standard
microprocessors. Figure 2 shows the most important steps in the evolution.
Part a) corresponds to the cache structure of the first RISC (R2000, R3000)
or the Intel 386 microprocessors. The primary cache (L1) is off-chip and there
is no secondary cache. Part b) corresponds to the integration of the primary



| Microprocessor | L1-Instructions | L1-Data | Memory Bandwidth |

Alpha 21064 8KB 8KB
Alpha 21164 8KB 8KB 0.4 GB
Alpha 21264 64KB 64KB 2 GB
Ultra Sparc 1 16KB 16KB 1.3 GB
Ultra Sparc 3 32KB 32KB 2.4 GB
R10000 32KB 32KB 0.54 GB
PA-8000 na na 0.77 GB
PA-8500 512KB 1024KB
IBM-P2SC 32KB 32KB 2.2 GB
Pentium 8KB 8KB
Pentium Pro 8KB 8KB
Pentium II 16KB 16KB

Table 5: Cache sizes and memory bandwidth.

cache within the CPU chip, generally with separate instruction and data L1
caches. An SRAM-based L2 cache is connected between the CPU chip and the
Main Memory. This situation is typical of scalar CPU like the Intel 486, or
most of the first superscalar CPUs (Pentium, SuperSparc, 21064, etc). Part
c¢) corresponds to the next step in cache integration. The CPU includes the
L2 cache on chip (21164) or on a separate chip in a common specific package
(Pentium Pro). Here, it is significant that the L2 cache operates at the CPU
clock frequency, and not at the system bus clock frequency as in the previous
approach. However, the c) approach has some drawbacks. Being on-chip, the
available size is too small for an efficient secondary cache (the 21164 L2 cache
has only 96-KB). The Pentium Pro special package is too expensive for low cost
PCs. Part d) illustrates the most recent step in this evolution. The L2 cache
is again off-chip, but it is connected to the CPU by a special bus, operating
at half the CPU clock frequency. Most of the recent microprocessors use this
approach: 21264, UltraSparc 3 and Pentium II. For the Pentium II, the CPU
and the L2 cache share a common special package called ”Socket 17.

Table 5 shows the cache sizes for the microprocessors in Table 2, plus some
Intel microprocessors. In contrast to the slight improvement in operation la-
tencies in Table 2, we see a significant evolution of cache sizes in Table 4. The
size of the instruction and data caches is the maximum size compatible with the
transistor budget and a balanced share of resources in the whole microprocessor
design. From the 21064 to the 21264, the on-chip cache size has increased by a
factor of 8. The cache size has doubled from UltraSparcl to 3. Hewlett Packard,
who relied on big off-chip primary caches in all their microprocessors up to the
PA-8200, switched to huge on-chip caches, with 0.5 MB for instructions and 1



MB for data in the announced PA-8500. The evolution of memory bandwidth
is probably even more significant. Memory bandwidth of several GB/s is cur-
rently available in high performance microprocessors, especially those which are
intended for numerical and database applications. The P2SC, which is used by
IBM for high-end applications, has a relatively slow clock frequency, but it has
large on-chip caches and a very high memory bandwidth.

Tables 2 to 5 indicate the relatively low importance of arithmetic operations
on the overall performance of a computer: accessing data through the memory
hierarchy is far more critical than FP operation speed.

2.3.3 Branch prediction and performance

Branch penalty /
3 e .

8 cycles

Instructions per cycle (IPC)

Prediction accuracy

Figure 3: Actual IPC according to prediction accuracy for a 4-issue superscalar
microprocessor.

With superscalar microprocessors issuing 4 instructions per clock cycle, the
prediction of conditional branches has become much more important than with
scalar microprocessors. It is beyond the scope of this paper to go into too
many details. To illustrate the problem, we show (Figure 3) the actual IPC



| Microprocessor | Predictor type | Predictor size |

Alpha 21064 na,
Alpha 21164 2-bit 4 Kb
Alpha 21264 | Dynamic 2-level (1G/1L) 35 Kb
Ultra Sparc 1 2-bit 1 Kb
Ultra Sparc 3 2-bit 32 Kb
R 10000 2-bit 1 Kb
PA-8000 2-bit 0.5 Kb

IBM-P2SC na,

Table 6: Branch predictor parameters.

(Instructions executed by Cycle) for a ”perfect” superscalar processor fetching
4 instructions per clock cycle, according to the prediction accuracy. The two
curves correspond to two values of the branch misprediction penalty: 8 and 14
cycles are examples of the values that can be found with presently used deep
pipelines. The figure shows that 88% (res. 93%) prediction accuracy is necessary
to achieve just one half the peak performance of the processor, and more than
96% prediction accuracy is needed to get 75% of the peak performance. These
numbers don’t need much explanation.

Table 6 gives some information on the approach used for branch prediction
and the size of the corresponding table. Most referenced microprocessors use lo-
cal 1-bit or 2-bit counters. The 21264 uses a 2-level scheme, which dynamically
chooses the best prediction between the prediction of a global predictor and the
prediction of a local predictor. This need for nearly ”perfect” prediction of con-
ditional branches has led to several changes in Instruction Set Architecture. The
Conditional Move instruction, that has been recently added to all major ISAs,
is a minor change which allows a simple implementation of the transformation
called ”if conversion” in code optimization. The new INTEL ISA, called TA64,
which is based on guarded instructions and speculative loads, is a major change
in ISA to reduce the impact of conditional branches on overall performance.

2.3.4 Features and overall performance

The examination of three basic features of modern microprocessors shows that
the performance of arithmetic operations is far less critical than the performance
of memory hierarchy or branch predictors. This doesn’t mean that arithmetic
operations have no influence on overall performance. In the next section, we
examine the possibilities to improve the performance of FP operations and we
discuss the real issues to consider.



3 Improving performance of arithmetic opera-
tions

3.1 Reducing latency of floating point-operations
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The most important FP functional units are the multiplier and the ALU.
Both are pipelined. Figure 4 shows the main components of the multiplier that
is implemented in the PA-7100 processor. Figure 5 shows the FP ALU for the
same processor. In both figures, dashed lines separate the different stages of the
pipeline for each operation, each stage corresponding to one half clock cycle.



| Cycle | Non-optimized code |

Unrolled code

| Software-pipelined code |

1-Loop LD F1,(R1) LD F1,(R1) SD F4,0(R2)
2 LD F2,(R2) LD F3, 8(R1) ADDD F4,F2,F3
3 MULTD F1,F0,F1 LD F5,16(R1) MULTD F3,F0,F14
4 LD F7,24(R1) LD F1,24(R1)
5 LD F2,(R2) LD F2,24(R2)
6 LD F4,8(R2) SUB R6,R7,R1
7 LD F4,16(R2) ADDI R1,R1,8
8 ADDD F2,F2F1 LD F4,24(R2) ADDI R2,R2,8
9 SUB R6,R7,R1 MULTD F1,F0,F1 BNEQ R6, Loop
10 ADDI R1,R1,8 MULTD F3,F0,F3
11 ADDI R2,R2,8 MULTD F5,F0,F5
12 SD F2, -8(R2) MULTD F7,F0,F7
13 BNEQ R6, Loop SUB R6,R7,R1
14 ADDD F2,F2,F1
15 ADDD F4,F4,F3
16 ADDD F6,F6,F5
17 ADDD F8,F8,F7
18 SD F2,(R2)
19 SD F4,8(R2)
20 SD F6,16(R2)
21 SD F8,24(R2)
22 ADDI R1,R1,32
23 ADDI R2,R2,32
24 BNEQ R6,Loop

Table 7: Example of code optimizations to hide pipelined operator latencies.

Both operations have a 2-cycle latency. Readers familiar with the algorithms
for the FP multiply, add or subtract operations can easily recognize the different
steps involved in these operations. When the latency of these operations is 2,
it is impossible to reduce the clock latency from 2 to 1. When the latency
is n ; 2, it is very difficult and often impossible to reduce it from n to n-1.
Moreover, the latency of pipelined operations is not a critical issue, because
compiler techniques like loop unrolling or software pipelining can hide most of
the FP operation latency, as shown by Table 7. The table shows the cycle by
cycle execution for the DAXPY loop (y[i] = a x z[¢] + y[i] with double-precision
operands) for a scalar processor. In this particular example, we use Alpha-like
assembly mnemonics and we assume that the latency of integer instructions is
1, the latency of FP loads is 2 and the latency of FP MUL and ADD is 5. With
these values, each iteration of the loop needs 13 cycles without any optimization
because of the stalls associated with the data dependencies. When the loop is
unrolled 4 times, it needs 6 cycles and when it is software pipelined, it needs



9 cycles. In these two cases, there are no pipeline stalls and the latencies of
FP operations are totally hidden. With slightly different values for different
operation latencies or for superscalar microprocessors, the situation is similar
when we use non-unit latency pipelined operations. Reducing the latency of
these operations is not essential to get optimal or nearly optimal performance.

3.1.1 Non-pipelined operations

The situation is quite different for non-pipelined operations, such as division or
square root. They use an iterative scheme to get the result: as they use the
same hardware for each iteration, one operation must complete before the next
one can start. Reducing the latency is important if the corresponding opera-
tion raises a processor stall, when subsequent instructions are waiting for the
results of the div or sqrt instruction. The actual influence of these operations
on performance is application dependent. First, it depends on the frequency
of these operations in the applications. But even rare non-pipelined opera-
tions can degrade performance: it depends on the interlock distances between
DIV/SQRT instructions and the consuming instruction. The interlock distance
is the number of clock cycles between the producing and the consuming instruc-
tions. When the distance is less than the latency of the operation, the processor
generally stalls. There are some exceptions that we don’t consider here. Ober-
man and Flynn [OBE97] have extensively studied the impact of non-pipelined
FP operations on the overall performance of the processor. As shown in Ta-
ble 8, the latency of the FP divider results from latency versus area trade-off.
Small dividers using 1-bit SRT algorithm have a large latency. On the other
hand, dividers using a very high radix have small latency but very large chip
area. In Table &, latencies are given in clock cycles and chip area is measured in
equivalent rbe (One rbe equals the area of a one-bit six-transistor static storage
cell).

| Divider Type | Latency (cycles) | Area (rbe) |
1-bit SRT L 40 3000
2-bit SRT 20,40 3110
4-bit SRT 10,20 4070
8-bit SRT + seltimed [4,10] 6665
Very High Radix 4 2 100,000

Table 8: Latency versus area trade-off for dividers.

Figure 6 gives the additional cycles per instruction (CPI) that result from
non-pipelined division operations (thick line) both for scalar (1-issue) and 8-
issue superscalar microprocessors according to the division latency. Figure 6



also gives the chip area (thin line) according to the division latency. As the
ideal CPI of an 8-issue processor is 0.125, we can observe that the CPI impact
of division can become very significant with high performance up-to-date micro-
processors, even when division operations are very rare. In fact, the real impact
on performance depends on many different factors: applications, compiler opti-
mizations, and features of the processor. Compiler optimizations can increase
interlock distances. Modern microprocessor features, like register renaming and
”out-of-order” execution can reduce the ”urgency” of results, because the pro-
cessor can continue executing subsequent instructions while it is waiting for the
results of previous ones.
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Figure 6: CPI impact of division and chip area according to division latency.

3.1.2 The self-timed radix-2 divider

If compiler techniques and modern microprocessor features reduce the impact of
division and square root latencies, they cannot avoid performance penalties in
some critical situations, where the non-pipelined latency of the operation is the
bottleneck. The following loop, used in [TTR96], illustrates this situation: z[i] =
(ax z[i] x z[i]+bx z[i]+ ¢)/(a x y[§] X y[§] + b X y[i] + ¢) One possible approach to
attack the latency problem is to use reciprocal approximation formulas instead of



the SRT algorithm, which is currently used for the implementation of dividers
in modern microprocessors. The drawback of this approach is that it needs
rather large ROMs. One example of this approach is presented in [SEI98]. For
IEEE division, the author reports a latency of 9 clock cycles for double-precision
numbers with a throughput of 7 clock cycles and a latency of 7 clock cycles for
single-precision numbers with a throughput of 5 clock cycles. These results don’t
show any advantage compared to some implementations of the well-known SRT
algorithm [WIL91]. We now briefly present this implementation.

Williams and Horowitz use the radix-2 SRT division algorithm, which imple-
mentation was shown to be more efficient (speed vs. area tradeoff) than using a
higher radix. Figure 7 illustrates graphically a stage of this division algorithm,
which uses quotient digits in the set -1, 0, +1. Figure 8 summarizes the hard-
ware requirements for the SRT division stage. The quotient digit selection is
based on an approximation of the partial remainder in each stage, formed by
the most significant bits of this partial remainder. Only a 3-bit carry-propagate
adder (CPA) is needed to combine the sum and the carry bits examined by the
quotient selection logic. All of the less significant bits of the partial remainder
can be computed using a carry-save adder (CSA).

Figure 9 shows how the simple scheme can be transformed to exploit concur-
rency between operations and advantages of self-timing. Replicating the CPA’s
for each possible quotient digit allows each CPA to start operation before the
actual quotient value is known. The quotient value arrives at the multiplexor to
choose the correct result of the 3-bit addition. Each CPA whose input depends
on the divisor or the negation of the divisor is preceded by a 3-bit CSA. As
explained in [WIL91], ”the overlapping of execution between neighboring stages
allows the delay through a stage to be the average rather than the sum of the
propagation delays through the remainder and quotient digit selection paths
(the corresponding paths are highlighted with dashed and dotted lines in Fig-
ure 9) ... If the critical path goes through the quotient path in one stage, it will
likely go through the partial remainder path in the next stage, and vice-versa.”

The previous feature, with average propagation delays instead of sums of
propagation delay, can be extended one step further by using the self-timed
approach to implement the whole divisor. C-elements and completion detectors
have been added to the scheme presented in Figure 9 to achieve asynchronous
control, with forward data propagation, and backward reset propagation, as
shown in Figure 10. This block diagram corresponds to the implementation
that was proposed in [WIL91], with a five-stage ring. After the control logic,
initialized by the GO signal, has controlled the multiplexor to input the dividend
into stage A, the multiplexor is switched to close the loop around the ring. For
double-precision operands, the division ring loops a maximum of 11 times to fill
the five shift registers with the rest of the quotient digits up to the total of 54
bits that are needed.

We described briefly this self-timed divider because the scheme of Figure 10
has been implemented in a recent, but not very popular, 64-bit microprocessor,
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the SPARC64 [WIL95]. This HAL MCM microprocessor was designed and pre-
sented in 1995. The FDIV units can operate in one of two modes. In one mode,
the FDIV unit returns the result at the soonest possible clock cycle. In that
case, the latency may vary according to the specific fabrication characteristics,
supply voltage or temperature. In the second mode, the FDIV returns its result
after a scan-programmed number of clock cycles, using separate values for sin-
gle and double-precision. If the second mode is one or two clock cycles slower
than the first mode, it is still faster than the synchronous design. As shown in
Table 9, the latencies of the self-timed divider are small compared to the values
for other microprocessors (Table 2). The SP division latency is the same as the
latency of add, mull or multiplication-accumulation. The DP division latency
is only 1.75 times the latency of multiplication, compared to 3.75 for the 21124,
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Figure 9: Data flow through a pair of stages with overlapped execution, showing
the two symmetric critical paths.

4.25 for the UltraSparc-3, 9.5 for the R10000 and more than 10 for the PA-8000.
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Figure 10: Block diagram for the division circuit (5 stages which iterate using
self-timing).

3.2 Improving performance of pipelined operations

In a previous section, we showed that there is no hope for a significant reduction
of latency. This doesn’t mean that performance of pipelined FP operations



| Operation | SP latency (cycles) | DP latency (cycles) |

FP divide 4 7
FP pipelined operations 4 4
Integer divide 2-23 (avg.9) 2-39 (avg.17)

Table 9: Latencies of SPARC64 arithmetic operators

cannot be improved. In this section, we will examine the possible improvements
by considering two examples: the FP ALU and the FP multiplier.

3.2.1 The FP ALU

Significand of Significand of Significand of Significand of
input A input B input A input B
[ [
| | |
Add/Sub ¢ LZA ¢ Add/Sub
¢
- Shifter for
I_ Shifter for Normalization
Normalization
Significand of Significand of
Output Output
WITHOUT LZA WITHLZA

Figure 11: Example of ”logical” optimization in FP ALU: The Leading Zero
Anticipatory Logic.

The basic components of the FP ALU have already been presented in Fig-
ure 5. The main building blocks correspond to the main steps of the algorithm
that is used to implement the different operations of the ALU. There are very
few opportunities for improvement at this ”algorithmic” level.

However, some improvement is possible at ”logic” levels. The Leading-Zero
Logic is a good example of optimization. When doing the subtract of two
significands of FP operands, it is necessary to calculate the number of leading
zeros to do the following shift for normalization. In the classical implementation,
shown in the left part of Figure 11, the number of leading zeros is computed after
the Sub operation by a LZ counter. Sub and LZ count operations are sequential
ones. By implementing the Leading Zero count from the two significand inputs



instead of the sub output [SUZ96], the Sub operation and the LZ operation
(now called LZA) can be realized in parallel, with the shortest critical path.

If the ”logical” optimizations is worth considering, it is clear that most of
the potential improvement comes from the optimization at ”transistor” level,
with the best implementation of the Adder/Substractor according to the CMOS
circuit styles. We will give one example for the FP multiplier.

3.2.2 The FP multiplier

The FP multiplier has been widely studied for many years. This circuit is so
classical that it is a typical arithmetic benchmark circuit, on which the evolution
of performance has been examined year after year in VLSI journals such as the
IEEE Journal of Solid-State Circuits. Two main options can be used with or
without redundant number representations. However, the most commonly used
scheme for a 54 x 54-bit FP multiplier is presented in Figure 12.

54 bit 54 bit

v v

Booth encoder

| 108-b CLA Adder |

v 108 bit

Figure 12: Classical ”functional scheme” for a 54 x 54-bit multiplier.

The 54-bit input multiplicand is decomposed into 27 54-bit summands by the
Booth encoder. Then, a Wallace tree of 4-2 compressors reduces the summands
into two final summands that are finally added in a 108-bit CLA adder. Once
again, there is no room for a significant improvement in the ”functional level”
of the multiplier.

As for the FP ALU, some improvement can be obtained at the "logic” level,
especially with the Sign Select Booth Encoder. This is illustrated in Figure 13.
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Figure 13: Optimization at ”logic level” in Booth encoders.
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Figure 14: Implementation of the 4-2 compressor in [GOT97].
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The Booth Encoder delivers the P; ; bit according to the a; a;—1 pair of bits
of the multiplicand and the bj;1 b; bj_1 set of bits of the multiplier. The
Booth encoder implements a XOR operation. The variant called Sign-select
Booth encoder [GOT97] replaces the XOR operation by a set of usual AND
and OR operations. As the XOR operation is more complex to implement in
CMOS technology than any other usual Boolean operations, hence the new



implementation without XOR gates is more efficient.

Most of the performance improvements come from VLSI implementation
of the multiplier. One key issue is the most efficient implementation of the
main basic bloc, which is the 4-2 compressor. Without going into details, we
can notice that the 4-2 compressor used in [GOT97] uses 4 XNOR gates with 3
different implementations as shown in Figure 14 and Table 10. If the theoretical
critical path between inputs and outputs of the 4-2 compressor is 3 XNOR
gates, it is important to customize the implementation of these XNOR gates to
minimize the value of the critical path according to the fan-out of each gate.

The overall implementation of the compressor array is the second key issue.
The most efficient method for optimizing the implementation has been presented
in [OKL96]. It uses full adders, but could be extended to 4-2 compressors. It
is based on the fact that the delays between inputs and outputs are not equal.
In the 4-2 compressor presented in Figure 14, the delay between C;, and S is
smaller than the delay between any P; input and S output. Similarly, the delay
between P3 or P4 and C is smaller than the delay between the same inputs and
S. Some inputs can be called ”fast” inputs and some outputs can be called ”fast”
outputs. The algorithm described in [OKL96] considers the entire multiplier
array, which is called the Wallace tree in Figure 12, and minimizes delays in
the whole array by proper ordering of the ”fast” and ”slow” input signals. The
method has been generalized in [STE98].

From the ALU and multiplier examples, we can observe that the most sig-
nificant progress has come from optimization of the VLSI implementation, both
at the circuit and layout levels. It is a global VLSI optimization problem, in
which arithmetic issues are a specific part.

| Gate | Transistor | Implementation |
XNOR1 10 Nand 4+ Or-Nand
XNOR2 8 2 inverters + 2 transmission gates
XNORS3 6 Floating inverter + transmission gates
XNOR4 8 2 inverters + 2 transmission gates
MUX 4 2 transmission gates
Inverters 2

Table 10: Implementation of the 4-2 compressor.

4 Arithmetic needs for MMX technology?

The importance of media (video, audio, graphics, and communication) applica-
tions is continuously growing in the personal computing business. They have led



to a significant extension of most of the current Instruction Set Architectures,
called MMX for the Intel IA32, VIS for the Sparc ISA and MVI for the Alpha
ISA. Tt is beyond the scope of this paper to fully describe the media extension
of these instruction sets. We only consider the arithmetic issues associated with
the MMX technology. Any other multimedia extension could be used as they
share many common features.

Instead of having only the usual fixed formats (32 or 64 bits for integers,
32 bits (SP) or 64 bits (DP) for floating-point representation), MMX has sev-
eral subformats. A 64-bit MMX register contains either a 64-bit quadword, or
two 32-bit doublewords, or four 16-bit words or eight 8-bit bytes (using Intel
terminology). MMX instructions use the SIMD approach: they implement a
parallel operation on each part of the sub-word (B, W, and DW). Main SIMD
instructions are the arithmetic, logic, compare, shift, pack and unpack instruc-
tions. Arithmetic instructions use signed or unsigned operands with unsatu-
rated or saturated operations. Compared to a normal 64-bit ALU, the SIMD
ALU should be able to operate on sub-ALUs, whose length corresponds to the
operand length, without propagating carries through the boundary between two
successive sub-ALUs. For each operand length, the sub-ALU operates either in
normal or in saturated mode. There is no particular implementation problem.
As presented in [MIT97], ”each SIMD adder is capable of performing add, sub-
tract and compare of 8-byte, 4-word and 2-doubleword data types. The adders
are optimized to perform these operations with roughly the same speed as a
normal 32-bit adder”.

From an architectural point of view, the big question is the mapping of
the MMX registers in the register spaces of the processor. A costly solution
would be to define a new set of MMX registers. The other option is to use
either integer or FP registers for MMX registers. Only Alpha ISA uses the
first approach. Sparc and Intel use the second approach. FP operations and
MMX operations are generally exclusive. So, these two formats can share the
same registers without conflicts. With this approach, the MMX instructions
can use the same multicycle latencies as the FP instructions, which makes the
implementation of the most critical MMX instructions easier. In that case, there
are no specific arithmetic problems and implementing MMX instructions is only
a VLSI problem. With the Alpha approach, it is far more complicated to make
the media instructions compatible with the timing of the integer pipelines.

As an example of this problem, we show how the Pixel Error Instruction
(PERR) is implemented in the 21164PC [CAR97], which is a 550-MHz Al-
pha processor implemented with a 0.35-um technology. The PERR instruction
calculates the sum of absolute difference of pairs of eight bytes. The design con-
straint is that a 2-clock implementation of this instruction be compatible with
the normal integer pipeline of the 21164PC. Table 11 shows how the calculation
is decomposed into four half-cycles. In phase 1B, the low-order bits of S20 and
S21 (res. S22 and S23) are added to get the low order bits of S30 (res. S31)
before getting the high order bits of S20 and S21 (res. S22 and S23). This way,
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Figure 15: Eight-bit difference logic in 21164PC microprocessor.

S30 and S31 are calculated in phase 1B (low order bits) and 2A (high order bits)
and S40 is calculated in phase 2A (low order bits) and 2B (high order bits). The
circuit diagram for the eight-bit absolute difference logic is shown in Figure 15.
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Table 11: PERR instruction timing table.



5 Arithmetic and asynchronous microprocessors

In synchronous microprocessors, all clocking signals are derived from a common
global clock, and any register or flip-flop is assumed to be controled by the same
”synchronous” clock signal. As explained in [WOO97], ”Today’s VLSI chips
incorporate very large numbers of transistors and it is becoming increasingly
difficult to maintain global clock synchrony over a large chip area...As clock rates
rise and the chip area over which the clock must be distributed expands, clock
skew becomes ever more difficult to control. Remarkable engineering techniques
have been employed to contain the problem, but only at the cost of considerable
silicon area and high peak supply currents”.

To overcome these limitations, computer architecture researchers are actively
considering asynchronous processor design. Asynchronous architectures by na-
ture allow modular design. Each functional block can be optimized without
being synchronized to a global clock, which simplifies interfacing. The main
argument is that an asynchronous system exhibits the average performance of
all the individual components, rather than the synchronous worst-case perfor-
mance of a single component. Simplified control and reduced power dissipation
are other arguments for the asynchronous approach. Interested readers will find
more details about asynchronous approach in [WER97] and [WOQ097]. The first
one examines the key architecture issues that concern designers and compares
six developmental asynchronous architectures. The second one details the asyn-
chronous implementation of the ARM microprocessor; it also presents all the
asynchronous background that is needed to understand the design choices.

A study of asynchronous approach for arithmetic operators has begun. It
tries to quantify the potential advantage of the ”average delay” versus the worst
case delay of the synchronous approach. In [GLO96], the authors’ present sta-
tistical carry-lookahead adders, whose average delay is much lower than logs
(N) and whose overhead is lower than for the CLA adder. A similar study can
be found in [TIS96] for ripple carry adders, carry skip adders and carry select
adders.

For computer architects, the relationship between arithmetic issues and the
performance of the overall architecture should be considered as carefully for
the asynchronous approach as for the synchronous one. For synchronous archi-
tectures, we have seen that the improved performance results mainly from the
instruction rate (throughput) of the operations and not from the latency. Do
reduced latencies for asynchronous arithmetic operations mean increased IPC
(instruction throughput)? This is an open question, and only experimental re-
sults can give strong arguments in favor or against the asynchronous approach.
Agynchronous implementation has also some traditional drawbacks: can we eas-
ily and efficiently implement precise interrupts? What about context switches?

The fundamental question is whether the asynchronous approach is a good
alternative for implementing general-purpose microprocessors. In that case,
asynchronous processors should exhibit similar or better performance than syn-



chronous ones, even for such features as precise interrupts or context switches.
Or, are the features of the asynchronous approach more suitable for special-
ized "embedded” microprocessors? Reduced power dissipation is one of these
features. Another alternative is to consider an asynchronous implementation
of some parts of an overall synchronous implementation. The self-timed FP
divider, which is used in the HAL64 microprocessor, is a good example of an
efficient use of the asynchronous approach within a synchronous processor.

6 Specific hardware for specific arithmetic rep-
resentations

The floating-point number system is widely used for representing real numbers in
computers, but many other number systems have been proposed to achieve var-
ious goals: improve the accuracy, avoid overflows or underflows, accelerate some
computations. Logarithmic number representation and serial arithmetic are two
examples of non-standard number representations. As any arithmetic, they can
be implemented by software or by hardware. In this section, we consider the
hardware implementation of specific arithmetic representations by discussing
two possible approaches: the custom or semi-custom VLSI implementation and
the programmable logic approach.

6.1 The coprocessor approach

Designing a customized VLSI circuit, defined as a coprocessor of a general pur-
pose microprocessor, has been considered as the natural way to implement spe-
cific hardware operations that cannot be directly implemented within the mi-
croprocessor. This approach derives from the "rules of thumb” that are used
in microprocessor design: the frequently used operations should be fast and
thus implemented by hardware. The rare operations should be implemented in
software. As non-standard arithmetic representations are only used for some
specific applications, the corresponding operations are rare. In that case, the
goal of an arithmetic coprocessor is to speed up the execution of these opera-
tions compared to their execution by software. However, the coprocessor also
has to deal with the performance/cost ratio issue.

As we already mentioned in this paper, an exponential increase in micropro-
cessor performance has been attained during the last 25 years. Without going
into details, this evolution continue because of the following items:

o New CMOS technologies are regularly becoming available to processor de-
signers. If 0.25 ym feature size is common in 1998, future 0.18 ym CMOS
technologies have already been announced. The scaling of CMOS tech-
nologies leads to increased clock frequencies and larger transistor budgets
(chip area).



e Fach processor manufacturer delivers several releases of each microproces-
sor model.

e New microprocessors are designed for a given Instruction Set architecture.
For the x86 ISA, the 486, the Pentium and the Pentium Pro (and Pen-
tium IT) represent three different microarchitectural implementations of
the same ISA: the 486 was a scalar microprocessor, the Pentium was a
statically scheduled 2-way superscalar microprocessor, and the Pentium
IT (following the Pentium Pro) is an ”out-of-order” superscalar micropro-
cessor, with on-the-fly translation of x86 to ”RISC-like” instructions.

o New ISAs are announced. The Intel IA64 is supposed to kill the old TA32
(x86) ISA.

This short "life cycle” for each microprocessor release, which corresponds to
the Moore’s law, is economically possible only because of the huge market for
PCs. The microprocessor sales range in millions of components. If coprocessor
releases don’t follow the microprocessor releases, performance mismatches will
occur. But the coprocessor releases cannot follow the microprocessor releases
for business reasons: the market for the coprocessors is too small, because most
of the applications don’t need these specific arithmetic representations. The
coprocessor approach is a dead end because it uses a costly approach, either
with custom or semicustom VLSI design.

6.2 Programmable logic devices

Hopetfully, it is possible to implement specific hardware in a cost-effective way by
using the programmable logic approach. Programmable Logic Devices (PLD),
for which Altera is a supplier, or Field Programmable Gate Arrays (FPGA), for
which Actel, Altera or Xilinx are examples of suppliers, are typical examples
of low-cost hardware support. Interested readers will find more detail on pro-
grammable logic at the following WEB sites: www.{altera, actel, xilinx}.com.
Implementing specific number representations may be quite simple if the user
is provided a ”programming” environment, e.g. a set of arithmetic operators, a
methodology for control and a validation system.

6.2.1 Serial arithmetic in FPGAs

A. Tisserand [TIS97] has developed a framework for on-line algorithms in FP-
GAs. This framework includes

e A VHDL library, with packages, elementary circuits (FA cell, PPM cell,
etc.), on-line operators (adders, multipliers, dividers, etc.)

e A methodology for control

e A validation system.



The framework has been used to developing two significant applications. In LIP
in Lyon, a multilayer perceptron has been implemented [TIS96]. It uses the
following equation: s = tanh(# + Yw;z;)

In EPFL in Lausanne [TIS97], a Proportional Integral-Differential Regulator
has been designed for positioning a mirror. The size and power dissipation
of the FPGA implementation are respectively 1/4 and 1/20 compared to the
corresponding DSP implementation.

6.2.2 Logarithmic or semi-logarithmic representation

Other non-standard representations could be implemented with PLDs or FP-
GAs. Some applications, such as signal and image processing, some transforms,
numerical control and wavelets use far more MUL, DIV or SQRT operations
than ADD/SUB operations. In this case, logarithmic or semi-logarithmic repre-
sentations seem to be more effective [MUL98]. Once again, the FPGA approach
is the only cost effective hardware implementation when using these number
representations.

7 Concluding remarks

Discussing computer arithmetic and hardware relationships means considering
the performance/cost issues. We showed that computer arithmetic is relatively
marginal in the performance growth of standard microprocessors. The main
reason is that most arithmetic operations easily meet the requirements of mod-
ern microprocessors. At the same time, the mismatch between processor per-
formance and the main memory performance is growing, making it far more
critical to get data quickly into the processor. With superscalar microproces-
sors, the control flow of instructions through branches is more and more critical,
and branch predictions have more impact on performance than arithmetic op-
erations.

However, there is still room for improving arithmetic operations, especially
the latency of non-pipelined operations like the division and square root. If this
was possible, the pipelining of the division would be a real breakthrough.

As arithmetic performance is only a part of the overall performance of a
microprocessor, arithmetic issues must be considered with all the architectural
issues, and not alone. The most important points are:

e The benchmarking of applications. Before doing a lot of work to improve
latency of an operation, we must know what is the real impact of this
operation on the overall performance. Moreover, we must be sure that
this operation is really useful and even used.

e Improving performance of arithmetic operations needs considering the
VLSI implementation of these operations. There are very few opportuni-
ties for a significant improvement just at the algorithmic level.



o Recent arithmetic bugs in Intel microprocessors, both on the Pentium and
the Pentium II, show that, as computer arithmetic is a VLSI problem, it
is also a design checking problem.

e While arithmetic ”breakthroughs” are still hoped for, ”incremental” progress
is very helpful.

Specialized applications also cannot avoid the performance/cost issues. How-
ever, the situation has significantly changed in recent years, as large scale PLDs
and FPGAs now exist and are the cost-effective solution for ”specialized” arith-
metic. They are general-purpose circuits to customize hardware according to
the needs of a specialized arithmetic representation. So, designing arithmetic
circuits is not only a hobby for Ph. D. students (and university professors). By
using a ”cost-effective” approach, it can lead to useful designs.
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