

July 2012

Image Convolution
with CUDA

Victor Podlozhnyuk
sdkfeedback@nvidia.com

July 2012 Page ii of 21

Document Change History

Version Date Responsible Reason for Change

0.1 10/25/2006 Lee Howes Initial version

0.2 2/09/2007 Mark Harris Revised Lee’s original document

0.3 2/26/2007 Eric Young Revised document to match new SDK document
format

0.8 3/21/2007 Mark Harris First release version.

1.0 06/1/2007 Victor Podlozhnyuk Adapted the whitepaper to new
convolutionSeparable project.

July 2012 Page iii of 21

Table of Contents

Table of Contents ... iii

Abstract ... 1

Motivation ... 2

How Does It Work? .. 3

A Naïve Implementation .. 5

Shared Memory and the Apron ... 6

Avoiding idle threads... 7

Separable Filters Can Increase Efficiency .. 9

Optimizing for memory coalescence ..10

Unrolling Loops ...11

Implementations Details ...11

The Row Filter ...11

The Column Filter ...13

Running the Sample ..14

Conclusion ..16

Bibliography ..17

July 2012 Page 1 of 211

 Abstract

Convolution filtering is a technique that can be used for a wide array of image processing
tasks, some of which may include smoothing and edge detection. In this document we show
how a separable convolution filter can be implemented in NVIDIA CUDA and provide
some guidelines for performance optimizations.

Image Convolution with CUDA

July 2012 Page 2 of 21

Motivation

Convolutions are used by many applications for engineering and mathematics. Many types
of blur filters or edge detection use convolutions. This example illustrates how using CUDA
can be used for an efficient and high performance implementation of a separable
convolution filter. Figure 1(b) shows the effect of a convolution filter.

Figure 1(a) Original Image

Figure 1(b) Blur convolution filter applied to the source image from Figure 1(a)

These two images show a comparison of an image convolution applied to an original source
image.

Image Convolution with CUDA

July 2012 Page 3 of 21

How Does It Work?

Mathematically, a convolution measures the amount of overlap between two functions [1].
It can be thought of as a blending operation that integrates the point-wise multiplication of
one dataset with another.

 dnnknisiksir)()())(*()(

In discrete terms this can be written as:

n

nknisiksir)()())(*()(.

Convolution can be extended into two dimensions by adding indices for the second
dimension:

n m

mnkmjnisjiksir),(),(),)(*()(

In the context of image processing a convolution filter is just the scalar product of the filter
weights with the input pixels within a window surrounding each of the output pixels. This
scalar product is a parallel operation that is well suited to computation on highly parallel
hardware such as the GPU. This is demonstrated below in Figure 2.

-1 0 -1

-2 0 -2

-1 0 -1

1 2 4

5 3 1

7 3 1

5 5 2

2 2 3

1 3 4

4 2 -1

5 2 1

4 2 1

1 2 1

3 5 5

2 1 5

3

5

3

1

2

1

3 1

3 1

2

1

2 -1 1

-3 0

-6 0

2

2

-2 0 1

x -6+

-6

Source Image Window

Filter kernel

Multiplication

result
Sum Output result to image data

Figure 2: The basic convolution method.

Image Convolution with CUDA

July 2012 Page 4 of 21

Separable Filters

Generally, a two-dimensional convolution filter requires n*m multiplications for
each output pixel, where n and m are the width and height of the filter kernel. Separable
filters are a special type of filter that can be expressed as the composition of two one-
dimensional filters, one on the rows on the image, and one on the columns. A separable
filter can be divided into two consecutive one-dimensional convolution operations on the
data, and therefore requires only n + m multiplications for each output pixel. For example,
the filter in the diagram of Figure 2 is a separable Sobel [2] edge detection filter.

Applying

101

202

101

 to the data is the same as applying

1

2

1

 followed by 101 .

Separable filters have the benefit of offering more flexibility in the implementation,
and in addition reducing the arithmetic complexity and bandwidth usage of the computation
for each data point.

The convolutionSeparable code sample in the NVIDIA CUDA SDK uses
a separable Gaussian [3] blur filter.

Image Convolution with CUDA

July 2012 Page 5 of 21

A Naïve Implementation

The simplest approach to implement convolution in CUDA is to load a block of the
image into a shared memory array, do a point-wise multiplication of a filter-size portion of
the block, and then write this sum into the output image in device memory. Each thread
block processes one block in the image. Each thread generates a single output pixel. An
illustration of this is shown in Figure 3.

Image in Device Memory

Image Block in Shared Memory

1

2

1

1

1

1

1

3

2

1

2

1

2

3

2

1

2

1

1

4

1

2

3

2

1

6

2

1722

1

2

1

2

3

6

1

2

1

1

2

4

2

3

2

1

2

1

1

2

1

4

3

2

1

3

1

5

4

1

7

8

9

1

3

5

1

1

1

2

3

2

1

2

1

1

2

1

1

1

1

1

3

2

2

1

3

2

3

1

4

1

8

9

3

5

1

1

3

2

2

1

1 2 1 1 9 5 1 2 1

X +

= Apron

Figure 3: A naïve convolution algorithm. A block of pixels from the
image is loaded into an array in shared memory. To process and
compute an output pixel (red), a region of the input image (orange)
is multiplied element-wise with the filter kernel (purple) and then
the results are summed. The resulting output pixel is then written
back into the image.

Image Convolution with CUDA

July 2012 Page 6 of 21

Shared Memory and the Apron

The algorithm itself is somewhat complex. For any reasonable filter kernel size, the
pixels at the edge of the shared memory array will depend on pixels not in shared memory.
Around the image block within a thread block, there is an apron of pixels of the width of the
kernel radius that is required in order to filter the image block. Thus, each thread block
must load into shared memory the pixels to be filtered and the apron pixels. This is shown
in Figure 4. Note: The apron of one block overlaps with adjacent blocks. The aprons of the
blocks on the edges of the image extend outside the image – these pixels can either be
clamped to the color of pixels at the image edge, or they can be set to zero.

Image in Device Memory

Image Block in Shared Memory

0

2

1

0

1

1

0

3

2

1

2

1

2

3

2

1

2

1

0

4

1

0

3

2

0

6

2

18

0

2

1

0

3

6

0

2

1

0

2

4

0

3

2

0

2

1

1

2

1

4

3

2

1

3

1

5

4

1

7

8

9

1

3

5

1

1

1

2

3

2

1

2

1

0

2

1

0

1

1

0

3

2

2

1

3

2

3

1

4

1

8

9

3

5

1

1

3

2

2

1

1 2 1 1 9 5 1 2 1

X +

= Apron

Figure 4: Modification of the naive algorithm of Figure 3 to include
the image block apron region.

Image Convolution with CUDA

July 2012 Page 7 of 21

Avoid Idle Threads

If one thread is used for each pixel loaded into shared memory, then the threads
loading the apron pixels will be idle during the filter computation. As the radius of the filter
increases, the percentage of idle threads increases. This wastes much of the available
parallelism, and with the limited amount of shared memory available, the waste for large
radius kernels can be quite high.

As an example, consider a 16x16 image block and a kernel of radius 16. This only
allows one active block per multiprocessor. Assuming 4 bytes per pixel, a block will use
9216 bytes. This is more than half of the available 16KB shared memory per multiprocessor
on the G80 GPU. In this case, only 1/9 of the threads will be active after the load stage
shown in Figure 5.

Figure 5: If the radius of the filter kernel is large relative to the
image block size, there will be many idle threads during filter
computation.

Image Convolution with CUDA

July 2012 Page 8 of 21

We can reduce the number of idle threads by reducing the total number of threads per block
and also using each thread to load multiple pixels into shared memory. For example, if we
use a vertical column of threads with the same width as the image block we are processing,
we have a 48x48 pixel region in shared memory, but only 16x48 threads. We read the data in
three columns, as shown in Figure 6.

Figure 6: Reduce idle threads by loading multiple pixels per thread.

During filter computation, one third of the threads are active rather than one ninth.
Because the load stage is bandwidth limited, performance should not suffer. This can be
taken one step further by reducing the thread block to 16x16 threads and dividing the image
block into 9 squares of pixels. This ensures that all threads are active during the
computation stage. Note that the number of threads in a block must be a multiple of the
warp size (32 threads on G80 GPUs) for optimal efficiency. If the apron is not as wide as
the thread block, we will end up with some threads that are inactive during the loading stage,
as shown in Figure 7. Fortunately, device memory loads will be coalesced as long as the first
thread of each half-warp is properly aligned. This is also the case even if some threads
conditionally skip their loads (See the CUDA Programming Guide for more information on
coalesced device memory accesses).

Figure 7: When the apron is narrower than the thread block, some
threads are inactive during loading.

These changes may not consistently improve performance because the extra
complexity can outweigh the advantages. In the next section we take advantage of separable
filters to further reduce wasted or idle threads.

Image Convolution with CUDA

July 2012 Page 9 of 21

Separable Filters Increase Efficiency

In addition to reducing the number of idle threads through tiling, we can reduce the
number of unnecessary data loads by dividing the processing into two passes. One pass is
performed for each of the two dimensions in a separable image filter. In the last technique
of the previous section, a 48x48 region includes a 16-pixel apron. Each pixel within the
apron-width area on the outside of the image will be loaded 9 times because of the overlap
between neighboring blocks!

If we separate the computation into horizontal (row) and vertical (column) passes,
with a write to global memory between each pass, each pixel will be loaded six times at most.
With a small tile (16x16), this does not gain anything. The real benefit is seen because it is
no longer necessary to load the top and bottom apron regions (for the horizontal pass) of
pixels. This allows more pixels to be loaded for processing in each thread block. We are
limited by thread block size rather than shared memory size. To achieve higher efficiency,
each thread must process more than one pixel. We can increase the width of the image
block processed by a thread block more flexibly using this separable approach, as shown in
Figure 8. This leads to significant performance improvements.

Figure 8: A separable filter allows multiple pixels to be processed for
each thread, achieving higher efficiency.

Image Convolution with CUDA

July 2012 Page 10 of 21

Optimizing for Memory Coalescence

Bandwidth to off-chip (“device”) DRAM is much higher than on a host CPU
memory. However, in order to achieve high memory throughput, the GPU attempts to
coalesce accesses from multiple threads into a single memory transaction. If all threads within
a warp (32 threads) simultaneously read consecutive words then single large read of the 32
values can be performed at optimum speed. If 32 random addresses are read, then only a
fraction of the total DRAM bandwidth can be achieved, and performance will be much
lower.

Base read/write addresses of the warps of 32 threads also must meet half-warp
alignment requirement in order to be coalesced. If four-byte values are read, then the base
address for the warp must be 64-byte aligned, and threads within the warp must read
sequential 4-byte addresses. If the dataset with apron does not align in this way, then we
must fix it so that it does.

The approach used in the row filter is to have additional threads on the leading edge
of the processing tile, in order to make threadIdx.x == 0 always reading properly aligned
address and thus to meet global memory alignment constraints for all warps. This may seem
like a waste of threads, but it is of little importance when the data block, processed by a
single thread block is large enough, which decreases the ratio of apron pixels to output
pixels.

= Threads Inactive During Load Stage

KERNEL_RADIUS

KERNEL_RADIUS_ALIGNED

KERNEL_RADIUSROW_TILE_W

blockDim.x

......... ...

Figure 9: Padding thread block with inactive threads to achieve the
alignment required for coalesced loads in the row filtering pass.

 During the column convolution pass, the apron does not affect the coalescing
alignment, as long as the image tile width is a multiple of 16.

Each image convolution pass in both row and column pass is separated into two
sub stages within corresponding CUDA kernels. The first stage loads the data from global
memory into shared memory, and the second stage performs the filtering and writes the
results back to global memory. We mustn’t forget about the cases when row or column

Image Convolution with CUDA

July 2012 Page 11 of 21

processing tile becomes clamped by image borders, and initialize clamped shared memory
array indices with correct values. Indices not lying within input image borders are usually
initialized either with zeroes or with values, corresponding to clamped image coordinates. In
this sample we opt for the former.

In between the two stages there is a __syncthreads() call to ensure that all threads
have written to shared memory before any processing begins. This is necessary because
threads are dependent on data loaded by other threads.

The Row Filter

KERNEL_RADIUS_ALIGNED

KERNEL_RADIUS ROW_TILE_W

Tiles in vertical direction:

image height

Tiles in horizontal direction: image width / ROW_TILE_W (+1 as necessary)

KERNEL_RADIUS

blockDim.x

...

Figure 10: Layout of the thread block grid for the row filtering pass.

For both the loading and processing stages each active thread loads/outputs one
pixel. In the computation stage each thread loops over a width of twice the filter radius plus
1, multiplying each pixel by the corresponding filter coefficient stored in constant memory.
Each thread in a half-warp accesses the same constant address and hence there is no penalty
due to constant memory bank conflicts. Also, consecutive threads always access consecutive
shared memory addresses so no shared memory bank conflicts occur as well.

Image Convolution with CUDA

July 2012 Page 12 of 21

The Column Filter

Tiles in vertical direction:

image height / COLUMN_TILE_H

(+1 as necessary)

Tiles in horizontal direction: image width / COLUMN_TILE_W

KERNEL_RADIUS

COLUMN_TILE_H

COLUMN_TILE_W

(blockDim.x)

KERNEL_RADIUS

Figure 12: Layout of the thread block grid for the column filtering pass.

The column filter pass operates much like the row filter pass. The major difference
is that thread IDs increase across the filter region rather than along it. As in the row filter
pass, threads in a single half-warp always access different shared memory banks, but the
calculation of the next/previous addresses involves increment/decrement by
COLUMN_TILE_W, rather than simply 1. In the column filter pass we do not have inactive
“coalescing alignment” threads during the load stage, because we assume that the tile width
is a multiple of the coalesced read size. In order to decrease the ratio of apron to output
pixels we want image tile to be as tall as possible, so to have reasonable shared memory
utilization we shoot for as thin image tiles as possible: 16 columns.

Implementations Details

Source code is divided among 3 source files (*.cu, *.cpp):

 convolutionSeparable.cu: main program, allocating host and device memory,
generating input data, issuing CUDA computations and validating the obtained
results.

Image Convolution with CUDA

July 2012 Page 13 of 21

 convolutionSeparable_kernel.cu: CUDA convolution kernels.

 convolutionSeparable_gold.cpp: reference CPU separable convolution
implementation, which is used for CUDA results validation.

The following are the steps, performed convolutionSeparable by main() function.

1) For testing purposes input data is generated using libc rand() function.

2) Gaussian convolution kernel is calculated and copied to CUDA constant array. The
Gaussian is a symmetric function, so the row and column filters are identical.

3) CUDA computation grid is configured for requested image and filter parameters.

4) Row and column filters are applied onto the input data.

5) The resulting image is copied back to the CPU and checked for correctness.

Unrolling Loops

Listing 1: Innermost convolution loop for row filter.

Since the innermost processing loop of both row and column filter performs very few
computations per iteration, the loop/branching overhead is very big, so in order to improve
performance we unroll the loop, which gains 2+ performance improvement for
convolutionSeparable.

Listing 2: Row innermost loop unrolling macro for kernel radius of 1.

Unrolling macro for column filter looks similar.

#define CONVOLUTION_ROW1(sum, data, smemPos) {sum = \

 data[smemPos - 1] * d_Kernel[2] + \

 data[smemPos + 0] * d_Kernel[1] + \

 data[smemPos + 1] * d_Kernel[0]; \

}

for(int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++)

 sum += data[smemPos + k] * d_Kernel[KERNEL_RADIUS - k];

Image Convolution with CUDA

July 2012 Page 14 of 21

Running the Sample

The SDK sample can be parameterized at compile time using a set of options
available in the main convolutionSeparable.cu. These parameters affect the
performance of the code and hence should be tweaked to reach the optimum:

UNROLL_INNER: Enable innermost loop unrolling. This greatly improves performance,
at the cost of principal filter size fixing at compile time.

WARMUP: Perform a warm-up computation outside of the timed computation to remove
the CUDA startup overhead from performance measurements.

Performance

convolutionSeparable / convolutionTexture

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Kernel Radius

M
P

ix
/s convolutionSeparable

convolutionTexture

Figure 13. Combined row + column filter performance of convolutionSeparable and
convolutionTexture.

Figure 13 shows the execution rate we obtain with convolutionSeparable and the
convolutionTexture SDK sample.

The convolutionTexture SDK sample implements the same algorithm as
convolutionSeparable, but without using the shared memory at all. Instead, it uses textures in
exactly the same way an OpenGL-based implementation would do. This approach is more
straightforward and leads to simpler code, but as illustrated by Figure 13, it performs more

Image Convolution with CUDA

July 2012 Page 15 of 21

than two times slower than the shared-memory approach on a significant range of kernel
radius values.

Image Convolution with CUDA

July 2012 Page 16 of 21

Conclusion

CUDA enables great flexibility in the implementation of image processing
algorithms. The convolutionSeparable code sample demonstrates a number of
performance techniques and tradeoffs for separable image filtering. The image convolution
algorithm is a good match to the banked structure of shared memory and the coalescing
requirements for high device memory throughput. The efficiency of the GPU
implementation is limited by the amount of available shared memory, much like the
efficiency of the CPU implementation is limited by cache size and policy. Finally, the
technique described in this paper is a good illustration of the advantage provided by shared
memory since it outperforms more than twice a purely texture-based implementation of the
same algorithm running on the same hardware.

Image Convolution with CUDA

July 2012 Page 17 of 21

Bibliography

1. Wolfram Mathworld. “Convolution”
http://mathworld.wolfram.com/Convolution.html

2. Generation5. “An Introduction to Edge Detection: The Sobel Edge Detector”

http://www.generation5.org/content/2002/im01.asp

3. Wolfram Mathworld. “Normal Distribution”

http://mathworld.wolfram.com/NormalDistribution.html

http://mathworld.wolfram.com/Convolution.html

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2012 NVIDIA Corporation. All rights reserved.

