
 1

oMusink’s Tutorial

Introduction
oMusink is a Java tool (requires version Java 1.6 or higher) that links gestures
written on paper with online musical objects. It has been based on dot paper tech-
nology and digital pens and can work with OpenMusic [1], a visual programming
environment for music composition and analysis.

oMusink can be viewed as a customization tool that supports the use, definition
and recognition of handwritten gestures. Although paper gestures can take the
form of notation elements, oMusink cannot recognize standard musical notation.
The primary role of strokes on paper is to describe musical objects and parame-
ters, whose actual digital representation (e.g., a sound, a function) resides on the
computer.

oMusink has been designed to support paper-based interactions. Yet, it allows
users to input their gestures with a mouse or a tablet. The name of the tool refers
to Musink [4], an interaction language for paper musical scores. oMusink is a
lightweight version of Musink's gesture browser, supporting a subset of Musink's
syntax.

Figure 1. Overview of Musink's user interface

 2

Prerequisites
To install oMusink, follow the installation instructions that come with its distribu-
tion. In the rest of this document, we assume that the software has been success-
fully installed. Paper support is not compulsory as users can use the mouse or a
tablet to input data.

If you want to use oMusink with OpenMusic, you should have it installed in
your computer. You can download the last version of OpenMusic from IRCAM’s
website at http://recherche.ircam.fr/equipes/repmus/OpenMusic/

Here, we assume that readers are familiar with OpenMusic.

Running oMusink and loading a score
Depending on which platform you use and which installation version you have
chosen, the file you need to execute is either oMusink.app (Mac OS X) or oMus-
ink.jar (cross-platform). Figure 1 shows the interface that you see when you run
the application. Note that the first time that you open it, the small window with
the pen data may be empty. To open a score, you have to choose Open File from
the File menu. Currently, the distribution comes with as single score format that
corresponds to the CHORD-SEQ (also MULTI-SEQ) OpenMusic’s object (GGFF
view) (Figure 3).

Figure 2. The gesture browser of oMusink. A score has not been loaded
yet and no gesture definitions exist.

 3

Figure 3. A score that corresponds to GGFF CHORD-SEQ OpenMusic

objects.

A PDF of the score (GGFF.pdf) can be found under the scores directory. This
is the file that you should print if you plan to write on the score with a digital pen.
Notice that the PDF file is accompanied by text file (GGFF.txt). This file
describes the coordinates of the score’s components on the screen. It is used by
oMusink to make the association between the position of gestures written on
paper and the score’s elements. If you create your own score, you also need to
provide a descriptor file (txt with name of PDF file) that describes the structure of
the score’s elements. Please, contact us to learn more if you plan to create your
own score.

Note that there is an option Score templates in the Prefereces menu. Score
templates are described within doc-formats.txt in the root directory. An addition
to the score’s layout (portrait versus landscape), the file specifies several
parameters (offsets, scale, etc.) that control how the score is positioned on printed
score and the dot pattern with respect with the online score version. Different
printers may print the score on different scales and offsets, so users may have to
play with these values and make sure that gestures written on paper will be
correctly positioned on the online version of the score.

Staffs in the musical score represent timelines. The position of the gestures on
the score is not relative, as in standard musical notation, but absolute, as in
OpenMusic’s MULTI-SEQ objects. The actual duration of a staff is by default 10
secs, but users can change its value by selecting Preferences-> Set Staff
Duration. A group of four staffs (GGFF) defines a single timeline that starts from
the vertical line and continues to the next group of staffs.

 4

Tools
A vertical toolbar at the left side of the interface contains a set of useful tools, ex-
plained in Figure 4.

Figure 4. Explanation of the tools in oMusink’s toolbar

Entering pen data with a mouse or graphics tablet
To enter data with a mouse or a graphics tablet, the user has to click on the tablet
icon on the toolbar and then drag the mouse (or use the pen) on top of the score.
When the user clicks on the icon again, the system processes the drawn gestures.
In addition, a data entry (identified by date and time) is added to the small pen
data window.

Loading previous data
Users can load previously drawn data from the small data window by selecting
one or more entries (Click, Shift-Click, Command-Click) from the list and then
press on the [show] button at the bottom of the list. The [refresh] button can be
used to copy data from an external directory (specified in config.txt). The [link]
and [unlink] buttons allow users to associate/disassociate an entry of data with a
particular score format. If a data entry has been previously associated with a
score, a star appears at the right of the time flag that identifies the entry.

 5

Loading pen data from a digital pen
Read the REAME-Paper.txt file that comes with oMusink’s distribution to learn
how you could connect a digital pen with the tool. Assuming that a digital pen has
been successfully connected, pen data will be uploaded to the computer as soon as
the user places the pen in the cradle. The configuration file config.txt should in-
clude the path of the directory where data are uploaded, so that these data can be
loaded to the data window (see previous section).

Syntax of supported gestures
The syntax of oMusink’s gestures is simple and supports three types of gestures.

1. Simple one-stroke gestures with an arbitrary shape. Semantics are not
predefined for any gesture so users are free to give their own semantics.
You have to expect that if defined gestures have distinguishable visual
characteristics (curly shape, vertical versus horizontal, etc.), their recogni-
tion will be more accurate.
Each unistroke gesture has three main properties that can be communi-
cated to OpenMusic: (1) an identifier (optionally), (2) a time range (x-
range), and (3) a list of coordinates (x, y) that represent the points of the
gesture’s stroke within the spectrum Time x Pitch. Time is measured in
milliseconds and Pitch is measured in midics (as in OpenMusic). 100
midics corresponds to one semitone. The midic value of G defined by the
lower G clef is 6700. The pitch of the lowest line of the F staff in midics is
1900.

The first, central and end points of a gesture are complimentary properties
of a unistroke gesture.

Figure 5. Examples of unistroke gestures

2. Framed gestures. They are distinctive from unistroke gestures as they are
enclosed within a circle or rectangle and can contain multiple strokes.
Their recognition is performed independently from the recognition of
unistroke gestures. They can act as regular independent gestures as well as
parameters over unistroke gestures (see below). Framed gestures can have
the same properties as unistroke gestures (identifiers, list of coordinates of
enclosed strokes). Note that the time length (x-range) of a framed gesture

 6

is determined by the range of the frame rather than the time range of the
enclosed gestures.

Note: The frame of a framed gesture should be drawn with a single stroke.

 Figure 6. Examples of framed gestures

3. Complex gestures. A complex gesture is simply a group of a unistroke
gesture and one or more framed gestures. The framed gestures should
touch or be in proximity with the unistroke stroke to be considered as part
of the group. Examples are shown in Figure 7. In a complex gesture, one
of the composing gestures will act as the identifying gesture and the rest
will act as parameters. For example, a crescendo from piano (p) to fortis-
simo (ff), as the one shown in the figure, is identified by the well-known
crescendo symbol and is parameterized by two framed gestures. A framed
gesture, however, can also act as an identifier.

Figure 7. Examples of complex gestures

Specifying operations
oMusink operations serve as interfaces between paper gestures and external appli-
cations, OpenMusic in particular. An operation is a function specification (identi-
fier of the function and one or more arguments) that can be later linked to simple
or complex gestures. Various types of gesture properties can act as arguments for
a given operation:

 7

- Lists of points (x1,..., xn) (y1,..., yn) that represent the (time, midic) coor-
dinates of the individual points of a unistroke or framed gesture

- The time range (x1,..., xn) of a unistroke or framed gesture

- The first point (time, midic) of a unistroke or framed gesture

- The central point (time, midic) of the rectangular gesture’s boundaries

- List of strings representing parameters associated with a gesture

Figure 8 demonstrates the definition of a new operation by using oMusink’s user
interface. In this example, the user defines a new type of tremolo that takes as ar-
guments the points of the stroke that describe the form of the tremolo and its time
range (x-range). After the operation has been defined, it appears in the list of op-
erations. Later, the user can modify it by double-clicking on its identifying label.

Figure 8. Definition of a new operation

Defining gesture classes
Gestures can be classified into gesture classes that have been previously defined
by the actual user. A gesture class can represent a parameter or the identifier of a
simple or complex gesture. In the latter case, it can be associated with an opera-
tion.

Figure 9 illustrates how the user can activate the definition of a gesture through
a contextual menu. As shown in Figure 10, the definition of a gesture class in-
cludes a name, a textual description, and optionally an operation. A gesture that
has not been linked with an operation could simply act as a parameter. In this

 8

case, its value is represented by the name given in its definition. For example, a
circled f could represent a parameter with value “forte”.

Figure 9. Activating a contextual menu to define a gesture. The menu is

activated by right clicking on the gesture and dragging to the direction of the
menu option. The option is activated when the mouse button is released.

Figure 10. Defining a new gesture class over a unistroke gesture and as-

sociating it with an operation.

When the user inserts the new definition, a thumbnail of the gesture is added
into the list of defined gestures. Also, the gesture is added into the vocabulary of
the gesture recognizer. In this way, other similar gestures on the score will be
automatically classified to this class. We use the Rubine algorithm [2] as imple-
mented by the iGesture project [3] to recognize gestures. As recognition is based
on a limited collection of available samples, you should not expect the recogni-
tion to be perfect. The third tremolo in Figure 11, for instance, has not been rec-
ognized. Yet, the user can activate the contextual menu (right click on the ges-
ture) to enforce its classification (see Figure 12). Similarly, the user can use the
menu to remove a gesture from a certain class (“No class” menu option).

 9

Figure 11. A new tremolo gesture is added into the vocabulary of defined

gestures

Figure 12. The user activates the contextual menu to enforce the classifi-

cation of a gesture. The gesture is added to the available samples for the cor-
responding class.

(a)

(b)

Figure 13. (a) The three top gestures are identified by the unistroke ges-
ture of the group. The framed gestures (p, ff, 2 and 3) act as parameters: they
have been defined, but no operation has been linked to them. The three bot-
tom gestures are identified by circled gestures (a and c). In this case, a and c
have been linked to two different operations. The unistroke gestures simply
act as graphical parameters. (b) The gesture vocabulary that corresponds to
the gestures shown at the left.

 10

To define a complex gesture, the user should first choose an identifier. The
identifier can be either a unistroke or a framed gesture within the group. Figure 13
explains how a framed or unistroke gesture could be used as identifier of a com-
plex gesture.

Managing gestures
oMusink provides some basic functionality for handling gestures and gesture
definitions:

- Remove a gesture. Activate contextual menu and select “Remove”

- Remove a gesture class. Select a gesture class in the list of defined gestures
and press the “delete” key.

- Modify a gesture class. Double-click on the thumbnail of the gesture class.

- Filter gestures on the score. Select one or more classes of gestures in the
list, and press “f”.

- Export (for future use) definitions of operations and gestures. Select “Ex-
port...” from the File menu and choose a definition file.

- Import previously exported definitions of operations and gestures. Select
“Import...” from the File menu and choose a definition file.

Sending gesture information to OpenMusic
oMusink can communicate recognized gestures to OpenMusic (or other interested
applications) through the Open Sound Control protocol (OSC) [5], a communica-
tion protocol based on TCP/IP that is widely used in music technology to connect
music applications and devices. For each recognized gesture, an OSC message is
sent that communicates the information specified by the associated operation: (1)
the name of the operation; and (2) gesture properties (e.g., x-y points of gesture,
x-range) that match the operation’s arguments. This information can be sent ei-
ther individually for each gesture through the contextual menu, or for all the rec-
ognized gestures when pressing the button with the OpenMusic logo on the tool-
bar (see Figure 4). The syntax of the OSC messages sent by oMusink is as fol-
lows:

/operation-name “multi-seq” arg1 ... argn

where operation-name is the name of the operation that a gesture is associated
with, and arg1 ... argn are gesture properties that match the operation’s ar-
guments. Table 1 presents examples of gestures and associated operations. Figure

 11

14 shows the resulting OSC messages as shown on the OSC output window. The
OSC output window lets users see what messages are sent through OSC.

Gesture Operation

 a-dynamics: points

 gnote: x-range, central-point

crescendo: list-of-circled-parameters

tremolo: x-range

Table 1. Examples of gestures and associated operations

Figure 14. The OSC output window

Working with OpenMusic
In OpenMusic, the user should create an OSC server to wait for messages.

Figure 15. A server handling OSC messages in OpenMusic

Figure 15 illustrates the creation of an OSC server by using OpenMusic’s vis-
ual language. OpenMusic provides the osc-receive function to receive OSC

 12

messages. oMusink uses the TCP port 3333 to send OSC messages to the local
machine, but you can change its value through the Preferences menu (Preferences
-> Configure OM Connection).

The patch osc-handler shown Figure 15 translates incoming messages and cre-
ates the objects that correspond to the recognized gestures. It could combine
OpenMusic visual elements and LISP code. Figure 16 (a) illustrates a simple im-
plementation of osc-handler that simply prints each received message. Note that
printed messages can be viewed on the OM Listener. Figure 16 (b) shows an im-
plementation that handles gnote and crescendo operations. Figure 17 illustrates
the LISP code for the assign-message-handler function.

(a)

(b)

Figure 16. Examples of basic OSC handlers (osc-handler): (a) it prints
the received message; and (b) it redirects the message to handlers of specific
operations (gnote and crescendo).

(defun assign-message-handler (message default_patch str1 patch1 str2
patch2 str3 patch3 str4 patch4)

 (let ((fun (car message)))
 (cond
 ((contains str1 fun)
 (funcall patch1 message))
 ((contains str2 fun)
 (funcall patch2 message))
 ((contains str3 fun)
 (funcall patch3 message))
 ((contains str4 fun)
 (funcall patch4 message))
 (t (funcall default_patch message)))))

Figure 17. Example of a LISP implementation of assign-message-handler

 13

(b)

(a)

(c)
Figure 18. (a) A simple implementation of the handle-gnote patch. The

chord-seq3 object is an instance of a CHORD-SEQ object. The slots object
has been derived from a CHORD-SEQ object and controls its input (midics,
onset times, and durations) based on the values communicated through the
OSC message. (b) A copy of the chord-seq3 object is used as input to a
CHORD-SEQ object (c) The CHORD-SEQ object in its GGFF/durations
view. Note that the chord-seq3 object has to be added to the global space of
OpenMusic (Library -> globals) so that it can be used out of the scope of the
handle-gnote patch.

Figure 18 illustrates a simple implementation of the handle-gnote patch. It ex-
tracts the position in time (onset time), duration, and midic value of the gnote ges-
ture, that has been communicated through the OSC message, and creates its repre-
sentation in a CHORD-SEQ instance (chord-seq3).
Note: An instance of a CHORD-SEQ object can be created by pressing the
Command-Shift keys while dragging the self output of a CHORD-SEQ object.
Also, a slots object can be created by pressing the Shift key while dragging a
CHORD-SEQ object.
Unfortunately, the above implementation does not allow for showing multiple
gnote gestures on a CHORD-SEQ object. This requires some additional pro-

 14

gramming. A solution is shown in Figure 19. An example of a CHORD-SEQ ob-
ject created in this way is shown in Figure 20.

Figure 19. Implementation of handle-gnote that allows for expressing

multiple gnote gestures on a CHORD-SEQ object. The chord-seq3 object
changes incrementally every time the patch is executed (a new note is added
each time).

 15

Figure 20. A CHORD-SEQ object created from the patch shown in Fig-
ure 19. Each note has been the result of a single gnote gesture.

More information
For more information, requests and problems, contact Theophanis Tsandilas.
Email: fanis at lri dot fr

Acknowledgments
Catherine Letondal and Wendy Mackay have participated in the conceptual de-
sign of oMusink. Carlos Agon has indicated the OSC protocol for the communi-
cation between oMusink and OpenMusic. He also helped us establish the connec-
tion between OSC messages and OpenMusic objects. Mikhail Malt has provided
valuable feedback and suggestions concerning the use of the CHORD-SEQ object
in connection with pen and paper.

 16

References
Agon, C., G. Assayag, and J. Bresson, OM Composer's Book. 2006: Editions Delatour France,

Ircam.

Rubine, D. Specifying gestures by example. In Proc. SIGGRAPH 1991, ACM Press (1991), 329-
337.

Signer, B., U. Kurmann, and M.C. Norrie. iGesture: A General Gesture Recognition Framework.
In Proc. ICDAR (2007), 954-958.

Tsandilas, T., C. Letondal, and W.E. Mackay. Musink: composing music through augmented
drawing. In Proc. ACM CHI (2009), 10 pages.

Wright, M. and A. Freed. Open Sound Control: A New Protocol for Communicating with Sound
Synthesizers. In Proc. ICMC (1997), 101-104.

