Supplementary materials for:

Multimodal image alignment
through a multiscale chain of neural networks
with application to remote sensing

Armand Zampieri!, Guillaume Charpiat?, Nicolas Girard', and Yuliya
Tarabalka!

! TITANE team, INRIA, Université Céte d’Azur, France
2 TAU team, INRIA, LRI, Université Paris-Sud, France

1 Neural network architecture details

See Figures 4 and 5 for further details about the architecture and meta-parameters.

2 Keypoint matching

The keypoint matching experiment shown in the figure 7 of the main paper is
shown full resolution here in Figure 6.

Supplementary matching examples are shown in Figure 7.

3 Causes and amplitude of deformations

The causes of deformations in remote sensing are mainly: the relief together
with the often-high angle of the satellite/plane view (houses on top of a hill
do not appear at the same place as the ones on the bottom) and the numer-
ous mistakes done by the Humans creating the cadastral maps. Also, the top
of buildings is significantly shifted with respect to their floor. The problem of
registration (which has to be done w.r.t. floor location) becomes all the more
harder. Moreover, trees can cover roads and roofs, shadows create strong non-
relevant shapes... making registration with the cadastre difficult. Note that the
typical amplitude of displacements expected is much bigger than e.g. for brain

imaging. " ‘




2 A. Zampieri et al.
4 Example of deformation

As explained in the article, to augment the dataset size for training, we generate
random deformations, as a mixture of Gaussian functions with random shifts.
An example of such a deformation (amplified 4 times for better visualisation
purposes), and the result of its application to the original image, are shown in
Figure 1.

e
P e
v I IS S

B el

Fig. 1. Example of deformation. Left: an image I; middle: a deformation ¢, i.e. a
R? vector field; right: the associated deformed image I o ¢.

5 Stereovision

In the paper we suggest to try the same framework on a different task, the one of
stereovision. The result, shown in Figure 2 without any tuning, is very promising
and confirms the generalization ability of our approach.

6 Training details

6.1 Tricks for better training

To reduce the training time and possible memory issues, patch of images (256 x
256 pixels) were given to the network for the training instead of the whole im-
age, reducing the amount of computations needed per mini-batch. This is also
important in terms of memory usage of the network as original images contain
5000 x 5000 pixels. Furthermore, neural network computations and data genera-
tion (a random transformation is generated for each image at each training step
in order to augment the training set size) are parallelized in order to improve
the training speed of the algorithm.

Another issue encountered was to reach the local minimum corresponding to
outputting always a null deformation, thus preventing the neural network pa-
rameters to evolve towards a better optimum. To solve this issue we used several



Supp. mat. for Multimodal image alignment 3

Fig. 2. Stereovision test. Top: right image; middle: ground truth depth map for right
image; down: predicted depth map.

methods to facilitate the training of the network and reduce its probability to
reach this local minima.

The first technique used was to force the network to overfit a very small sample
of the dataset (400 iterations on 4 images with random transformations). This
proved to be particularly efficient at avoiding the null local minimum.

The second technique is specific to the dataset used, i.e. the data from the
cadastral images is particularly sparse. The first step is then to check, before
selecting any training example, that data needed for alignment is present on
the cadastral image, i.e. the cadastral image does contain buildings, e.g. This
was done simply by calculating the ratio between labeled and unlabeled pix-
els (cadastral/non-cadastral) on each candidate image patch, and by setting a
range of accepted values (e.g., the minor class of an image should represent at
least 5% of the labels of this image). Patches not respecting this rule were not
selected when forming mini-batches. Thus mini-batches contained only relevant
examples.



4 A. Zampieri et al.

Another issue linked to the sparsity of the cadastre arises when the network
is training on parts of a patch where not enough data is present to determine
the transformation needed (e.g., only one class within an area, as in a garden
for example), even to a human eye: the estimation of the offset was not possible
due to the lack of information. To solve this problem, we increase the weight of
the loss function on the boundaries of buildings (parts where the transformation
can be well estimated). For this, we first detect building boundaries based on
the cadastre, as shown in 3, and add an multiplying factor to the loss at such
locations (which is equivalent to sampling more often there). This insures that
the deformation is findable and that the training is useful. This last trick is
specific to our dataset, which is binary labelled, but we show in experiments
that this is not needed when the dataset is not sparse or binary.

Fig. 3. Building boundaries used to re-weight the loss function. Top left:
cadastral image; top right: building boundary mask used; bottom left: the original
map of the loss function; bottom right: masked map of the loss function on boundaries.
The loss will be multiplied with a constant factor in these areas.

Lastly, we observed minor aligning issues when dealing with rows of houses
with common walls, due to local translation invariance of the images, which
adds locally a degree of freedom for alignment along the row axis. We decided
to give supplementary information corresponding to the location of all corners



Supp. mat. for Multimodal image alignment 5

extracted from the OpenStreetMap vectorial image (as each corner of each house
is indicated), hoping to help to guide the alignment along such translation-
invariant line in the cadastre. This step is however not critical as the results
improvement is small and specific to certain building geometries (row of identical
houses with common walls).

6.2 Training information

Number of iterations : 60 000

Batch size : 16

Time to train : 16 hours

Number of images : 108 original images (with a random transformation gener-
ated at each iteration for each image)
Original image size : 5000 x 5000
Patch size : 256 x 256

Total number of layers : 26

Memory used with tensorflow : 9.7 GB
GPU : GeForce GTX 1080

Processor : Dual-Xeon E5-2630

RAM : 64 GB

7 Alignment framework

The whole processing framework for the alignment of OpenStreetMap cadastral
information with aerial images is summarized in the chart shown in Figure 8.



6 A. Zampieri et al.

1a 2a 3a

& 3x3 convolution + LeakvRelu
5 2x2 Max-pooling
—1 Deconvolution + concatenation

= Concatenation

Fig.4. Network architecture. The two input images I1 and Iz are fed to layers
la and 1b respectively. The output is a 2 dimensional vector map (layer 26 with 2
channels). This architecture allows to merge information from both sources at all scales,
to extract high-level information, and to remember fine details from the input resolution
to output a precise full-resolution deformation. Details on Figure 5.

Start layer|End Layer|Name Kernel size|Number of filters|padding|stride

1 2 convolution-1 5 16 2
2 3 convolution-2 5 32 2
3 4 pooling-1 2 2
4 5 convolution-3 3 32 1
5 6 convolution-4 3 32 1
6 7 pooling-2 2 2
7 8 convolution-5 3 64 1
8 9 convolution-6 3 64 1
3 10 concatenation-1
6 13 concatenation-2
9 16 concatenation-3
10 11 convolution-7 3 32 1
11 12 convolution-8 3 32 1
13 14 convolution-9 3 64 1
14 15 convolution-10 3 64 1
16 17 convolution-11 3 64 1
18 19 convolution-12 3 64 1
18 18 deconvolution-1 3 64

15-18’ 19 concatenation-4
19 20 convolution-11 3 64 1
20 21 convolution-12 3 64 1
21 21 deconvolution-2 3 32

12-21° 22 concatenation-5
22 23 convolution-13 3 64 1
23 24 convolution-14 3 64 1
24 25 convolution-15 3 32 1
25 26 convolution-16 3 2 1

Fig. 5. Details for each layer of the (scale-specific) neural network displayed on Figure
4. “Kernel size 3” for a convolutional layer means “3 x 3” convolution.



Supp. mat. for Multimodal image alignment 7

(a) Ground truth (b) Ours (c) Rocco[2017](affine+spline)  (d) Weinzaepfel and al. [2013]

Fig. 6. Multimodal keypoint matching comparison for different methods and two
datasets. Top: Forez dataset; bottom: Kitsap. Blue: predicted, green: ground truth (cen-
ters of the green circles), red: original location of the corner (from the OpenStreetMap
cadastral image, which is mis-geolocalized with respect to the RGB image).



A. Zampieri et al.

8

(euyge) [L107] 0220y (eurrds ogerd-uryy

(3sey) poyzow anQ

‘e pue [ojdervzZUropn

Fig. 7. Additional multimodal keypoint matching examples. Same setup as in

Figure 6.



Supp. mat. for Multimodal image alignment

Tif image (original coordinate system)

Coordinate extraction

Conversion to coordinate system : WGS84

Request to OpenStreetMap

Osm data (WGS84)

Extraction to a shapefile

Shapefile (WGS84)

Conversion to original coordinate system

Shapefile (original Coordinate system)

Rasterization

Raster image ground truth

Neural Network

Vectorial transformation map

i

Vectorial image correction

¥

Corrected shapefile (original Coordinate system)

Corrected shapefile (WGS84)

Fig. 8. Global framework for OpenStreetMap data correction.




