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Kernel Methods in Medical
Imaging

G. Charpiat, M. Hofmann, B. Scholkopf

ABSTRACT We introduce machine learning techniques, more specifically
kernel methods, and show how they can be used for medical imaging. After
a tutorial presentation of machine learning concepts and tools, including
Support Vector Machine (SVM), kernel ridge regression and kernel PCA,
we present an application of these tools to the prediction of Computed
Tomography (CT) images based on Magnetic Resonance (MR) images.

1 Introduction

Machine learning has shown dramatic progress over the last decades, cre-
ating tools like the well-known Support Vector Machine (SVM), which
have been intensively applied to many different fields and have proved
their efficiency. Learning tools have often changed the whole perspective
of the issues they have been applied to. For example, in computer vision,
the detection of objects in images, and the automatic classification of im-
ages into categories (landscape, car, etc.) rely now most often on intensive
patch-based learning, whereas it was previously commonly thought that a
complete image segmentation would be required. The results of this ma-
chine learning approach are often surprisingly good, showing that under
certain conditions, many tasks are much easier to solve by incorporating
prior knowledge retrieved from a set of examples.

In medical imaging, approaches are often example-based, in the sense
that the aim often consists in the automatization of a task already per-
formed by hand by medical people on a few examples, such as segmentation,
registration, detection (of tumors, of organs) or classification. As medical
imaging deals with images, there is also much inspiration to get from what
has already been achieved in computer vision, in object detection [9] as
well in shape priors [5].

We start here with a tutorial on machine learning techniques. We present
basic concepts, and then focus on kernel methods. We introduce standard
tools like kernel ridge regression, SVM and kernel PCA. Then we apply
some of these tools to the case of medical image prediction, when the Mag-
netic Resonance scan of a patient is known and we would like to guess what
the corresponding Computed Tomography scan would look like.
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2 Machine learning with kernels

This section describes the central ideas of kernel methods in a nutshell by
providing an overview of the basic concepts. We first state mathematically
the problems of classification and regression. Then we introduce the concept
of kernel and explain the kernel trick which leads to kernel PCA as well as
kernel ridge regression. The last concept introduced is the support vector
(SV), which is the basis of the SVM. We have tried to keep this tutorial as
basic as possible and refer to [11] for further details.

2.1 Basics

Classification and Regression

Suppose we are given a set of m objects (z;)1<icm € X™ with labels
(Yi)1<i<m € Y™. If the number of possible labels is finite and small, then
we can be interested in classification, i.e. in finding the label to assign to a
new object based on the given examples. Otherwise, if the labels are values
in a vector space, we can be interested in regression, i.e. in extrapolat-
ing previously observed values to any new object. Thus classification and
regression tasks can be embedded in a similar framework, one aiming to
predict discrete labels and the other one to continuous values.

The objects (z;)1<igm are often named patterns, or cases, inputs, in-
stances, or observations. The (y;)1<i<m are called labels, or targets, outputs
or sometimes also observations. The set of all correspondences (%, i )1<i<m
given as examples is called the training set, whereas we name test set the
set of new objects for which we would like to guess the label by extracting
knowledge from the examples in the training set.

In both cases, classification or regression, we aim to generalize the corre-
spondences (z;, y;) to a function f defined on the set X of all possible objects
and with values in the set Y of all possible labels. The label predicted for a
new test object z would then be f(z). Here we have no particular assump-
tion on the spaces X and Y except that Y should be a vector space if we are
interested in regression (in order to extrapolate continuously between any
two values). But we have a strong intuitive assumption on f: it should gen-
eralize as well as possible the given examples, i.e. if x is close to an already
observed input x;, its output f(z) should be close to the already observed
output y;. The whole difficulty consists in defining precisely what we mean
by “close” in the spaces X and Y. More precisely, we need to quantify the
similarity of inputs in X and the cost of assigning wrong outputs in Y.

Loss function

Generally, expressing a distance or similarity measure in Y is easy. In the
case of regression, the Euclidean distance in Y is often a simple, convenient
choice. However we can consider other functions than distances, provided
they express the cost of assigning a wrong label. We call the loss function
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the sum of the costs (or losses) of all mistakes made when we consider
a particular possible solution f and apply it to all known examples. For
instance we can choose:

L(f, (i, yi)1<icm) = > I1f () = will
1=1

Duality between features and similarity measures

On the other hand, expressing a similarity measure in X is much more
difficult and lies at the core of machine learning. Either the space X has
been carefully chosen so that the representation of the observed objects
x; are meaningful, in the sense that their “natural” distance in X (say
the Euclidean distance if X is a vector space) is meaningful, in which case
learning will be easy; either X is non-trivial and we need to choose a set of
N sensible features (seen as a function ® from X to 3 = RY), so that if we
compute these features ®(z;) for each x;, we can consider a more natural
distance in the feature space H. From a certain point of view, choosing
a sensible feature map ® or choosing a sensible distance in X (or in the
feature space H) are equivalent problems, and hence equivalently hard in
the general case.

Optimization problem over functions

The problem of classification or regression can be written as an optimization
problem over all possible functions f: find the best function f from X to Y
such that it minimizes

L(f, (xi,yi)1<i<cm) + R(f)

where R(f) is a regularizer constraining f to be smooth in some way with
respect to the similarity measure chosen in X. Note that we could also have
restricted f to be a member of a small function space F. There are very
nice theoretical results concerning the function space in the kernel case (see
for example section 2.3 about ridge regression).

2.2 Kernels

This section aims to define kernels and to explain all facets of the concept. It
is a preliminary step to the following sections dedicated to kernel algorithms
themselves.

A kernel is any symmetric similarity measure on X

E:XxX — R

(x,2") — k(z,2),

that is, a symmetric function that, given two inputs z and z’, returns a
real number characterizing their similarity (cf. [10, 1, 3, 4, 7]).
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Kernels as inner products in the feature space

In the general case, either X is not a vector space, or the natural Euclidean
inner product in X is not particularly relevant as a similarity measure.
Most often, a set of possibly-meaningful features is available, and we can
consequently use the feature map

. X — K

x — x:=d(x).

® will typically be a nonlinear map with values in a vector space. It could
for example compute products of components of the input x. We have used
a bold face x to denote the vectorial representation of x in the feature space
H. We will follow this convention throughout the chapter.

We can use the non-linear embedding of the data into the linear space
H via @ to define a similarity measure from the dot product in H,

k(w,2') = (6, X )0 = (@(x), ®(2")) g - (1.1)

The freedom to choose the mapping ® will enable us to design a large
variety of similarity measures and learning algorithms. The transformation
of x; into ®(z;) = x; can be seen as a change of the inputs, i.e. as a new
model of the initial problem. However, we will see later that, in some cases,
we won'’t need to do this transformation explicitly, which is very convenient
if the number of features considered (or the dimension of H) is high.

Geometrical interpretation and kernel trick
Through the definition of &, we can provide geometric interpretation of the

input data:
1x[l3c = [[®()[lsc = \/{®(x), ®(2)) 3¢ = V/E(z, )

is the length (or norm) of x in the feature space. Similarly, k(x,2") com-
putes the cosine of the angle between the vectors x and x’, provided they
are normalized to length 1. Likewise, the distance between two vectors is
computed as the length of the difference vector:

Il =[5 = [1x]* + |x'[|* = 2 (@(2), D(a")) = k(x,2) +k(a',2") — 2Kk (x, 2).

The interesting point is that we could consider any such similarity measure
k and forget about the associated ®: we would still be able to compute
lengths, distances and angles with the only knowledge of k& thanks to these
formulas. This framework allows us to deal with the patterns geometrically
through a understated non-linear embedding, and thus lets us study learn-
ing algorithms using linear algebra and analytic geometry. This is known
as the kernel trick: any algorithm dedicated to Euclidean geometry involv-
ing only distances, lengths and angles can be kernelized by replacing all
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occurrences of these geometric quantities by their expressions as a function
of k. Next section is dedicated to such kernelizations.

Examples of kernels
Let us introduce the most-commonly used kernels. They are namely: the

polynomial kernel

k(@,2) = (z,2)",

_ |2
k;(x7;(;/) = exp (_M)

and the Gaussian

2 02

for suitable choices of d and o. Let us focus on the Gaussian case: the
similarity measure k(z,2’) between z and 2’ is always positive, and is
maximal when z = 2’. All points x have the same unit norm (since k(z, z) =
1Vz) and consequently the images of all points x in the associated feature
space H lie on the unit sphere.

Reproducing kernels as feature maps

One could wonder what is the feature map ® which was used to build the
Gaussian kernel. In fact kernel theory goes far beyond the way we intro-
duced kernels. Let us consider any symmetric function &, not necessarily
related to a feature map. Let us suppose also that k, seen as an operator,
is positive definite, that is to say that for any L? function av: X — R :

/ a(z)k(x, 2" )a(z") dedx’ > 0.
XxX

Note that to be able to integrate over x € X, we need a measure on X. This
measure is often thought of as a probability measure over X, giving more
weight to objects that are more likely to appear.

Then we can define from this kernel k an associated feature map by:

P: X — ?(SX:)
x — x:=k(z,-). (1.2)

This image of any input z by @ is the function

E(z,): X — R
= k(x,2). (1.3)

® has now values in the space F(X) of functions over X instead of having
values in just a finite dimensioned vector space like RV,

The magic comes from Moore-Aronszajn theorem [2] which states that it
is always possible, for any symmetric positive definite function &, to build
a reproducing kernel Hilbert space (RKHS) H C F(X) so that

Vo, o' € X, k(z,2') = (k(z,-), k(') g = (®(z), P(2"))g, . (1.4)
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Because of such a property, symmetric positive definite kernels are also
called reproducing kernels. This theorem highlights the duality between
reproducing kernels k and feature maps ®: choosing the feature space or
choosing the kernel is equivalent, since one determines the other.

The Gaussian case (details)
We can make explicit the inner product on H in the Gaussian case. The
associated norm is

Hf||2 _/ i o2n (dnf)z(x) e — i o2 |l dn o |IP
¥ x = n! 27 \ dzm = n! 2m || dx™ £2(%)

which penalizes all fast variations of f at all derivative orders. We refer

to [6] for a more general mathematical study of radial basis functions.
52 42 2 ann n
Intuitively, consider the operator P = e” T w? = >on (o /2" & 1y the

n! dx2n
a?w? /2 —azwz/Qe—iwm

Fourier domain, it writes e , whereas k(x, ) becomes oe
Thus £ P(k(z,)) = 6,(-) is a Dirac peak in the space D(X) of distributions
overfx. The inner product (f, g)q. := <%P (), g>®(x) on H will therefore
satisfy:

(ko). o = 5P ). f>®(x) — (B, o = F()

g

hence, for the particular case f = k(z/, ),
<k($, ')7 k(lL’l, )>}C - k‘(l‘,xl).

The overfitting problem

The kernel k should be chosen carefully, since it is the core of the general-
ization process: if the neighborhood induced by k is too small (for instance
if k is a Gaussian with a tiny standard deviation o), then we will overfit
the given examples without being able to generalize to new points (which
would be found very dissimilar to all examples). On the contrary, if the
neighborhood is too large (for instance if k is a Gaussian with a standard
deviation so huge that all examples are considered as very similar), then it
is not possible to distinguish any clusters or classes.

Kernels as regularizers
We introduced initially kernels as similarity measures on the space X of
inputs. But with the reproducing kernel framework, the choice of a kernel
implies a structure on the space of functions from X to R, in particular it
defines a norm on this space. Consequently choosing a kernel is the same
as choosing a regularizer on the function space.

Let us go back to the initial problem, and, for the sake of simplicity,
let us consider the case where the output space Y is included in R. We
expressed the classification or regression problem as the search for the best
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function f from X to Y that minimizes a loss plus a regularizer on f. We
have found here a natural way to choose the regularizer according to the
kernel, i.e. R(f) = ||f|l%-

A whole class of problems involving this norm can be shown [11] to have
solutions in the span of functions k(z;,-), i.e. solutions f have the form
f(x) =3, a;k(z;, x). Interestingly, this allows the reduction of the search
space (the function space) to a linear, finite-dimensioned subspace, while
involving non-linear quantities (the kernels k(z, ') or the features ®(x)).

2.3  Kernelization of existing linear algorithms

We now have all the concepts required to transform existing algorithms
dealing linearly with data into kernel methods. We consider standard, sim-
ple algorithms such as PCA and linear regression and build out of them
more efficient tools which take advantage of the prior knowledge provided
by the definition of a kernel and of their ability to deal linearly with non-
linear quantities.

A very simple hyperplanar classifier

To show the spirit of kernelization, let us first describe a very simple learn-
ing algorithm for binary classification. The label space Y contains only two
elements, +1 and —1, and the training set consists of labeled examples of
the two classes. The basic idea is to assign any previously unseen pattern
x to the class with closest mean. Let us work directly in the feature space
H and deal with x = ®(z) instead of = since the metric which makes sense
is the one in the feature space. In H, the means of the two classes are:

c+:i Z x; and c_:mi Z X, (1.5)

m _
* filyi=+1} {ilyi=—1}

where m, and m_ are the number of examples with positive and negative

labels, respectively. Half way between cy and c_ lies the point ¢ := (ct +

c_)/2. We compute the class of x, based on the angle between the vector

x — ¢ and the vector w := ¢4 — c_ (see figure 1):

y = s {(x—c)why = san ((x— (cs +.)/2), (e — )y
= sgn <<X7C+>f}( - <X7 C*>J—( + b) (16)
where we have defined the offset b= %(||c_||§c CleslZ). ()

Note that (1.6) induces a decision boundary which has the form of a hy-
perplane in the feature space. We can now call the kernel trick in order to
express all quantities as a function of the kernel, which is the only thing
we can easily compute (unless ® is explicit and simple). But this trick
deals only with norms, distances and angles of features points of the form
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FIGURE 1. A very simple classifier in the feature space: associate to any new
point x the class whose mean c¢; is the closest. The decision boundary is an
hyperplane.

x = ®(x), for which we already know z. Therefore we need to express the

vectors ¢; and w in terms of x1,...,X;,.
To this end, substitute (1.5) into (1.6) to get the decision function
1 1
y = sgn(— Z (X, Xi) g0 — — Z (x7xi>j{+b)
my m_
{ilyi=+1} {ilyi=—1}
1 1
- sgn(m—+ .Z k@, 2;) = — .Z k(x,xi)er).(l.S)
{ilyi=+1} {ilyi=—1}

Similarly, the offset becomes

=gy Y Maem) - Y Keem)). (L9)

" ) lyimu=-1) T {(g) lyi=y;=+1}

Surprisingly, it turns out that this rather simple-minded approach contains
a well-known statistical classification method as a special case. Assume
that the class means have the same distance to the origin (hence b = 0,
cf. (1.7)), and that k can be viewed as a probability density when one
of its arguments is fixed. By this we mean that it is positive and that
Vo' € X, [y k(x,2')dz = 1. In this case, (1.8) takes the form of the so-
called Bayes classifier separating the two classes, subject to the assumption
that the two classes of patterns were generated by sampling from two prob-
ability distributions that are correctly estimated by the Parzen windows
estimators of the two class densities,

pi(x) ::i Z k(x,z;) and p_(x) ::i Z k(z,z;). (1.10)

m m_
* {ilyi=+1} (ilyim—1}

Given some point x, the label is then simply computed by checking which
of the two values py(z) or p_(x) is larger, which leads directly to (1.8).
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Note that this decision is the best we can do if we have no prior information
about the probabilities of the two classes.

The classifier (1.8) is a particular case of a more general family of clas-
sifiers, which are of the form of an affine combination of kernels on the
input domain, y = sgn (3~ a;k(z,2;) + b). The affine combination cor-
responds to a separating hyperplane in the feature space. In this sense,
the «; can be considered a dual representation of the hyperplane’s normal
vector [7]. These classifiers are example-based in the sense that the kernels
are centered on the training patterns; that is, one of the two arguments of
the kernel is always a training pattern. A test point is classified by com-
paring it to all the training points with a nonzero weight a;. One of the
great benefits that SVM brings in next section is the assignment of a zero
weight to most training points and the sensible selection of the ones kept
for classification.

Principal component analysis
Suppose we are given a set of unlabeled points, or a set of points of the same
class. In the case of a vector space, we could perform a principal component
analysis (PCA) to extract the main axes of the cloud of points. These main
axes can then be used as a low-dimensional coordinate system expressing
most of the information contained in the initial vector coordinates.

PCA in feature space leads to an algorithm called kernel PCA [12]. By
solving an eigenvalue problem, the algorithm computes nonlinear feature
extraction functions

where, up to a normalizing constant, the o] are the components of the nth
eigenvector of the kernel matrix K;; := (k(z;,z;)).

In a nutshell, this can be understood as follows. To perform PCA in K,
we need to find eigenvectors v and eigenvalues A of the so-called covariance
matriz C in the feature space, where

m

C:= EZ@(@)@(:@)T (1.12)

Here, ®(z;)7 denotes the transpose of ®(z;). When ¥ is very high di-
mensional, the computational costs of doing this directly are prohibitive.
Fortunately, one can show that all solutions to

Cv=)\v (1.13)

with A # 0 must lie in the span of ®-images of the training data. Thus, we
may expand the solution v as

v = Z o; ®(z;), (1.14)
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thereby reducing the problem to that of finding the ;. It turns out that
this leads to a dual eigenvalue problem for the expansion coefficients,

Ko =mla, (1.15)

where o = (a1, ..., am) "

To extract nonlinear features from a test point x, we compute the dot
product between ®(z) and the nth normalized eigenvector in feature space,

(v, ®(z)) = Za?k(xi,x). (1.16)

Usually, this will be computationally far less expensive than taking the dot
product in the feature space explicitly.

Kernel ridge regression and the representer theorem

Let us now consider the case of regression: we know the values y; € R of
a function at m given points (z;)1<i<m and we would like to interpolate
it to any new point x € X. The notion of regression requires the one of
regularization, so we choose a kernel k and use the associated norm || - ||5¢.
The problem can be expressed mathematically as the search for the best
function f : X — R which minimizes a weighted sum of the prediction
errors (f(z;) — y;)? at known points and the regularity cost || f||s¢:

f:X—R

inf {Z(f(ri) —yi)® + /\”fiz]{} (1.17)

Representer Theorem The solution f of (1.17) in the RKHS belongs to
the span of functions k(x;,-) and thus admits a representation of the form

f(z) = Zajk(zj,x). (1.18)

More details can be found in ([11], p. 89). Using (1.18) and (1.4), the
problem (1.17) becomes:

aieanm Z (Zajk:(:zrj,xi) - y¢)2 + /\Zaiozjk(xi,xj) . (1.19)
i=1 J 2]

By computing the derivative with respect to a, denoting by K the m xm
matrix (k(ac,, a:j))m., and by Y the vector (y;)1<i<m We obtain:
2K(Kaa—Y)+2\Ka=0
which leads, since K is positive definite, to the linear system:
(K+Ald)a =Y. (1.20)

where Id is the identity matrix.
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2.4 Support vectors

The kernelized examples in the previous section are able to deal linearly
with the non-linear priors on the data (i.e., the kernel, which induces a
feature space and a metric therein) and are consequently able to deal with
far more general tasks than usual linear classification or regression. How-
ever the computation of the label to assign to a new test point involves
its distances to all training points, and consequently these algorithms are
naturally slow if the training set is big. Instead of using tricks to reduce
the training set size or to avoid the computation of all distances for each
new point, one can wonder whether there would exist another, similar ap-
proach, which would naturally and directly lead to a huge compression of
the training data, keeping only a few meaningful training points to predict
the labels of new test points. Such an approach does exist. We present here
the fundaments of support vector classification.

Hyperplanar classifier in feature space and margin

We are given a set of points x; with a binary label y; € {—1,1} and we
would like to attribute to any new point x € X a class label f(x). We
consider a kernel k£ and search for the best hyperplane in the feature space
H which separates the training points x; = ®(z;) into two classes, so that
f has the form:

f(@) =sgn ((w,x;)s+b) (1.21)
where w € H is a vector normal to the hyperplane and b € R is the shift of
the hyperplane. Let us rescale the problem by adding the constraint that
the closest data point x; to the hyperplane satisfies

(W, Xi)ge +b] = 1. (1.22)

Note that the margin, i.e. the distance between the hyperplane and the
closest point, is then 1/||w]|gc. We would like the margin to be as large as
possible in order to ensure the quality and the robustness of the classifica-
tion (see figure 2). Therefore we would like to minimize ||w||g.

We would like also the predictions f(z;) on training points to be as good
as possible. Since the labels are binary, i.e. y; € {—1, 1}, a correct labelling
f(x;) of the point z; means y; f(z;) > 0. Because of constraint (1.22), this
is equivalent to:

Vi, yi((wW,Xi)ge +b) > 1. (1.23)

Soft margin

However, in practice, it may happen that the two classes overlap in the
feature space and consequently cannot be separated by an hyperplane sat-
isfying (1.23) for all examples ¢. Outliers may also be present in the training
set and it may be better to relax the constraints (1.23) than to overfit the
data. Let us denote by &; non-negative slack variables, and relax (1.23) to:

Vi, yi((w,xi)g+b) 2 1-&. (1.24)
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FIGURE 2. Example of a good and two bad hyperplane classifiers for a same
training set. The larger the margin is, the better the classifier is likely to perform.

We would prefer the sum of the slacks >, & to be as small as possible, so
we build a soft margin classifier by solving

T L2 S
Jimimize, (W) = 5wl +C ;5 (1.25)
subject to Vi, yi((w,x;) +b)—1+& >0. (1.26)

where the constant C' > 0 determines the trade-off between margin maxi-
mization and training error minimization.

Lagrangian approach and dual problem
The constrained optimization problem (1.25,1.26) can be solved by intro-
ducing Lagrangian multipliers a; > 0 and a Lagrangian

m

L(w,b,& a)=7(w,&) = Y ai(yi((xi, W) +b) — 1+ &). (1.27)

i=1

and by minimizing it with respect to w, b and & while maximizing it with
respect to a. This additional maximization is a practical way to enforce
the constraints (1.26). Indeed, for given w, b and &, if one constraint ¢ was
violated in 1.27, then the corresponding y;({x;, w) + b) — 1 + & would be
negative, and thus maximizing L w.r.t. a; would lead to infinity. Similarly,
for given w, b and &, the «; that maximize (1.27) are zero if the correspond-
ing constraints are strictly satisfied (i.e. y;({x;, w)+b)—1+&; > 0). This is
essentially the Karush-Kuhn-Tucker (KKT) complementarity conditions of
optimization theory. Consequently only a few «; will be non-zero, leading
to a sparse representation of the training data.
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Maximizing L w.r.t. the primal variables w, b and & leads to:

oL oL oL oL
S 0 and %% 0 and Vi, 7%, 0 or{gz 0 and 7, = 0} (1.28)

X2

m
which are respectively equivalent to w = Z QY X (1.29)
i=1

and Zaiyi =0 and Vi, a; =C or{& =0 and o; < C}.(1.30)

i=1

Incorporating (1.29, 1.30) into (1.27) makes w, b and € vanish, and together
with the kernel trick (1.4) we obtain

m m
1
mixeig}ize W(a) = ;ai ~5 ,-Jzzjl ooy yik(x, x;)  (1.31)
m
subject to Zaiyi =0 and Vi, 0<q; <C. (1.32)

i=1

Note that there is an alternative parametrization of SV classifiers where a
free parameter v is used instead of C, with v asymptotically charaterizing
the fraction of points falling into the margin, and the fraction of support
vectors.

Support vector machine

Once the quadratic energy (1.31) in a with linear constraints (1.32) has
been maximized, equation (1.29) gives us an algorithm of the form (1.21)
we were searching for:

f(@) = sgn (Y aiyik(wi, z) +b) (1.33)

with a; = 0 for most i. The few data points x; which have a non-zero coef-
ficient «; are called support vectors. To compute the value of the threshold
b, one uses equation (1.30) which states that for any support vector x; with
a; < C, the slack &; is zero and consequently the constraint (1.24) becomes:

b=yi— Y ak(x;,z:). (1.34)
J

3 Application to Intermodality Image Prediction

As a medical application of the above methods, we look at intermodality
image prediction, i.e. the task of predicting an image of a subject (for
instance a Computed Tomography (CT) scan), from an image of the same
subject in a different modality (here, a Magnetic Resonance (MR) scan),
given a training set of corresponding MR-CT pairs from different patients.
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3.1 The MR-CT issue

MR-based CT prediction is needed for example for attenuation correction
in Positron Emission Tomography (PET). The 511 keV radiation in PET
gets attenuated while passing through tissue, and correcting for this effect
requires knowledge of the so-called attenuation map, which can be derived
from a CT image. In modern scanners, CT images are therefore often ac-
quired alongside the PET image, typically in combined PET/CT scanners.
However, the CT scan involves important additional radiation exposure for
the patient. Moreover, novel PET/MR scanners are not equipped with a
CT scanner, and thus it is desirable to perform the attenuation correction
based on the MR, by estimating a “pseudo” CT image from the MR.

MR and CT scanners detect different properties of the matter, and con-
sequently there is no one-to-one correspondence between the intensities in
the MR image and the CT intensities. In particular, bone and air both
yield no signal in all standard MR sequences, whereas their intensities in
CT images are on opposite ends of the scale. For this application, it is
therefore crucial to distinguish bone from air, and the MR intensity alone
contains no helpful information for this problem.

3.2 Atlas registration vs. patches

Atlas registration is the process of aligning a new image with a template
image already segmented into bone, air and tissue regions. This yields a
segmentation for the new image. The implicit assumption is that there ex-
ists a continuous one-to-one transformation between the new patient and
the template, and that this transformation can be easily computed. In the
case of medical scans, it turns out that these assumptions are not always
satisfied, for instance pockets of gas in the abdominal region are unlikely
to occur in the same number and shape for different patients. Even if the
assumptions were satisfied, one may be trying to solve a problem more diffi-
cult than necessary by searching for a topology-preserving transformation.

Even a rough registration, which does not assume one-to-one correspon-
dence between images, brings useful information since the location of a
point in a scan is clearly correlated with the type of tissue which can be
found at that point. This correlation is not always decisive enough to de-
termine fully the tissue class, for instance when several scenarios can be
thought of at a same place (abdomen or random pocket of gas), or when
the registration lacks accuracy.

On the other hand, a patch-based approach would consist in extracting
local information from a patch in the MR image centered on the pixel con-
sidered, and in classifying this pixel according to similar patches previously
observed. This would not require any prior registration, would not assume
a one-to-one correspondence between all MR scans and consequently would
be able to deal with several possibilities of scenarios for the same location.
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It would, in some way, build a prediction by picking parts from different
examples. This approach is much more flexible than template registration.
However it ignores the important information given by the location.

We proposed in [8] to make simultaneous use of both the local and global
information given by patches and registration, respectively. We first esti-
mate a rough registration of the test image to a template image, and call
normalized coordinates the resulting new positions of pixels.

3.3 Image prediction using kernel methods

The key in working with kernel methods is in designing a kernel, or features,
which are adapted to the application. In our case an input will be a pair
x; = (pi,c;) of the local patch p; and its normalized coordinates ¢;; we
define a similarity measure between inputs by

_ fllpi—ijIQ) (fllcz-*cj\P)
k(z;, ;) = exp ( 2U§mh exp 202, . (1.35)
The parameters opatch and opes involved express the weighting between
the different information sources. Their optimal values can be determined
by the standard technique of cross-validation: to estimate the relevance of
any particular choice of (Gpatch, Opos), the training set is partitioned into
n subsets, and each subset is used for testing the algorithm trained with
these parameters on the remaining n — 1 subsets. The sum of the losses of
all subsets is the energy to minimize with respect to the parameters.

For our application, cross-validation typically yields optimal values for
Opos that are far bigger than 1. This implies that registration errors of a
few pixels will not affect the accuracy of our algorithm.

In the CT prediction problem, we may be interested in the classification
of MR pixels into three classes, namely bone, air and tissue, because in first
approximation there is a one-to-one correspondence between these classes
and the CT values. We build three binary classifiers with SVM, one for
each class against the two others, or more exactly we compute the quantity
whose sign is checked in (1.33), and then return the class which achieves
the greatest score. We show examples of results in figure 3.

3.4 Local learning

If the position is very informative, we can learn locally, i.e. cut the tem-
plate image into regions and train independently a classifier /regression for
each region. For brain images for example, intersubject variability is much
smaller than for whole body images. Thus non-rigid registration between
subjects is possible with only minor misalignments, and it is reasonable
to compare patches only within a localized neighborhood. We use kernel
ridge regression in order to take into account the variability of CT values.
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FIGURE 3. Left: MR (T2 MEDIC) of a rabbit. Middle: Three class labels as
predicted using SVM. Right: Three class labels obtained by thresholding a CT
image of the rabbit. Many differences between b) and c¢) are due not to false
classifications, but to some slight movement between MR, and CT scans, which
explains the misalignment between the test image a) and the ground truth c).

FIGURE 4. New MR image; pseudo-CT predicted by our method; ground truth.

More precisely, from pairs of patches and normalized coordinates, we do
not predict the CT value itself but the variation between the CT value and
the one in the template at that position. Results are shown in figure 4.

4 Discussion

After a tutorial on kernel methods, we have presented a way to use these
machine learning tools to extract information from a set of medical images
for MR-based CT prediction, in a framework which makes use of both local
and global information. This presents the advantage of requiring neither
a precise registration between template and test image, nor a one-to-one
correspondence between them. We hope we have woken up the reader’s
enthusiasm for machine learning in medical imaging, there are still plenty
of other ways to use machine learning tools in this field !
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