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Abstract—We present the results of a user study that compares different ways of representing Dual-Scale data charts. Dual-
Scale charts incorporate two different data resolutions into one chart in order to emphasize data in regions of interest or to enable the
comparison of data from distant regions. While some design guidelines exist for these types of charts, there is currently little empirical
evidence on which to base their design. We fill this gap by discussing the design space of Dual-Scale cartesian-coordinate charts
and by experimentally comparing the performance of different chart types with respect to elementary graphical perception tasks such
as comparing lengths and distances. Our study suggests that cut-out charts which include collocated full context and focus are the
best alternative, and that superimposed charts in which focus and context overlap on top of each other should be avoided.

Index Terms—Focus+Context, Quantitative Experiment, Dual-Scale Charts.
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1 INTRODUCTION

Data charts such as line charts, bar charts, and scatter plots are ar-
guably among the most common data representations used today. They
have found widespread adoption in a variety of disciplines and are also
frequently used to communicate information to the public. One of the
problems of data charts in practice is that they become difficult to read
when the amount of data goes beyond the available display resolution.

When the density of data points and/or their degree of interest is not
uniform—e. g., time series with dense event clusters and large empty
spaces in-between—one way to overcome visual resolution limitations
is to use more than one scale (number of data units per display unit)
in the same chart. Visually, this leads to charts where scale changes
between regions with relatively high magnification, as well as regions
where contextual data is displayed in a more condensed fashion.

Many different ways exist to visually integrate these different scales.
Popular approaches include cut-out charts (Fig. 1(a)) and superim-
posed charts (Fig. 1(b)). Another common approach consists of chang-
ing the resolution along a single axis, i. e., applying a non-occluding
step function [5]. In this case, Cleveland argues for the use of clear
visual breaks—i. e., a split of the data chart into separate coordinate
systems (Fig. 1(c))—in order to indicate changes in the number of
units per display unit [7, Chapter 2].

Apart from Cleveland’s recommendation, little work exists to guide
chart and visualization designers in choosing among different options
for designing charts with more than one scale. In particular, empirical
work is missing which highlights the advantages and disadvantages
of existing approaches for elementary graphical perception tasks. Yet,
tasks such as comparing distances and slopes in the data space are
likely to be difficult when different scales are employed in the same
chart, so choosing the right design seems of particular importance.

In this paper, we fill this gap by first discussing existing approaches
and placing them within a common design space. We chose to focus
on a specific subset of data charts where data points are positioned
according to a two-dimensional orthogonal coordinate system. Exam-
ples of such charts include line charts, bar charts, area charts, and
scatter plots but not pie charts, radar charts, 3-D charts, or organi-
zational charts. Furthermore, we focus on charts with two different
scales (Dual-Scale charts) which we believe are the most widespread,
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but still briefly discuss how the different approaches can be general-
ized to more than two scales. Although the term dual-scale has been
often used to specifically refer to superimposed charts (Fig. 1(b)), in
this article we use it to refer to any chart showing two main scales. We
further present the results from a controlled user experiment which
suggest that cut-out charts are the best option for Dual-Scale charts
and that superimposed charts should generally be avoided. We con-
clude by providing general recommendations for choosing between
different alternatives for Dual-Scale data charts.

2 BACKGROUND

Our work relates specifically to past empirical work on the design of
data charts as well as the larger field of focus-and-context presentation
techniques. Throughout this paper we use the term “chart” to describe
a graphical representation of data in which visual entities represent
data points according to transformation functions (“rulers” [7]) associ-
ated with axes on a plane. We use “chart” instead of “graph” in order
to avoid confusion with the larger field of graph drawing.

2.1 Chart Design

Many guidelines and design considerations exist for displaying data
in the form of charts, e. g., [3, 7, 19, 29, 31]. While many early
guidelines were based on authors’ intuition drawn from practice [12],
graphical perception experiments later on began to analyze and extend
these early guidelines. Cleveland and Kosslyn provide comprehensive
summaries of their empirical work on graphical perception studies as
guidelines for chart construction [7, 19]. Studying the perception of
charts is inherently important due to their widespread use in a vari-
ety of disciplines and popular media. Recent studies have investigated
the effect of chart embellishments [2], elementary graphical percep-
tion tasks confirming and extending previous work [16], the use of
charts and their annotations in Internet-sized collaborative work [32],
or have investigated general graph reading and comprehension for ed-
ucation purposes [12, 26]. Our work is most closely related to Heer
and Bostock’s recent study [16] as we also base our work on Cleve-
land’s elementary graphical perception tasks. Yet, we consider a novel
chart context which has not previously been a factor in perceptual stud-
ies of data charts. Our Dual-Scale chart context is closely related to
focus-and-context techniques and studies thereof as outlined next.

2.2 Focus-and-Context Techniques

Focus-and-context techniques are related to our work in that they
are methods for integrating regions of different scale into a sin-
gle data representation. Several overview articles discuss varying
taxonomies and software frameworks for focus-and-context displays
[6, 9, 18, 20, 23, 24]. Leung and Apperley [20] distinguish between
distortion-oriented and non-distortion-oriented techniques. Distortion-
oriented techniques are often described as “lenses,” “focus-in-context,”
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(a) A cutout chart as available through the Google Charts API
[14]. The top part shows a subset of the data at a larger
scale.

-4

-3

-2

-1

0

1

2

3

4

5

6

-16

-14

-12

-10

-8

-6

-4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) A superimposed Microsoft Excel chart. The red
line is plotted according to the left and the blue
according to the right y-axis.
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(c) A broken chart made with Gnuplot
[35]. Left and right panels show the
same function for different x-ranges.

Fig. 1. Three examples of Dual-Scale data charts made with common charting software.

or “multi-scale” and include such classic techniques as the bifocal dis-
play [30], the perspective wall [21], or the rubber sheet [28]. Non-
distortion-oriented techniques include zooming and windowing tech-
niques such as radar views. In this paper, we discuss both distortion-
oriented as well as non-distortion-oriented techniques with a focus on
Dual-Scale changes along one chart axis. We discuss the most related
previous focus-and-context techniques to our charts in Section 3.

Our work also relates to previous studies on the comprehension of
focus-and-context views. Generally focus-in-context methods are be-
lieved to reduce cognitive effort needed to integrate contextual infor-
mation compared to windowing or zooming techniques [6, 13, 36].
Cockburn et al. [9] summarize empirical studies which targeted com-
prehension issues with focus-and-context techniques in information
spaces. Most of the past studies involved comprehension in the con-
text of manipulation and interaction of a distorted and non-distorted
information space. Relatively few studies have targeted visual percep-
tion independent of interaction. In this context, the most related work
to ours is a study by Zanella et al. [36] on visual cues to aid comprehen-
sion of a visual distortion in an information space. A grid was found
to be the most useful and preferred technique and we, thus, included
grids as visual indicators of scale changes in all our charts in the study.
In this paper, we contribute specifically to the literature on perception
studies for focus-and-context displays, irrespective of the presence of
interaction techniques. We provide an understanding on how well par-
ticipants are able to relate information in focus-and-context regions in
data charts depending on how they are visually integrated.

2.3 Dual-Scale Techniques for Data Charts

The specific context of our study is Dual-Scale data charts. These
types of charts are available from commercial or free tools such as
the Google Charts API, Microsoft Excel, or Gnuplot [35] as shown by
the three examples in Fig. 1. We know of no empirical work which
compares different Dual-Scale chart techniques, yet some recommen-
dations on their use have been established by researchers and practi-
tioners: In his “principles for graph design” [7], Cleveland contributes
several recommendations relating to multi-scale charts. When com-
paring different charts he suggests to use the same data mappings if
possible, common units per display unit when possible, and to make
changes in data scale visually clear if they cannot be avoided. When a
break in data scale is necessary, Cleveland suggests not to connect data
values across the break. Similar recommendations were also made by
Cox [10] in an earlier article. Several experts [11, 15, 29] discuss prob-
lems with the Dual-Scale chart in Fig. 1(b) and recommend careful
design or to avoid using it altogether. Yet, empirical evidence on the
effectiveness of the Dual-Scale compared to other charts is missing. In
general, there is little empirical work on focus-and-context techniques
specifically dedicated to data charts. Our work focuses on elementary
graphical perception tasks for quantitative data as suggested by Cleve-
land [7, 8]. Cleveland introduces ten tasks: among them length, posi-
tion along one common scale, and slope all of which we also tested
in our study. Extending this work, we also tested length, position, and
slope for axes with two different data resolutions and along both in-

terrupted and non-interrupted axes. Perhaps the most closely related
study to our work in this space was conducted by Wigdor et al. [34]
for the perception of graphical elements on a display set at varying
viewing angles—from tabletop to upright. Their study found that er-
ror increased when graphical variables were compared with increasing
distortion. Yet, in contrast to our work, they tested distortion as a fac-
tor of viewing angle, while we are interested in distortion as a factor
of the graphical representation.

3 DUAL-SCALE DATA CHARTS

In this section we first introduce our terminology for characterizing
Dual-Scale charts. Then, we provide main examples in this design
space and outline their properties, visual variants, and generalizations.
This formal characterization is meant to provide a common framework
for designing, discussing, and evaluating these types of charts.

3.1 Terminology
Before discussing the differences between Dual-Scale chart tech-
niques, it is helpful to establish a set of common terms to describe
them.

3.1.1 Dual-Scale Transformation Functions
A Dual-Scale chart technique can be characterized with the help of
transformation functions as used by Leung and Apperley [20] in their
taxonomy of distortion-oriented presentation techniques.

A transformation function T maps a point u ∈ D in data space to a
point u′ ∈ D′ in display space (e. g., in the drawing region of a chart):

T : D→ D′; u 7→ u′

Since we focus on charts where data points are positioned according
to a 2D rectangular coordinates system, we consider the transforma-
tion function to be chosen per axis and assume that T takes a single
numerical parameter and returns a single numerical value.

The magnification function M of the transformation function T is
its first derivative:

M(u) =
du′

du
(1)

This means that M(u) represents the scale (number of data units per
display unit) at the location u′ = T (u) in display space.

Transformation functions and magnification functions can have var-
ious shapes. Among these, linear transformation functions—or con-
stant magnification functions—are the most common. More complex
transformation functions have been used such as logarithmic scales
or fisheye distortions [6]. In this article, we are interested in Dual-
Scale transformation functions, which we define as follows: T is a
Dual-Scale transformation function if:

T (u) = T1(u) if u ∈ D1

T (u) = T2(u) if u ∈ D2

and:
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(a) A regular chart.
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(b) T for the x-axis.

Fig. 2. A regular, single-scale bivariate line chart (left) and its x-axis
transformation function Tsingle (right).

• T1 and T2 are monotonic linear functions with different slopes,
• D1 and D2 are intervals of D verifying D1∪D2 = D

and D1∩D2 = /0.

In other terms, a Dual-Scale transformation function partitions the
dataset into two regions and applies a linear transformation to each
of them. This yields a piecewise constant magnification function M
with two parts. In accordance with the terminology of focus-and-
context techniques, we call the part of highest magnification the focus
region, and the part with the lowest magnification the context region.
In addition, we call the transition point between these two regions the
breakpoint ub. We will occasionally use the notations D = [u0,u1],
D1 = [u0,ub] and D2 = [ub,u1], as well as M1 (resp. M2) for the
magnification factor within D1 (resp. D2). Note that given this def-
inition, a chart with one single logarithmic scale is not considered a
Dual-Scale chart since it does not consist of two linear segments.

3.1.2 Properties of Dual-Scale Transformation Functions
We introduce simple mathematical properties that are useful for char-
acterizing Dual-Scale transformation functions.

Most charts are based on transformation functions that are mono-
tonic and minimally C1 continuous (i. e., T is differentiable and M is
continuous), and thus also bijective. This is the case for linear trans-
formation functions, log scales, and most fish-eye transformations. As
for Dual-Scale transformation functions, both T1 and T2 functions are
minimally C1 continuous (or simply C1) but T does not need to be
so. In fact, there can be a corner or a discontinuity at the breakpoint,
making the transformation function either C0 (T is continuous but M
is discontinuous) or C−1 (T is discontinuous).

We can, therefore, characterize three types of Dual-Scale transfor-
mation functions based on the order of continuity of T and the result-
ing visual discontinuity that can be observed between D′1 and D′2. We
name them following Carpendale’s characterization [5] of visual con-
nections between different regions in a presentation. They are:

visually disjoint if T is C−1, there is a visual gap between D′1 and D′2,
visually continuous: if T is minimally C0, i. e., D′1 and D′2 are visu-

ally adjacent with possibly an abrupt change in scale, or
visually integrated: if T is minimally C1, i. e., D′1 and D′2 are

smoothly connected visually, without any abrupt change in scale.

Note that Carpendale also defines visually adjacent for regions
which are side-by-side but whose content is possibly not aligned. One
example for this case is the removal of parts of the data by choosing
D1 and D2 so that they are not adjacent; a scale break approach as
described by Cleveland [7]. We do not treat this case here and focus
on the case D1∪D2 = D. The next section provides examples of Dual-
Scale transformation functions for common Dual-Scale techniques.

3.2 Regular Charts
A regular, single-scale data chart is illustrated in Fig. 2(a) as an ex-
ample of reference. Here, the transformation function shown to the
right of the figure is applied to the x-axis. The transformation func-
tion Tsingle linearly maps the data domain D = [u0,u1] (with u0 = 0
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(a) A bifocal chart.
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(b) T for the x-axis.

Fig. 3. A bifocal line chart with a breakpoint at ub = 5 (left) and its x-axis
transformation function Tbi f ocal (right).

and u1 = 20 in the figure) to the display domain D′ = [u′0,u
′
1]. Its

corresponding magnification function is the constant Msingle = (u′1−
u′0)/(u1 − u0). Tsingle is a simple function with good properties (it
is monotonic and C∞), but one problem is that function values for
u ∈ [0;5] are dense and difficult to read.

In all the following examples, we assume that D has already been
partitioned into two regions D1 and D2 (ub = 5 on the figures), with D1
being the focus and D2 the context. This partitioning can either reflect
the a priori importance of the data (possibly computed automatically
from the data distribution) or a Degree of Interest (judged by a chart
designer or controlled interactively by a computer user) [13].

3.3 Bifocal Charts
Fig. 3 shows a chart with two regions of different scales along the x-
axis. Visually, this yields a variant of the Bifocal Display [30]. The
focus region is enlarged to fill more drawing space and the remaining
data is compressed into the remaining available space.

PROPERTIES:
Similar to the regular chart, the transformation function Tbi f ocal (see
Fig. 3(b)) is bijective and monotonic. However, it is C0, which yields
a visually continuous but visually non-integrated connection between
the regions D′1 and D′2. This means that the chart is continuous but ex-
hibits an abrupt change in scale, which can potentially make it difficult
to cognitively relate information in both regions [6, 13, 36].

VARIANTS:
The data breakpoint ub being already chosen and assuming that we
choose the display domain D′ to be the same as in the regular chart, the
only remaining free parameter for this type of transformation function
is the visual location of the breakpoint u′b (in our example we chose
u′b = (u′0+u′1)/2). Once this location has been chosen, the transforma-
tion function is fully defined, and with it the magnification factors M1
and M2. In our example in Fig. 3, the relative magnification M1/M2 is
3. Alternatively, this relative magnification can be chosen as the free
parameter, in which case it determines the value of u′b.

A visually integrated and a visually discontinuous version of the bi-
focal chart’s transformation function are detailed in the next sections.

In terms of visual design, to make the scale transition visually more
salient one can consider to add two vertical | | or slanted / / lines on the
axis representation to indicate a change in magnification. Cleveland
calls this technique a partial scale break [7] but recommends to use a
broken chart instead, as described in Section 3.5.

GENERALIZATIONS:
Extending bifocal charts to support multiple scales is straightforward.
By adding multiple “bends” in T , an arbitrary number of regions with
different magnification factors can be created. The 1D distortion ap-
plied to bifocal charts can also be extended to 2D by applying it indi-
vidually to each axis. This, however, may lead to ghost foci [5].

3.4 Lens Charts
Fig. 4 illustrates the effect of adding a drop-off function to the bifo-
cal chart of Fig. 3, in a way similar to fish-eye lenses [27]. The scale
is constant in the focus region, then starts to smoothly decrease in
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(b) T for the x-axis.

Fig. 4. A lens chart with a drop-off region between ub = 5 and ud = 9
(left) and its x-axis transformation function Tlens.
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(a) A broken chart.
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Fig. 5. A broken chart showing a gap at u = 5 (left) and its x-axis trans-
formation function Tbroken (right).

the context region, then is constant again in the rest of the context
region. Although this is technically not a Dual-Scale chart as previ-
ously defined in our terminology section, it does have two primary
magnification factors and can therefore be classified into the family of
Dual-Scale techniques provided the drop-off region is small enough.

PROPERTIES:
Like Tbi f ocal , the transformation function Tlens (see Fig. 4(b)) is bijec-
tive and monotonic. However, it is C1, which yields a visually inte-
grated connection between regions D′1 and D′2, thanks to the drop-off
function which bridges the gap between the two magnification factors.

VARIANTS:
The drop-off region can be chosen to overlap both the focus and the
context regions, but we chose to fully preserve the focus region and
have the drop-off encroach on D2 instead. The data breakpoint ub
being already chosen and assuming we choose the display domain D′
and the breakpoint location u′b to be the same as in the bifocal chart, the
magnification factor M2 necessarily has to be smaller (this is visible
when comparing charts in Fig. 4 and Fig. 3).

There are an infinite number of possible drop-off functions and
ways of parameterizing them. In the implementation we used in our
user study, we chose to use as the unique parameter the visual loca-
tion u′d ∈ [u′b,u

′
1] of the transition point between the drop-off region

and the constant-scale region (u′d = 9 in our example). The location
ud of this transition point in the data space is chosen so that it verifies
∠U0UbUd =∠UbUdU1, with U = (u,u′). We then interpolate between
Ub and Ud using a quadratic Bézier curve. In our example of Fig. 4,
this yields a relative magnification M1/M2 of 4.3.

GENERALIZATIONS:
Lens charts can be extended to support multiple scales and 2D trans-
formations the same way as bifocal charts.

3.5 Broken Charts
Fig. 5 shows an example of a broken chart. Such charts are promoted
by Cleveland when several scales need to be shown [7] and are drawn
with a visible gap between the regions with different scales and clear
dividing lines on the circumference of the chart’s data area.

PROPERTIES:
The transformation function Tbroken for this chart is monotonic but non-
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(a) A superimposed chart.
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Fig. 6. A superimposed chart where focus and context are drawn on the
same chart area (left), and its x-axis transformation function Tsup (right).

bijective. It is injective but not surjective, which means that positions
in the display domain encode data values unambiguously but not all
these positions are effectively used. It is also discontinuous and has
a gap whose size represents the amount of white space between the
focus and context region. As a consequence, the focus and context
regions are visually disjoint and their relationship has to be deduce
from chart context such as labels [5].

VARIANTS:
We can choose to preserve either the focus region and have the gap
encroach on the context, or to center the gap at the visual breakpoint.
In our example we did the latter, which shrinks the context and focus
regions slightly and yields slightly lower values for both M1 and M2.
Once the gap placement strategy has been chosen, and choosing the
same ub, D′ and u′b as in the bifocal chart, the only remaining free
parameter for Tbroken is the size of the gap ∆u′g in the display space.

In terms of visual design, a broken chart duplicates the orthogonal
(y) axis after the gap where it can also hold tick marks and/or labels.
As in Cleveland’s original chart we only display tick marks (Fig. 5(a)).

GENERALIZATIONS:
By introducing multiple breaks in the transformation function and
varying the size of the gaps, more than one scale can be shown at a
time. One issue is that gaps take screen real-estate so the more scales
are shown, the less space remains for displaying the data. Broken
charts also naturally extend to 2D. If one axis is partitioned into m dif-
ferent scales and the other axis is partitioned into n scales, the chart
will show a total of m×n rectangular regions but, as for extensions to
the bifocal chart, ghost foci may be created [5].

3.6 Superimposed Charts
Fig. 6 shows an example of a superimposed chart. Here both focus and
context regions are drawn along the full width of the chart and share
the same y-axis. Superimposed charts are commonly used when two
data sets have only one axis in common.

PROPERTIES:
In contrast to previous chart types, the transformation function Tsup
for this chart is non-monotonic: data ordering is not preserved on the
display space and simple ordinal comparisons might be more difficult.
Also, the function is non-bijective but contrary to Tbroken, it is surjec-
tive but not injective: it means that the whole display space is used but
the encoding of data values is ambiguous. This might cause overlap-
ping and legibility problems, although in some cases it could facilitate
comparisons. In addition, Tsup is C−1 and thus the visual connection
between focus and context is discontinuous. The size of this disconti-
nuity (u′1−u′0) is much larger than in the broken chart (∆u′g).

This type of chart however has the advantage of having more res-
olution than the previous charts. When u′b = (u′0 + u′1)/2 as in our
examples, the gain is twofold: for the same footprint D′, the magnifi-
cation factors M1 and M2 are doubled. Conversely, keeping the same
magnification factors yields a chart twice as small.

VARIANTS:
In contrast with previous transformation functions, Tsup does not take a
parameter u′b: the breakpoint is displayed both at u′1 and at u′0 because
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(a) A cut-out chart.
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Fig. 7. A cut-out chart where the focus between u = 0 and u = 5 is split
off and shown separately (left) and the two transformation functions for
its x-axis Tcutout1 and Tcutout2 (right).

this is what yields the best usage of the display space. Assuming we
chose the same ub, D and D′ as in the previous examples, Tsup is fully
determined and has no remaining free parameter.

Contrary to the bifocal approach, Tsup cannot be reasonably turned
into a smoother function. Although it is technically possible to insert
a region around ub where the function smoothly decreases from u′1 to
u′0, the visual result would probably make little sense.

The superimposed chart leaves the transformation function of the
orthogonal axis (y in our examples) unchanged with respect to the reg-
ular chart. There are design alternatives where the data is drawn differ-
ently along this dimension. These include displaying focus and con-
text “side-by-side” along the orthogonal dimension at the expense of
footprint or resolution. In this case, the 2D transformation function be-
comes bijective and overlapping issues vanish, but ordering problems
persist and the connection between regions remains discontinuous.

A superimposed chart typically displays axes from the the two
datasets on both sides of the chart, and uses different colors or data
point shapes for displaying the context and the focus data (see Fig. 6).
Grid lines can also be displayed in two colors but for the sake of legi-
bility, we chose to only display grid lines for the focus as the region of
primary interest. Tickmarks were displayed for both regions.

GENERALIZATIONS:
Extending superimposed charts to more than two scales is straightfor-
ward as far as the transformation function is concerned. It involves par-
titioning D into multiple regions and linearly mapping each of them to
D′. As in the Dual-Scale case, there is no remaining free parameter and
the magnification factor of each region [un,un+1] is fully determined
and equal to (u′1−u′0)/(un+1−un). This gives the superimposed chart
approach less flexibility than the previous approaches as it is not pos-
sible to, e. g., shrink small regions. Drawing all sub-axes and showing
how they map to the data points, however, is less straightforward. One
approach could be to draw all axes side-by-side and use a color coding
scheme but one would quickly run out of colors. An alternative would
be to use a numbering scheme.

Extending superimposed charts to 2D is less trivial than with the
previous techniques and applying transformation functions of the type
Tsub to both axes might yield visual representations that are difficult to
read and interpret. This is an interesting topic for future work.

3.7 Cut-Out Charts
Fig. 7 shows an example of a cut-out chart. This type of chart is fre-
quently used to display data along timelines [1]. The top part of the
chart shows the whole dataset and highlights the focus while the bot-
tom shows the focus extended to the width of the display area.

Since the focus region is shown twice, the transformation “function”
Tcutout for this chart is no longer a mathematical function. We thus ei-
ther have to generalize the transformation function to a transformation
mapping or allow several transformations functions to be applied in
sequence. Fig. 7(b) shows these two functions Tcutout1 and Tcutout2:
Tcutout1 linearly maps the focus region D1 to D′ (top line) and Tcutout2
linearly maps D to D′ (bottom line). Cut-out charts can also affect
the transformation function of the orthogonal axis by shrinking their
display domain in order to show the two collocated plots.

PROPERTIES:
Both Tcutout1 and Tcutout2 are linear so, like in a regular chart, they are
bijective, monotonic and C∞. In the top part of the chart the visual
connection between the focus and context is visually integrated. So
when these two parts are read like separate charts, they share all the
properties of a regular chart.

When Tcutout1 and Tcutout2 are taken together (i. e., combined into a
single mapping Tcutout ) they are not injective anymore, but when con-
sidering the 2D transformation that combines the two axes, the map-
ping is bijective thanks to the side-by-side layout. This means that a
2D position on the chart unambiguously reflects a 2D data value, but
when the user’s visual attention switches between the two parts of the
chart (e.g., reading data points in sequence on the magnified view then
proceeding to the top view), the two regions appear as visually dis-
continuous and the whole chart as non-monotonic. This can make it
potentially difficult to switch focus between the two parts of the chart
and search for the same data point.

This chart has a good visual resolution along the x-axis, with the
focus part having the same magnification as the superimposed chart
(and better than all other charts) and the context part having the same
magnification as the regular chart (better than all other charts except
the superimposed one). Along the y-axis, however, the chart has a
smaller magnification factor for the same footprint.

VARIANTS:
Like in the superimposed chart, Tcutout , and with it the magnification
factors, are fully determined when ub and D′ have been chosen.

In terms of visual design, the x-axis is typically duplicated on the
two parts of the chart and additional visual cues make the relationship
between the two views of the focus region explicit. The design space
for these visual cues is large. Typical examples include displaying the
focus and context regions on the top view with a different background
color, and visually connecting the two views using lines or by enclos-
ing them with a single shape (see Fig. 7 and Fig. 1).

GENERALIZATIONS:
Cut-out charts can be extended to support multiple scales with some re-
strictions. For example, one could identify several focus regions in D
and display them side-by-side in the bottom part of the chart: instead
of showing a single focus view, this region would then split its horizon-
tal space among several focused views. This would, however, imply
that the same scale is applied to all the other (non-focused) regions so
that they can be shown in the top part. More flexible approaches can
be thought of, such as using a hierarchical layout for focus regions as
in [17]. Despite promising approaches, a method for automatically dis-
playing cut-out charts with arbitrary partitionings of the data set and
arbitrary scaling factors has yet to be found.

A straightforward extension of Dual-Scale cut-out charts to 2D con-
sists in magnifying and cropping the y-axis in the focus view in ad-
dition to the x-axis, and displaying a “zooming rectangle” inside the
context view. Furthermore, when the focus view is large enough (e. g.,
spans the whole screen), it is possible to place the context view as an
inset into the focus rather than above it. This yields a 2D radar view,
a technique that is often used in maps and graphic authoring tools to
provide context and allow users to quickly pan a large document.

3.8 Summary
In this section we have provided representative examples of different
types of Dual-Scale charts. These representative examples are distin-
guished by a number of properties we discussed throughout this sec-
tion and summarize in Table 1.

The five first rows indicate the mathematical properties of the trans-
formation function for the x-axis. The x- and y-resolution rows in-
dicate the amount of resolution available on these axes compared to
the regular chart. scale DOF indicates the number of degrees of free-
dom available for choosing scales (i. e., M1 and M2) assuming the data
breakpoint ub and the chart size u′1− u′0 are fixed. A value of 1 indi-
cates that choosing a scale value determines the other (or similary, that
only M1/M2 can be chosen). A value of 0 indicates that scales are
imposed by the chart.



CHART (regular) bi- lens broken super- cut-out
/PROPERTY focal imposed per chart overall

bijective T X X X — — X —
injective T X X X X — X —

surjective T X X X — X X X

monotonic T X X X X — X —

continuous T C∞ C0 C1 — — C∞ —

x-resolution 1× 1× 1× ≈ 1× 2× 1−2× 1−2×
y-resolution 1× 1× 1× 1× 1× 0.5× 0.5×

scale DOF 1 1 1 0 0 0

Table 1. Properties of representative examples of Dual-Scale charts.

After having characterized these representative examples of Dual-
Scale charts and their properties, the remaining essential question per-
tains to the effectiveness of each alternative Dual-Scale data encoding.
We, therefore, designed an experiment to test chart performance for
tasks in which data had to be compared across two scales.

4 EXPERIMENT DESIGN

The purpose of our experiment was to determine how well different
representations of Dual-Scale charts would perform for elementary
graphical perception tasks. We were specifically interested in tasks
which involve the comparison of data within the focus as well as across
regions. We based this choice on the assumption that focus regions in
charts are generally chosen to display data of importance but that this
data often has to be put into context involving data outside the focus.
The influence of chart representation and data scale for these tasks has
not been previously addressed in the literature as outlined in Section 2.

4.1 Experiment Factors

Our main experimental factors were chart, task, location, and break-
point. The details for each factor are outlined next.

4.1.1 Charts

We tested five charts for which we varied the scale along the x-axis.
We describe them using the notations we introduced in Section 3. The
horizontal display size u′1− u′0 = 1200px was the same for all charts.
We used D = [0,20] for the x-axis and D = [0,10] for the y-axis. We
displayed a data grid on the x- and y-axis showing one gridline for each
integer data value in order to provide the same number of gridlines per
representation. No labels were displayed for the charts. We chose the
following charts to cover a range of Dual-Scale chart techniques:

Broken (B): A chart with a Tbroken transformation function (Fig. 5)
whose visual breakpoint was set to u′b = (u′0 +u′1)/2 and whose
gap size was set to ∆u′g = 20px so that the focus and context
regions covered just under 50% of the drawing space.

Cut-Out (C): A chart with a Tcutout transformation function (Fig. 7).
This chart was displayed with the same y-axis length for focus
and context regions compared to the other four charts in order to
avoid confounding effects due to y-axis distortion.

Lens (L): A chart with a Tlens transformation function (Fig. 4). We
set the visual breakpoint to u′b = (u′0 +u′1)/2 and set u′d = (u′b +
u′1)/2 so that the drop-off region covered half of the context.

Regular (R): A regular chart with a Tsingle transformation function
(Fig. 2). This chart was chosen as a baseline comparison.

Superimposed (S): A chart with a Tsup transformation function
(Fig. 6). As shown in the figure, we used different data symbols
or line colors for data in the focus and in the context.

4.1.2 Tasks

We used a subset of Cleveland’s [7] elementary graphical perception
tasks as we were interested in how information could be understood at

a relatively quick glance across different data scales. We chose posi-
tion, length, and slope tasks as the most highly ranked among Cleve-
lands tasks [7] and also because we hypothesized them to be most
impacted by changes in scale. Cleveland’s past work [7] and later uses
of his tasks (e. g., [16, 34]) tested same-scale data along aligned or
non-aligned axes. We extend this work by testing Dual-Scale data
along aligned (lens) or non-aligned axes (broken, superimposed, cut-
out). To do so, we asked participants to judge the position, length, and
slope of the encoded information in data space rather than in drawing
space. This meant that to answer questions correctly participants had
to take gridline and tickmark spacing into account. For each task, we
presented a modulus object on the chart and asked participants to judge
the relative magnitude of a stimulus object as a percentage of the mod-
ulus. Similar to Wigdor et al.’s work [34] we were interested in the
change in perception between different conditions and, thus, worked
with the perceived magnitudes reported by the participants rather than
modeling actual magnitudes as done by others [22]. For all tasks, the
modulus value to judge was larger than the stimulus and, therefore,
answers were always between 0 and 100%. The modulus and stimu-
lus were placed on different y-positions to make them distinguishable.
For all conditions, the positions, lengths, and slopes were drawn to be
fully visible in both the focus as well as the context as we were not
interested in studying visual acuity [33]. Instead, we wanted to under-
stand how—given visible data—participants were able to understand
and relate the data presented to them at different scales.

4.1.3 Location
We tested three combinations of modulus and stimulus location:

Focus: Both stimulus and modulus are placed in the context region.
This location was a control condition and was treated separately
in the analysis of the data.

Focus+Context: The modulus is placed in the context while the stim-
ulus is placed in the focus.

Across: The modulus and stimulus cross the scale break. This condi-
tion was only tested for length and slope tasks. For the position
task only single data points were placed which have no extent
and, thus, cannot cross ub.

We used two slightly varied positions for the modulus in each location
to avoid learning effects.

4.1.4 Breakpoints
We tested three different breakpoints which determined the overall
scale in context and focus region as outlined in Section 3. The break-
points were located at ub = 2, ub = 5, and ub = 10. ub = 10 was a
control condition, as there was no scale difference between focus and
context except for the cut-out chart where the focus was scaled 2×
compared to the context.

4.2 Hypotheses
Our hypotheses for this experiment were as follows:

H1 The chart performance is affected by factors location and break-
point. Results are more prominent for higher scale differences.
This hypothesis follows from previous work on perceptual dis-
tortion for elementary graphical perception tasks [34].

H2 R outperforms all charts for across and f ocus+context locations
for all tasks. This is due to the uniform scale across all areas of
this chart. We hypothesize a uniform scale to be significantly
less cognitively demanding.

H3 For location f ocus all techniques perform similarly for each task
in terms of error, with possible small effects in time. Results fol-
low those derived by Cleveland & McGill [8]. This hypothesis is
a direct follow-up from H2 as there exists a uniform scale within
the focus region.

H4 L outperforms B due to the smooth continuous visual integration
of the context. This hypothesis results from focus-in-context
techniques generally being believed to be less cognitively de-
manding [6, 13, 36].



We were less sure about the performance of S. On the one hand its
x-resolution is high, on the other the chart is non-monotonic, its T is
C−1, and focus and context are visually discontinuous. The benefits of
the resolution may be outweighed by the added cognitive demand of
having to select which axis to related visual entities to.

4.3 Overall Experiment Design
We used a repeated-measures design with the independent variables as
outlined in Section 4.1. The dependent variables were magnitude of
error and time. Each participant performed six trials per task × chart
× location × breakpoint combination. The order of chart, task, loca-
tion, and breakpoint was randomized using a Latin square. Each trial
presented the data using a different percentage of change. The percent-
ages were always multiples of 10 ranging from 10–60 for the position
task and 20–70 for the length and slope tasks. The presentation order
of the percentages was randomized for each set of six trials to mini-
mize learning effects. Before each task, participants went through a set
of training trials not used in the actual experiment, in which they saw
each chart and location condition using one breakpoint. We did not
provide participants with correct answers during the training to avoid
learning correct answers. The experimental session lasted between 90
to 120 mins overall. In summary, the design included:

3 tasks ×
5 charts ×

2/3/3 locations ×
3 breakpoints ×
6 percentages =

720 trials per participant ×
15 participants =

10,800 trials in total

4.4 Participants and Procedure
Fifteen participants (10 male, 5 female) were recruited from our re-
search institute. Participants ranged from 24–39 years in age (me-
dian age 26) and all reported normal or corrected-to-normal vision.
Eight participants were students and seven non-students with pre-
dominantly technical occupations. Nine participants reported at least
weekly exposure to charts like the ones seen in the study; the remain-
ing six participants reported monthly or less frequent exposure. Par-
ticipants received instructions on how to read all charts and were not
paid for their involvement in the study.

Participants sat in front of a 20.1 inch Dell LCD display at a distance
of approximately 50 cm. Participants answered all trials by entering
the answer on the keyboard and then pressing the Enter key. Timing
was started once a chart appeared on the screen and stopped when a
participant hit the first number key to enter an answer. After a number
key had been hit, the current chart was made invisible. This was done
to ensure that we measured the time until an answer had been decided
upon and not the typing time. After the study, participants filled out a
questionnaire eliciting demographic information as well as subjective
preferences for the different chart types tested.

5 RESULTS

Our dependent variables were time and error with error defined as
previously suggested [8] as log2(|judged percent− true percent|+ 1

8 ).
This metric calculates the absolute difference between the user’s

judgement and the true magnitude difference. The log2 parameter was
found appropriate for error judgments, while the 1

8 parameter prevents
a distortion of the results towards the lower end of the error scale, since
the absolute error was sometimes close to 0. Trials were marked as out-
liers when error was beyond two standard deviations from the mean
for a given task, chart, location, breakpoint, and answer percent (4%
of all trials), and were removed from further analysis. The remaining
trials were aggregated per subject for each combination of conditions,
and followed the normal distribution. We also examined our partici-
pants’ speed in performing the different tasks for charts, to look for
potential time− error trade-offs. All analyses of the study data were
performed using an ANOVA.
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Fig. 8. Results for error (left) and time (right) per task for each chart.

We first compared performance across the three tasks (Fig. 8): We
compared the common percents (20, 30, 40, 50, 60) and common
locations ( f ocus, f ocus+ context) across tasks. We found a signifi-
cant effect of task on error (F2,28 = 166, p < .0001). Pair-wise means
comparison (all p< .05, all adjustments Bonferroni) showed that users
were significantly more accurate for the position task (6.5% mean ab-
solute distance error before transform), followed by length (8.1%) and
slope (16%). There was no significant effect on time. Thus task ac-
curacy in our experiment follows the order reported by Cleveland &
McGill [8] (H3), not only for f ocus but also f ocus+context locations.

We found a significant effect of location (F1,14 = 70, p < .0001) on
error, with tasks in f ocus being significantly more accurate (p < .05),
supporting H1 that location affects accuracy. Post-hoc comparisons
showed no significant difference for our control condition f ocus be-
tween charts in terms of error or time. The lack of significance and
the very close means for all charts per task supports H3. Thus, in the
results reported below we focus on the remaining locations.

Finally, there was a significant effect of breakpoint (F2,28 = 29, p <
.0001) on error. For all tasks, responses where significantly more
accurate in the ub = 10 breakpoint, followed by ub = 5, and ub =
2; this supports H1, that tasks are harder with an increase in scale
difference. Next, we discuss our results independently for each task.

5.1 Position
The position task varied from the other two tasks in that we could not
test the across location (Section 4). Results for time and error on the
f ocus+ context location are reported next. Fig. 9(a) gives a summary
of the significant effects for this task and the charts tested.

Error: We found a significant effect of chart (F4,56 = 25, p< .0001)
on error. Pair-wise means comparison (all p < .05) showed that R was
significantly more accurate than all other charts except for C, and all
charts were more accurate than S. Mean absolute error was -.2 for R
(close to 0 magnitude error), -.07 for C (similarly), .26 for L, .95 for B,
and 2.1 for S. There was also a significant effect of breakpoint (F2,28 =
5.8, p < .05), with participants being significantly less accurate in the
breakpoint ub = 2 (p < .05).

Time: We found a significant effect of chart on time (F4,56 = 19.8,
p < .0001). Pair-wise means comparison (all p < .05) showed that
R was significantly faster than all other charts apart from C, C was
significantly faster than B and S, and all charts were significantly faster
than S. Mean times were faster for R (3.2 s), followed by C (4 s), L
(4.6 s), B (6 s), and S (8.1 s).

5.2 Length
For the length task we first analyzed overall effects and then looked
at interactions for the two locations tested as well as the three break-
points. Fig. 9(b) gives a summary of the overall significant effects for
this task and the different charts tested.

Error: ANOVA showed a significant effect of chart on error
(F4,56 = 52.3, p < .0001). Pair-wise means comparison (all p < .05)
showed that R and C were significantly more accurate than all other
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Fig. 9. Significant interactions between chart for error and time for the three tasks in the study (Figures 9(a)–9(c)). Arrows indicate a significantly
better than relationship. Thicker errors indicate that the effects were present for both error and time. Fig. 9(d) shows the overall main subjective
ranking participants gave to each chart for each task. The rankings mirror the statistical results.

charts, and S was less accurate than all charts apart from B. Mean
absolute error was .3, .5,1.09,1.1,1.6 respectively for R, C, B, L, S.

There was also a significant effect of breakpoint (F2,28 = 9.6, p <
.05), with participants being significantly more accurate for breakpoint
ub = 10 (p < .05). A significant chart× breakpoint interaction was
present (F8,112 = 7.1, p < .05). Post-hoc comparisons showed that
for ub = 2 both R and C had significantly smaller error than all other
charts. For ub = 5 we found that S had the highest error among all
charts, but R and C were no longer different from the remaining charts.
There were no differences between charts for ub = 10. There was also
no effect of location on error.

Time: There was a significant effect of chart on time (F4,56 = 11,
p < .0001). Pair-wise means comparison (all p < .05) showed that R
was significantly faster than all other charts apart from C, C was faster
than S. Mean times were fastest for R (3.9 s), followed by C (5.2 s), L
(6 s), B (7.6 s), and S (8.4 s).

5.3 Slope
The slope task was analyzed the same way as the length task. Fig. 9(c)
gives a summary of the overall significant effects for this task between
the different charts tested.

Error: The ANOVA showed a significant effect of chart on error
(F4,56 = 4.7, p < .05). Pair-wise means comparison (all p < .05)
showed that R was significantly more accurate than C and S, and L
more accurate than S with no other differences. The mean absolute
error was 2.2 for R, 2.3 for B, 2.4 for L, 2.5 for C, and 2.6 for S.

There was no effect of location on error, but there was a significant
effect of breakpoint on error (F2,28 = 5.7, p < .01), with participants
being more accurate in ub = 10 than in ub = 5. A chart× breakpoint
(F8,112 = 5.7, p < .0001) interaction was present. Post-hoc compar-
isons showed that for ub = 2 R had less error than C, with no other
differences. For ub = 5 we found that C, R, and B had a significantly
smaller error than S, and also R had less error than L. There were no
differences between charts for ub = 10.

Time: There was a significant effect of chart on time (F4,56 = 7.1,
p < .0001). Pair-wise means comparison (all p < .05) showed that S
was significantly slower than R and L with no other differences. Mean
times were fastest for R (3.7 s), followed by L (3.8 s), B (4.4 s), C
(4.5 s), and S (5.5 s).

5.4 Questionnaire Results
In the questionnaire we asked participants to rank the different charts
overall and for each task × location. The overall ranking is depicted in
Fig. 9(d). For each task and task × location, S was always ranked last
and C was always ranked first. B and L switched position depending
on location and task, but B was ranked second more often than L. The
most interesting difference from this trend occurred in the slope task
where L shared Rank 1 and 2 with C for the across location and was
also ranked second for f ocus+ context.

We also asked participants to report the general confidence in their
answer with each chart on a 7-point Likert scale. Overall, only B and
C received answers indicating that participants were confident in their

answers. For L participants answered to be slightly inconfident to neu-
tral, while for S all participants reported not to be confident about their
answers. For the slope tasks where participants’ answer accuracy was
lowest, each technique also received low confidence scores.

6 DISCUSSION

Our results suggest that certain types of Dual-Scale chart representa-
tions are more effective on a low perceptual level than others. Our
findings follow Cleveland’s ranking of different tasks in terms of accu-
racy (position was most accurate, followed by length and slope) but
this relative accuracy was different across charts (Fig. 8).

6.1 Chart Performance
We found that among the four Dual-Scale charts the cut-out chart was
generally the best for tasks which involved relating information in both
focus and context. A strong benefit of the cut-out chart was its en-
larged x- and y-resolution compared to the other charts. Yet due to
its visual discontinuity for the bottom focus region we would have ex-
pected larger mean differences to the regular chart. The cut-out chart
was also the most liked among all charts in the study and participants
named it to be clear and most readable. We hypothesize that seeing
what the focus information looked like at the regular scale helped par-
ticipants to cognitively relate the two spaces.

We partially confirmed H2 in that the regular chart of uniform scale
outperformed all others (except for cut-out in the length and position
tasks). We found across the board that the superimposed chart per-
formed poorly both in terms of accuracy and time. Participants’ feed-
back from the questionnaire was also clearly against the superimposed
chart and it was ranked lowest by all but one participant. Participants
called it very confusing and demanding too much concentration or re-
flection to decipher the non-monotonic and discontinuous nature of
the two scales. One participant commented that the different visual
markers which were necessary to depict data in this chart were a ma-
jor reason for his confusion. We already hinted at this problem when
discussing the superimposed chart properties in Section 3.6.

The broken and lens charts can be situated somewhere in the mid-
dle between cut-out and superimposed charts. They were never sig-
nificantly different from one another but for some conditions better
than superimposed and worse than cut-out. Both charts’ transforma-
tion functions are monotonic (in contrast to superimposed) and their T
is injective, yet, the lens chart bridges the gap between focus and con-
text with a smoothly integrated drop-off region and Tlens is continuous
whereas Tbroken is not. We had hypothesized that this smooth integra-
tion and continuity would be beneficial but we could not confirm H4.
We did observe though a better performance (not significant) at the po-
sition task. It may be that tasks that require long visual tracing (like
the position one) may be better served by an undivided visual chart but
our results seem to suggest that neither visually integrated displays nor
visual continuity are necessary for comparing lengths. This requires
further exploration. It also still requires further testing to definitely
conclude which Dual-Scale properties are the most relevant to predict
chart performance. We found that monotonicity was a beneficial prop-
erty but more data is needed to derive general conclusions.



6.2 Influence of Location, Scale, and Task
According to our first hypothesis, we expected location and
breakpoint to significantly impact the performance of our charts.
We only partially confirmed H1 in that—with increasing scale differ-
ence between focus and context—performance significantly decreased.
We did not generally find a significant effect between across and
f ocus+ context location. It did not seem to matter whether modulus
and stimulus were partially in each location or fully embedded.

For task, we confirmed Cleveland’s ranking. The position task gen-
erally showed the most significant effects and fastest and most accu-
rate results. For the slope task we had expected stronger results as a
change in scale also incurs a significant change in the visual angle of
a line connecting two data points. We suspect that our design of this
task influenced the results. Our participants did not simply have to
judge a visual angle or slope (both are related as pointed out by Cleve-
land [7]), but like in the other two tasks we asked them to judge the
slope in data space as a “rate of change.” To simplify the task and
reduce overall task time, we had designed each slope to connect two
data points offset by 1 data unit. This meant that participants only had
to compare the slope’s y-offset which subsequently boiled down to a
length comparison in the undistorted y-space. If we had flipped x- and
y-coordinates for this task we expect to have received results similar
or identical to the length task. Finally, it is interesting to note that the
superimposed chart still fared the worst for slope, indicating that this
chart incurred considerable cognitive overhead. For the cut-out chart,
participants seem to have been distracted by the presence of the focus
area in the slope task as they were significantly less accurate compared
to the regular chart.

6.3 Experiment Design Trade-Offs
In the design of our experiment we had to make several main choices
which influenced our results and also point to limitations of this study.

(1) We believe that the good performance of the regular chart is a
direct consequence of our experiment design. We specifically tested
modulus values which were visible in the focus for all breakpoint con-
ditions (including ub = 10). This means that comparing stimulus and
modulus was always possible across one scale in the regular chart as
well as the top of the cut-out chart. For tasks where data is visible in
a common scale, using this common scale for tasks is a benefit and
participants took advantage of this fact in the cut-out chart leading to
its good performance. No other Dual-Scale chart we tested offered
this opportunity. For tasks in which the focus information would be
invisible or very small, the regular chart would not fare as well and we
expect the cut-out chart and possibly others to outperform it.

(2) We made specific choices in chart design which influenced our
results. In contrast to our experiment, common implementations of
the cut-out chart (see Fig. 1(a)) include two different scales for the top
and bottom y-axis, which could negatively influence the performance
of this chart for tasks involving slope judgements.

(3) There are many different ways to use superimposed charts, e. g.,
to compare data which uses different units of measure or which is
significantly different in scale. We tested the second case and also
designed the chart so that there was no overlap in the units on the
top and bottom axis. The results could be different for other design
alternatives but we hypothesize that this would not be the case.

(4) We tested a specific gridline and tickmark spacing, set to be
the same for all charts and scales. Gridlines are an important help in
judging magnitude differences [7, 36]. Yet, it has to be noted that it is
generally common to adjust the gridline spacing depending on D and
D′ and that for Dual-Scale charts gridline spacing could be decided
upon separately for D1/D′1 and D2/D′2. When the data units between
each gridline differ for focus and context, additional indicators are nec-
essary as a reference for the difference in scale. Cleveland [7] proposes
small gray indicator bars above the two spaces. The influence of such
indicators as well as the presence of data labels will have to be investi-
gated further when gridline spacing differs.

(5) Our experiment explicitly compared non-interactive charts that
are often seen in print. Our results may differ in interactive charts,
where users can adjust the location and magnification of the focus area.

(6) Finally, this experiment focused on low-level perceptual tasks
which compared isolated visual variables. These variables were cho-
sen since they form the basis for perceptually extracting quantitative in-
formation from different types of charts [7]. From our results one can
hypothesize that charts and tasks which predominantly require compar-
ing positions across two scales would work better than those requiring
length and slope comparisons. Yet, Further experiments are necessary
to confirm the influence of two scales for tasks on fully drawn Dual-
Scale bar-, line-, area-, or other charts.

7 IMPLICATIONS FOR USING DUAL-SCALE CHARTS

From the results of our experiment we are able to make recommenda-
tions on the use and design of Dual-Scale data charts; we recommend
to use the cut-out chart and avoid the superimposed chart type. The
cut-out chart fared well in our experiment but has design tradeoffs.
It either requires more vertical space or needs to be compressed in y
to make it fit into the same drawing space as the other chart alterna-
tives. The technique can be extended relatively easily to more foci
(e. g., [17]). The timeline visualization in the Google Charts API [14])
includes one version of the cut-out chart, and the ProtoVis [4] website
also contains an example of how to build a simple variant of the chart
using this visualization toolkit. Yet, both of these alternatives require
a certain amount of coding experience to create.

Broken and lens charts can be good alternatives if one does not have
the means to create a cut-out chart. Broken charts can be extended eas-
ily as outlined in Section 3, and can also be easily designed using tools
such as GnuPlot [35], R [25], and online visualization toolkits. The
lens chart also fared relatively well in our study but is less easy to im-
plement (see Section 3). We know of no charting software which cur-
rently includes charts which resemble our lens chart. Yet, lens charts
have the nice property that regions next to the focus gradually decline
in scale, which gives more emphasis to data close to the main region
of interest. Due to the ease of implementation of the broken chart we
recommend to use this chart as an alternative to the cut-out chart if one
has to save display space or cannot easily generate a cut-out chart.

Finally, the superimposed chart has the advantage that, for the same
drawing space as the other charts, it allows for maximum display space
for focus and context. It can be created relatively easily with Excel,
one of the most common charting tools in use, and this is likely why it
is quite common in practice. Despite these advantages, we recommend
against using this chart due to our study results.

8 CONCLUSIONS

In this paper, we contribute a thorough discussion of the design space
for Dual-Scale data charts as well as a study comparing different al-
ternatives. Dual-Scale data charts are important when regular charts
reach the limits of their display resolution due to data with varying
densities or degrees-of-interest. We outline a specific set of five ba-
sic charts and discuss alternatives and generalizations of each. In
our perceptual experiment we tested four Dual-Scale charts with dif-
ferent design properties: a cut-out chart, a broken chart, a lens chart,
and a superimposed chart. We found that the cut-out chart—a chart
showing full context and a visually offset focus region—generally out-
performed the other charts for elementary graphical perception tasks.
Both the broken as well as the lens chart are competitive alternatives,
with the broken chart being generally easier to implement and create
with common charting tools. For this reason we recommend using the
broken chart as an alternative to the cut-out chart in practice. Finally,
our results discourage the use of the superimposed chart as participants
performed worst with this chart and also ranked it lowest in terms of
subjective preference. In summary, with this paper we fill a gap in the
literature on design recommendations for data charts by specifically
looking at Dual-Scale charts, we provide a design space and alterna-
tives for designers, and give recommendations on their use in practice.
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