
M1 d'Informatique Fondamentale Internship report

École Normale Supérieure de Lyon Chantal Keller

Substitutions for simply typed
λ-calculus

Parallel and hereditary substitutions

Abstract

Substitutions play an important role in simply typed λ-calculus, as a key part of the
reduction rules, which make this calculus be strongly normalising.

Parallel substitutions are a nice presentation of substitutions as �rst-class objects of the
calculus, and make it easy to adapt proofs to proof assistants. We will also deal with hereditary
substitutions, a new approach to normalisation that is structurally recursive.

During this internship, we implemented these two di�erent kinds of substitutions using
the proof assistant Agda, and proved that parallel substitutions form a category with �nite
products, and that the βη-equivalence was decidable using hereditary substitutions.

Keywords

functional programming βη-equivalence substitutions
simply typed λ-calculus decidability

Supervisors: Thorsten Altenkirch (Reader at the School of Computer Science and
Information Technology of the University of Nottingham)

Nicolas Oury (Marie Curie research fellow at the School of Computer Science
of the University of Nottingham)

June, 5th 2008 - August, 13th 2008

Contents

Introduction 2

1 The simply typed λ-calculus 3

1.1 Propositional equality . 3
1.2 Notations for the λ-calculus . 4
1.3 β-reduction, η-expansion and normal forms . 4

1.3.1 Substitutions . 4
1.3.2 β-reduction . 5
1.3.3 η-expansion . 5
1.3.4 Normal forms . 5

1.4 βη-equivalence between terms . 6

2 The category of parallel substitutions in simply typed λ-calculus 6

2.1 Parallel substitutions . 7
2.1.1 De�nition . 7
2.1.2 Weakening . 8
2.1.3 Composition . 8
2.1.4 Proofs . 8

2.2 The category of variable substitutions . 9
2.3 The category of term substitutions . 9

2.3.1 De�nitions . 10
2.3.2 Proofs . 11

3 Decidability of the βη-equivalence using hereditary substitutions 12

3.1 Hereditary substitutions . 13
3.1.1 Point-wise substitutions . 13
3.1.2 Normalisation . 16
3.1.3 Embedding . 16

3.2 Proofs . 17
3.2.1 Completeness . 17
3.2.2 Soundness . 18
3.2.3 Decidability of βη-equivalence . 18

Conclusion 19

A Proof that variable substitutions form a category with �nite products 21

B Stability of hereditary substitutions 23

C Rewriting rules for hereditary substitutions 23

D Agda's implementation 25

Thanks

I would like to thank my supervisors, for their kindness and availability. I also thank the
whole Functional Programming team of the University of Nottingham for their welcome !

1

Introduction

Simply typed λ-calculus and substitutions

The λ-calculus was introduced in the 1930s. It is a powerful while concise model of computa-
tion, but it is logically unsound. The simply typed λ-calculus is a subset of λ-calculus that is
sound and strongly normalising.

Substitutions play an important role in λ-calculus and in its normalisation. Classically,
substitution is central in the β-rule:

(λx.f) t→ f [x := t]

Here f and t represent two terms, and f [x := t] stands for f in which all the free occurrences
of x are replaced by t.

There are di�erent approaches of substitutions. Historically, point-wise substitutions were
�rst introduced, but other presentations of the same feature are useful to give di�erent points
of view and to put di�erent lights over substitutions.

We will focus on two di�erent kinds of substitutions. Parallel substitutions form an elegant
approach, giving an abstraction of substitutions as �rst-class objects of the calculus. On
the other side, hereditary substitutions, implemented using point-wise substitutions, give an
algorithm for normalisation that has the nice property to be structurally recursive.

Background of the internship

It was a research internship about type theory and functional programming in the Functional
Programming laboratory of the School of Computer Science in Nottingham, United Kingdom.
It lasted ten weeks.

The objective of the internship was to study di�erent approaches of substitutions for simply
typed λ-calculus, and to prove important properties about those substitutions using the proof
assistant Agda. Hence we �rst had to implement substitutions and the properties we wanted
to prove in this language, and then to perform the proofs.

This work is part of a global work that consists in the implementation of functional features
and proofs using proof assistants. As a result, it justi�es the development of such tools: on the
one hand, it shows the interest of this kind of software both for development and utilisation,
and on the other hand, it gives a guide for its development. We had to think about the
implementation of substitutions in a certain proof assistant, whereas substitutions previously
remained mostly quite hand-made.

It is also a global view of what can be nowadays done about substitutions, presenting both
parallel substitutions, which are now well established and known to have good properties, and
hereditary substitutions, a recent approach that gains to be known as it o�ers a solution to
some problems about normalisation.

The work was done using the last realease of Agda 2 [1], a proof assistant and a pro-
gramming language based on dependant types. It is a very useful tool to perform proofs
concerning functional programming, thanks to its approach based on terms (contrary to other
proof assistants such as Coq, based on logical progression) and its syntax closed to functional
programming languages such as Haskell and OCaml.

2

We chose to present our work using a formal presentation (for instance, inference rules)
rather than an Agda presentation: indeed, our work is very general and independent from
Agda's syntax and possibilities. However, the Agda implementation was a main part of the
work we did during this internship; as a result, we will present Agda's syntax and main pieces
of our code in appendix D.

1 The simply typed λ-calculus

The λ-calculus is a formal system designed to investigate functions de�nition and application
(including recursion) [2]. It was introduced by Alonzo Church and Stephen Kleene in the
beginning of the twentieth century as a means to describe the foundations of mathematics,
but soon became a paradigm of programming called functional programming. Although this
system is inconsistent, it is a powerful model to describe recursive functions.

Soon after, types over λ-calculus were introduced by Haskell Curry then by Alonzo Church
[3]. They are syntactic objects that can be assigned to some of the λ-terms. A type can be
seen as a speci�cation of a program or, in a logical point of view, as a proposition whose proofs
are the λ-terms which have this type.

Here we will only focus on simply typed terms, that is to say the types will only be
base types (elements of a �nite set) and function types (a relation between two types usually
written using an arrow). The simply typed λ-calculus is related to minimal logic through the
Curry-Howard isomorphism: the types inhabited by close terms are exactly the tautologies of
minimal logic.

We will use a directly typed syntax, rather than �rst de�ning pure λ-calculus and then
adding types, as it is commonly done. This prevents us from de�ning terms we are not
interested in, and gives a more natural and easy-to-manipulate presentation of typed terms.
To de�ne those terms, we will use De Bruijn notation (see section 1.2 for details).

In section 1.2, we will de�ne our notations for terms of the simply typed λ-calculus. In
section 1.3, we will introduce two reduction rules, the β-reduction and the η-reduction, and
see how we can de�ne normal forms according to this set of rules. In section 1.4, we will see
how to transform these rules into an equivalence relation between terms: the βη-equivalence.
But �rst, we will de�ne propositional equality between two elements of a same set.

1.1 Propositional equality

The propositional equality between two elements of a set A is an inductive data-type that has
only one constructor, that is the re�exivity (one element is equal to itself):

a, b : A
a ==A b : Set ==A −refl : a ==A a

refl

This equality is an equivalence: one can prove easily that it is symmetric and transitive
by pattern matching on the proof (as the only constructor is ==A −refl).

We can prove the same way that this equality is compatible with all the constructors we
are going to de�ne in the following parts.

3

1.2 Notations for the λ-calculus

As we consider only simply typed λ-calculus, types are de�ned using an inductive data-type
with two constructors (we have one single base type):

Ty : Set ◦ : Ty
base

σ, τ : Ty
σ → τ : Ty

fun

To represent terms, we will use the de Bruijn notation [4]. In this latter, variables are
represented by integers which stand for the distance to the binding constructor λ. It pre-
vents troubles caused by the constant need to rename bound variables, for instance during
substitutions. In this system, α-conversion is not required.

As a result, contexts under which terms are going to be typed are lists of the types of free
variables in the terms, in the order corresponding to the numbering of those variables.

Con : Set ε : Con
ε

Γ : Con σ : Ty
Γ, σ : Con

ext

Hence, we can de�ne variables and terms as follows.

Γ : Con σ : Ty
V ar Γ σ : Set vz : V ar (Γ, σ) σ

∅
x : V ar Γ τ

vs x : V ar (Γ, σ) τ
weak

Γ : Con σ : Ty
Tm Γ σ : Set

v : V ar Γ σ

var v : Tm Γ σ
var

t : Tm (Γ, σ) τ
λt : Tm Γ (σ → τ)

λ

t1 : Tm Γ (σ → τ) t2 : Tm Γ σ

app t1 t2 : Tm Γ τ
app

1.3 β-reduction, η-expansion and normal forms

The β-reduction and the η-expansion are two rules over λ-calculus terms. They can be seen as
computational rules, and make the simply typed λ-calculus be strongly normalising according
to these rules (and verify the subject reduction). The β-reduction rule needs to �rst de�ne
substitutions over terms.

1.3.1 Substitutions

A substitution in λ-calculus is a way to substitute a free variable x of a term t for another
term u (that does not contains x as a free variable). In simply typed λ-calculus, we impose
that x and u has the same type, so that the resulting term would also be a typed term.

As we will see in sections 2 and 3, there are di�erent approaches to de�ne substitutions.
According to the implementations and the proofs one wants to perform, one way or another
is preferable.

Here, we will present explicit substitutions with a syntactic approach, so it can be in-
stantiated using parallel substitutions (see section 2) or point-wise substitutions (see section
3).

4

Here is the de�ning rule of a substitution (we suppose that x 6∈ FV (u)):

t : Tm Γ σ x : V ar Γ τ u : Tm Γ′ τ
t[x := u] : Tm Γ′ σ

subst

The next two sections give two di�erent approaches of the relationship between Γ and Γ′.
Substitution must respect the following rules:

{
(var x)[x := u] = u (var y)[x := u] = var y if y 6= x
(λt)[x := u] = λt[vs x := weak u] (app t1 t2)[x := u] = t1[x := u] t2[x := u]

We let away how to de�ne weak u, as it depends on the kind of substitution we use. It
matches the following de�nition:

t : Tm Γ σ

weak t : Tm (Γ, τ) σ
weak

1.3.2 β-reduction

β-reduction expresses the idea of function application. The rule is de�ned as follows:

app (λt) u→ t[vz := u]

Inside a term, a sub-term which matches the form app (λt) u is called a β-redex. A normal
form according to this rule must not contain β-redexes.

1.3.3 η-expansion

η-expansion expresses the idea of extensionality, that is to say two functions are the same if
and only if they give the same result applied to the same argument. The rule is de�ned as
follows:

t→ λ(app (weak t) (var vz))

t must have a function type (σ → τ), and the term inside the λ-abstraction has type τ . A
normal form according to this rule must be as much η-expanded as possible so that the term
inside all the λ-abstractions would have base type (◦).

1.3.4 Normal forms

We quickly saw what normal forms according to these rules looked like. One can prove that
normal forms are of two kinds:

• the λ-abstraction of a normal form;

• the application of a variable to normal forms so that the result would have base type
(neutral terms).

5

As a result, normals forms form a subset of the simply-typed λ-calculus we can formally
de�ne:

Γ : Con σ : Ty
Nf Γ σ : Set

t : Nf (Γ, σ) τ
λn t : Nf Γ (σ → τ)

λn
x : V ar Γ σ ~ts : Sp Γ σ ◦

x ~ts : Nf Γ ◦
ne

We introduce the set of spines, which are successions of normal forms:

Γ : Con σ, τ : Ty
Sp Γ σ τ : Set ~ε : Sp Γ σ σ

~ε
t : Nf Γ σ ~ts : Sp Γ τ ρ

t, ~ts : Sp Γ (σ → τ) ρ
ext

Spines are represented using two types: if ~ts : Sp Γ σ τ , σ represents the type of the
variable you must feed the spine with, obtaining that way an element of type τ . This latter
will be a normal form only if τ == ◦.

1.4 βη-equivalence between terms

Considering the β-reduction and the η-expansion both senses, we can de�ne a relation be-
tween terms. We want this relation to be an equivalence, so we need the three axioms of an
equivalence (re�exivity, symmetry, transitivity); we also need it to be compatible with the
term constructors λ and app. Hence we get the βη-equivalence:

t, u : Tm Γ σ

t ≡ u : Set refl : t ≡ t
refl

p : t ≡ u
sym p : u ≡ t

sym
p1 : t ≡ u p2 : u ≡ v
trans p1 p2 : t ≡ v

trans

p : t ≡ u
congλ p : λt ≡ λu

congλ
p1 : t1 ≡ u1 p2 : t2 ≡ u2

congApp p1 p2 : app t1 t2 ≡ app u1 u2
congApp

beta : app (λt) u ≡ t[vz := u]
β

eta : λ(app (weak t) (var vz)) ≡ t
η

We will see in section 3 one proof of the decidability of this equivalence.

2 The category of parallel substitutions in simply typed λ-

calculus

In this section, we will focus on one possible de�nition of substitutions: parallel substitutions.
A substitution of this kind transforms a term typed in a context ∆ into a term typed in a
context Γ, by replacing each free variable of ∆ with a term in Γ.

We will de�ne the identity substitution id and the composition of two substitutions, written
using the symbol ◦. We intend to prove that those substitutions form a category, which means
we have to prove the following three theorems:

id ◦ s == s (neutrality on the left)
s ◦ id == s (neutrality on the right)

(u ◦ v) ◦ w == u ◦ (v ◦ w) (associativity)

for any substitutions s, u, v and w. We also want to prove that this category has �nite
products.

6

In section 2.1, we will de�ne this kind of substitutions, both for variables and terms, with
some of the needed features (weakening a substitution and composition). Section 2.2 will be
devoted to de�nitions speci�c to variable substitutions (the complete proof of the fact that
variable substitutions form a category with �nite product is available in appendix A). In
section 2.3, we are going to explain the way we adapted proofs about variable substitutions
to proofs about term substitutions.

All the proofs have been checked using the proof assistant Agda [1]. The source code
and a report explaining it are available online [5]. We exploit as much as possible the code
factorization ideas from [6].

The fact that substitutions in simply typed λ-calculus form a category which has �nite
products is not new. The interest of our study is nonetheless multiple:

• we use a directly typed syntax for λ-calculus;

• we present parallel substitutions, an elegant view of substitutions;

• all the proofs are checked in Agda, contributing to the interest of developing such tools
as proof assistants.

2.1 Parallel substitutions

A parallel substitution in λ-calculus is a way to transform a term which has free variables in a
context ∆ into a term which has free variables in another context Γ. To do so, it substitutes
each variable in ∆ by a term in Γ. In simply typed λ-calculus, we impose that the term in Γ
has the same type as the variable it substitutes, so that the resulting term would also be a
typed term.

t

∆
u1

u2

u3

u4

t

Γ

Figure 1: An example of the application of a parallel substitution (terms are represented with
trees whose nodes are constructors and leafs are free variables).

2.1.1 De�nition

Substitutions can be de�ned both for variables and for terms. Given a prototype T : Con→
Ty → Set (which will be instantiated as V ar or Tm), substitutions over T are hence de�ned

7

as follows:

Γ,∆ : Con
Subst T Γ ∆ : Set ε : Subst T Γ ε

ε
s : Subst T Γ ∆ t : T Γ σ

s, t : Subst T Γ (∆, σ)
ext

s : Subst T Γ ∆ t : T ∆ σ

t[s] : T Γ σ
subst

ε can go from any context to the empty context, as a term typed in the empty context has
no free variable. When you extend a substitution s with a term t, it means that the obtained
substitution will replace the last variable (∅) with t.

2.1.2 Weakening

We want to be able to extend the codomain of a substitution, it is to say to weaken the
substitution:

s : Subst T Γ ∆ σ : Ty
s+σ : Subst T (Γ, σ) ∆

weak

which is de�ned by pattern matching on s:{
ε+σ = ε

(s, t)+σ = s+σ, (weak t)

2.1.3 Composition

We can also compose substitutions:

u : Subst T Γ ∆ v : Subst T ∆ Θ
u ◦ v : Subst T Γ Θ

comp

which is de�ned by pattern matching on v:{
u ◦ ε = ε

u ◦ (v, t) = u ◦ v, t[u]

2.1.4 Proofs

We want to prove that variable and term substitutions both form categories with �nite prod-
ucts. We previously exposed what we need to establish in order to prove they form categories,
but not in order to prove these categories have �nite products. We consider the function that
extends a substitution as a pairing function:

ext : Subst T Γ ∆ → T Γ σ → Subst T Γ (∆, σ)
s 7→ t 7→ s, t

We will have to �nd two projectors:{
π1 : Subst T Γ (∆, σ)→ Subst T Γ ∆
π2 : Subst T Γ (∆, σ)→ T Γ σ

8

which match the axioms for surjective pairing:
π1 (ext s t) == s (�rst projector)
π2 (ext s t) == t (second projector)

ext (π1 u) (π2 u) == u (surjective pairing)

for any substitutions s and u and any element t of T .

2.2 The category of variable substitutions

In this section, we will give the last remaining de�nitions we need in order to prove that
variable substitutions form a category with �nite products. This proof is completely detailed
in appendix A.

In this proof, we are only interested in applying a variable substitution to a variable, as
de�ned by the rule subst (see section 2.1.1). However, this de�nition can be extended to any
substitution: given a prototype T : Con→ Ty → Set, we can apply a substitution over T to
a variable and then obtain an element of T :

s : Subst T Γ ∆ v : V ar ∆ σ

v[s] : T Γ σ
substVar

As v is de�ned in ∆, s cannot be an empty substitution. Applying a substitution to a
variable is de�ned by pattern matching on this variable:{

vz[s, t] = t
(vs v)[s, t] = v[s]

It is easy to de�ne the identity substitution, with the following prototype:

Γ : Con
idvΓ : Subst V ar Γ Γ

idv

by pattern matching on Γ: {
idvε = ε

idvΓ,σ = idv+σ
Γ , vz

The two projectors we will consider for the category of variable substitutions are the
following ones: {

π1 : s 7→ s ◦ idv+σ

π2 : s 7→ vz[s]

2.3 The category of term substitutions

We now want to prove that term substitutions form a category with �nite products. The
main idea of all the proofs is to bring the proofs for term substitutions back to proofs for
variable substitutions, as those latter are very easy to perform. We will here present this
technique. But �rst, we will de�ne the features that will be necessary so as to implement term
substitutions.

9

2.3.1 De�nitions

As explained in the rule subst, we can apply a term substitution to a term. We do it by
pattern matching on the term:

(var v)[s] = v[s]
(λt)[s] = λt[s+σ, var vz]

(app t1 t2)[s] = app t1[s] t2[s]

for any substitution s, variable v and terms t, t1 and t2. Here we see the interest of de�ning
substVar for any kind of substitution.

We have to de�ne how to weaken a term (see section 1.3.1). Here is the �rst example
of the way to bring features for terms back to features for variables: we will weaken a term
by applying the weakened identity for variables. To do so, we have to de�ne how to apply a
variable substitution to a term:

s : Subst V ar Γ ∆ t : Tm ∆ σ

t[s] : Tm Γ σ
substTm

with a de�nition similar to the previous one:
(var v)[s] = var v[s]

(λt)[s] = λt[s+σ, vz]
(app t1 t2)[s] = app t1[s] t2[s]

We can now weaken terms:

weak t = t[idv+σ
Γ]

where t : Tm Γ τ and σ is a type.
We could de�ne the identity substitution for terms as we de�ned the identity substitution

for variables (with, in the second case: idtΓ,σ = idt+σΓ , var vz), but once more, we will try to
go back to variables. We will obtain the identity substitution by embedding the identity for
variables into a term substitution, using this function:

s : Subst V ar Γ ∆
dse : Subst Tm Γ ∆

emb

de�ned as follows: {
dεe = ε
ds, ve = dse, var v

The identity substitution is then:

idtΓ = didvΓe

We will �nally need to compose variable and term substitutions, in both senses:

s : Subst V ar Γ ∆ s′ : Subst Tm ∆ Θ
s ◦ s′ : Subst Tm Γ Θ

c1

s : Subst Tm Γ ∆ s′ : Subst V ar ∆ Θ
s ◦ s′ : Subst Tm Γ Θ

c2

10

with the same de�nition as for the rule comp.
Projectors for surjective pairing are the same as for variables:{

π1 : s 7→ s ◦ idt+σ
π2 : s 7→ (var vz)[s]

2.3.2 Proofs

We need two kinds of lemmas.

1. Obviously, we will need the same lemmas as for proofs for variables (see appendix A):
they will also constitute the skeleton of the proofs for terms. We are not going to present
those lemmas, as we explain in the appendix their roles for variables. Moreover, one
can check the report on-line [5] to have the complete proof: section 4.3 of this report
explains with great details how these lemmas are constructed, related and proved.

2. We will also need commutation lemmas that exploit the de�nitions of weakening and
identity. Those lemmas will be used to link the lemmas of type 1 together. We are now
going to detail them.

Embedding and weakening a substitution commute

Lemma 2.1 For any variable substitution s and type σ:

dse+σ == ds+σe

Proof By induction on s. �

Embedding and applying a substitution commute

Lemma 2.2 For any variable substitution s and term t:

t[dse] = t[s]

Proof By induction on t and using lemma 2.1. �

Weakening and applying a substitution commute To prove this property, we �rst need
two lemmas:

Lemma 2.3 For any substitution s and type σ:{
idv+σ ◦ s == s+σ

s+σ == (s+σ, var vz) ◦ idv+σ

Proof By induction on s. �

We can now establish the following property:

11

Lemma 2.4 For any substitution s, term t and type σ:

weak t[s] == (weak t)[s+σ, var vz]

Proof We have the following equalities:

weak t[s] == (t[s])[idv+σ] (de�nition)
== t[idv+σ ◦ s] (variant of the lemma A.3 for terms)
== t[(s+σ, var vz) ◦ idv+σ] (lemma 2.3)
== (t[id+σ])[s+σ, var vz] (variant of the lemma A.3 for terms)
== (weak t)[s+σ, var vz] (de�nition)

�

With all these lemmas, we can prove variants of the lemmas presented in section A: we
can commute weak •, •+σ, •[•] and d•e when needed. And then we get our main theorem:

Theorem 2.1 (Category of term substitutions) Term substitutions form a category with
�nite products.

3 Decidability of the βη-equivalence using hereditary substitu-

tions

Hereditary substitutions constitute a kind of substitutions over typed λ-calculus that are struc-
turally recursive. It provides an algorithm for normalisation whose termination can be proved
by a simple lexicographic induction. The main idea of this algorithm is to simultaneously
substitute and re-normalise.

It was introduced in the beginning of the 21st century by K. Watkins as a normaliser for
the Concurrent Logical Framework [7]. It was then used for di�erent purposes, for instance
to implement an interpreter for λ-calculus whose termination is easy to prove [8].

Our purpose is to provide an elegant implementation of hereditary substitutions for simply-
typed λ-calculus, and use this kind of normalisation to prove decidability of βη-equivalence.
We will introduce how to transform a term into a normal form (normalisation) and how to
transform a normal form into a term (embedding):

t : Tm Γ σ

nf t : Nf Γ σ
nf

n : Nf Γ σ

dne : Tm Γ σ
emb

and then prove the following two properties1:

dnf te ≡ t
completeness

t ≡ u
nf t == nf u

soundness

Those properties will lead to the decidability of the βη-equivalence. We will also establish
stability (a rule that does not ensue from completeness and soundness):

nf dte == t
stability

1The names of these two properties are sometimes inverted.

12

The proof of stability is detailed in appendix B.
Contrary to parallel substitutions, which substitute all the free variables simultaneously,

we use point-wise substitutions, that substitute only one free variable.
In section 3.1, we will introduce hereditary substitutions and de�ne normalisation (the nf

function). We will prove its termination. In section 3.2, we will present the main ideas of the
proof of decidability of βη-equivalence.

Those proofs have been checked using the proof assistant Agda [1]. The source code is
available online [5].

The interest of our study is to adapt a well-know property (decidability of the βη-equivalence)
to a particular kind of substitutions, hereditary substitutions, which present the particularity
of being structurally recursive. Once more, it uses Agda and contributes to the development
of this tool.

3.1 Hereditary substitutions

3.1.1 Point-wise substitutions

We have to adapt point-wise substitutions presented in section 1.3.1, that is to say to de�ne
Γ′ and the fact that x 6∈ FV (u). Commonly, lots of implementations use a notation that adds
a variable into a context. Here, we will present another notation, that removes a variable from
a context. This presentation is quite elegant for simply-typed λ-calculus, but does not lend
itself to other typed λ-calculus.

We have to de�ne how to remove a variable from a context:

Γ : Con x : V ar Γ σ

Γ− x : Con
min

As x is in Γ, Γ cannot be empty. The function is really natural to de�ne with the de Bruijn
notation: {

(Γ, σ)− vz = Γ
(Γ, σ)− (vs x) = Γ− x, σ

In this framework, weakening a variable, a term, a normal form or a spine has a di�erent
meaning:

x : V ar Γ τ t : T (Γ− x) σ
t+x : T Γ σ

weak
x : V ar Γ ρ ~ts : Sp (Γ− x) σ τ

~ts
+x

: Sp Γ σ τ
weakSp

where T : Con→ Ty → Set. It is de�ned by pattern matching on t:

T ← V ar :


y+vz = vs y

vz+vs x = vz
(vs y)+vs x = vs y+x

T ← Tm :


(var v)+x = var v+x

(λt)+x = λt+vs x

(app t1 t2)+x = app t+x1 t+x2

T ← Nf :

{
(λn t)+x = λn t+vs x

(y ~ts)+x = y+x ~ts
+x Sp :

{
~ε+x = ~ε

(t, ~ts)+x = t+x, ~ts
+x

13

and the subst rule is now:

t : T Γ σ x : V ar Γ τ u : T (Γ− x) τ
t[x := u] : T (Γ− x) σ

subst

~ts : Sp Γ σ ρ x : V ar Γ τ u : Nf (Γ− x) τ
~ts[x := u] : Sp (Γ− x) σ ρ

substSp

where T will be instantiated as Tm or Nf (we do not especially need a variable substitution).
subst where T is instantiated with Tm is the algorithm given section 1.3.1. We need to be

able to compare two variables, and that is where the �-� for the contexts reveals its elegance:

• either the two variables are the same;

• either one exists in a context where the other has been removed (indeed, if y is in (Γ−x),
y 6= x by de�nition).

To compare two variables, we hence de�ne a data structure with two constructors corre-
sponding to the two cases:

x : V ar Γ σ y : V ar Γ τ

Eq x y : Set same : Eq x x
=

x : V ar Γ σ y : V ar (Γ− x) τ
diff x y : Eq x (y+x)

6=

and compare variables:

x : V ar Γ σ y : V ar Γ τ

eq x y : Eq x y
eq

by pattern matching:
eq vz vz = same

eq vz (vs y) = diff vz y
eq (vs x) vz = diff (vs x) vz

eq (vs x) (vs y) = same if eq x y = same
eq (vs x) (vs y) = diff (vs a) (vs b) if eq x y = diff a b

Substitutions for normal forms remain to be de�ned. Normal forms are not closed under
a substitution de�ned as for variables:

(y (z, ~ε))[y := λn vz] = (λn vz)(z, ~ε)

which contains a β-redex and is not a normal form. It means we have to normalise when
applying a substitution, and especially in this case : after the substitution properly speaking,
(λn vz) must be successively applied to the elements of the spine until we get a normal form.
The operator for this application will be written as follows:

u : Nf Γ σ ~ts : Sp Γ σ τ

u~@~ts : Nf Γ τ
~@

This function is mutually recursive with subst for normal forms and substSp:

14

subst :


(λn t)[x := u] = λn t[x+vz := u+vz]
(y ~ts)[x := u] = u~@~ts[x := u] if eq x y = same

(y ~ts)[x := u] = b ~ts[x := u] if eq x y = diff a b

substSp :
{

~ε [x := u] = ~ε

(t, ~ts)[x := u] = t[x := u], ~ts[x := u]

~@ :

{
u~@~ε = u

(λn u)~@(t, ~ts) = (u[vz := t])~@~ts

In the last case, the normal form must have a function type, hence it must be a λn-abstraction.
It is now time to prove what we a�rmed in the introduction:

Theorem 3.1 (Hereditary substitution) Hereditary substitutions are structurally recur-
sive and terminate.

Proof We only have to consider the last three de�nitions. For subst, we will focus on the
pair (type of x,t); for substSp, on (type of x,~ts); and for ~@, on (type of u). It is obvious to
see that when each function calls itself and when subst and substSp call one another, all
the measures decrease for the lexical order.

The remaining point is to prove that when subst and ~@ call each other, the measures
decrease for the lexicographical order. Those two functions can call one another only in this
case:

{
(x (t, ~ts))[x := λn u] = (λn u)~@(t′, ~ts

′
) where (t′, ~ts

′
) = (t, ts)[x := u]

(λn u)~@(t′, ~ts
′
) = (u[vz := t′])~@~ts

′

When (x (t, ~ts))[x := λn u] calls ~@, x and (λn u) have type σ → τ . When (λn u)~@(t′, ~ts
′
)

calls subst, vz has type σ, which is strictly inferior to σ → τ ; and when (λn u)~@(t′, ~ts
′
) calls

~@ (u[vz := t′]) has type τ , which is strictly inferior to σ → τ . So the measures decrease for
the lexicographical order. �

Fig. 2 is a summary of this proof. When a function calls itself using any path in the
graph, its measure strictly decreases.

UBSTS

@UBSTS SP

ty=
t<

ty=
ts<

ty=
t< ty=

ts=

ty<

ty=
ty<

Figure 2: Call-graph of hereditary substitutions.

15

3.1.2 Normalisation

We are now going to de�ne the nf function. But �rst, we need to normalise neutral terms (a
variable applied to many normal forms) when it does not have the base type:

x : V ar Γ σ ~ts : Sp Γ σ τ

nf ′ x ~ts : Nf Γ ◦
nf ′

We do as many η-expansions as needed to bring neutral terms back to the base type:

{
nf ′ x ~ts = x ~ts if ~ts : Sp Γ σ ◦
nf ′ x ~ts = λn (nf ′ x (append ~ts

+vz
(nf ′ vz ~ε))) if ~ts : Sp Γ σ (τ → ρ)

where append adds a normal form at the end of a spine:

~ts : Sp Γ ρ (σ → τ) u : Nf Γ σ

append ~ts u : Sp Γ ρ τ
append

with the following de�nition:{
append ~ε u = u, ~ε

append (t, ~ts) u = t, append ~ts u

This will be used to normalise variables in the de�nition of nf :
nf (var v) = nf ′ v ~ε

nf (λt) = λn (nf t)
nf (app t1 t2) = u[vz := nf t2] where nf t1 = λn u

3.1.3 Embedding

We have to de�ne the reverse operation: embedding a normal form into a term. The function
d•e will be mutually recursive with a function doing the same thing for a spine:

~ts : Sp Γ σ τ t : Tm Γ σ

embSp ~ts t : Tm Γ τ
embSp

with the following de�nitions:

d•e :
{
dλn ue = λdue
dx ~tse = embSp ~ts (var x)

embSp :
{

embSp ~ε t = t
embSp (u, ~us) t = embSp ~us (app t due)

16

3.2 Proofs

We established that our normaliser is actually terminating. Each normal form can be written
a unique way. As a result, we can use it to prove decidability of βη-equivalence: to check if
two (typed) terms are βη-equivalent, we just have to normalise them and check if their normal
forms are propositionally equal... provided this calculus is complete and sound! This is why
we propose to show completeness and soundness.

The completeness and soundness proofs will all rely on common syntactic rewriting laws.
These rules are a bit tricky to write and to prove because of the �-� notation for contexts; as a
result, we are only going to informally write it, and more details can be found in appendix C.

Lemma 3.1 If T : Con → Ty → Set, for any t of T , for any terms or normal forms u and
v and any variables x and y:

(t+x)+y == (t+y)+x

(t[x := u])+y == t+y[x+y := u+y]
(t[x := u])[y := v] == (t[y := v])

[
x := u[y := v]

]
Proof See appendix C. �

We will now give some clues to perform the completeness and soundness proofs.

3.2.1 Completeness

In order to prove completeness, we need lemmas that commute embedding and other key
functions such as nf, weak and subst.

Lemma 3.2 For any variable x, normal form u, spine ~ts and term t:{
du+xe ≡ due+x

embSp ~ts
+x

t+x ≡ (embSp ~ts t)+x

Note: The same properties with == instead of ≡ are also true, but we need a weaker
result.

Proof By mutual induction on u and ~ts. �

Lemma 3.3 For any variable x and spine ~ts:

dnf ′ x ~tse ≡ embSp ~ts (var x)

Proof By induction on the second type of ~ts and using lemma 3.2 and the η-law. �

Lemma 3.4 For any spine ~ts, term t, normal forms u and v, and variable x:
embSp ~ts[x := u] t[x := due] ≡ (embSp ~ts t)[x := due]

du ~@ ~tse ≡ embSp ~ts due
dv[x := u]e ≡ dve[x := due]

17

Proof By mutual induction on ~ts and v, and using the beta-law. �

This leads us to our main theorem:

Theorem 3.2 (Completeness) For any term t:

dnf te ≡ t

Proof By induction on t and using lemmas 3.3 and 3.4. �

3.2.2 Soundness

As for completeness, we need lots of commutation lemmas between nf and other functions.
We are not going to provide them all, not to be repetitive. The only di�erence is that it does
not deal with βη-equivalence but with propositional equality.

Besides, we need semantic lemmas that prove we actually β-reduced and η-expanded our
normal forms as much as possible: it is to say that the β and the η-equalities much stand for
normal forms.

It is obvious that the β-equality stands, as each time we obtained a redex, we did the
substitution. However, the η-law is really non trivial. We will assume it to be true2:

Postulate 3.1 For any normal form u with a function type:

λn (napp u+vz (nf ′vz ~ε)) == u

where napp (λn t) u = t[vz := u] (de�nition).
When all this is established, we can complete the proof of our main theorem:

Theorem 3.3 (Soundness) For any terms t and u:

if t ≡ u, then nf t == nf u

Proof By induction on the proof that t ≡ u. �

3.2.3 Decidability of βη-equivalence

As mentioned above, completeness and soundness are useful to prove the decidability of the
βη-equivalence:

Theorem 3.4 (Decidability of βη-equivalence) The βη-equivalence is decidable, it is to
say that we have an algorithm which, given two terms t and u, says if t ≡ u or t 6≡ u.

Proof The algorithm is the following one:

2As we were not able to perform the proof. It is interesting to notice that u must have an arrow type, so

it must be a λn-abstraction, and proving this property is similar to proving this one, for any normal form u:

u+(vs vz)[vz := nf ′vz ~ε] == u

18

1. Normalise t and u to obtain t′ and u′.

2. t ≡ u if and only if t′ == u′.

We proved the �rst step terminates. We have to prove the second step. As == is decidable,
this will automatically lead to the decidability of ≡.

The direct sense is soundness. The reverse sense is trivial: if t′ == u′, then dt′e == du′e.
But t ≡ dt′e and du′e ≡ u (completeness), so t ≡ u by transitivity. �

Conclusion

Perspectives

This work is part of a global work concerning proof assistants, their development and their use.
Indeed, we made obvious that it was really easy to implement functional tools using Agda, a
proof assistant. As a result, proofs like those we performed during this internship form a base
that can be used to do more complex proofs: our implementation of parallel or hereditary
substitutions can form Agda libraries, and the way we conducted the proofs is an example
that can be easily generalised to other proofs about parallel or hereditary substitutions.

The concept of proof assistants, and also of proof mechanising, appeared in the beginning
of the 20th century, at the same time with λ-calculus and logics, when scientists wondered
about the bases of mathematics and its reasoning. Nowadays, proofs assistants exist that are
very powerful and can help to make more and more complex proofs, either �mathematical�
proofs of proofs of programs.

But proof assistants do not only exist in the research �eld, but also in the industrial
�eld, as an improving amount automated programs are proved before being on the market
�eld. It might also reach the public �eld, as languages including dependant types give more
expressivity than the existing famous functional languages.

Our work is then very encouraging, as proofs that were previously only formally written
are formalised in an assistant proof. It helps to have a new point of view on simply typed
λ-calculus, and especially substitutions over it. As mechanisation becomes omnipresent, this
point of view is very important to understand the objects we manipulate.

Personal learning

This internship was a source of knowledge for me, above all in the type theory �eld. I perfected
what I previously learned about simply typed λ-calculus, in particular about substitutions. I
got a deeper understanding of parallel substitutions, and discovered hereditary substitutions,
a kind of substitutions that was completely new for me, and that is likely to be developed in
the next years.

I also learned how to implement these objects and how to perform proofs about them
in a language including dependant types, Agda, which I did not know at all. I discovered
that proofs which where theoretically obvious, had to be adapted a lot to stand using a proof
assistant. For instance, I learned and used the de Bruijn notation, which is very useful when
implementing, because you do not have α-conversion problems, but sometimes leads to tricky
proofs you do not need with the classical notation.

19

I had a very complete internship, dealing at the same time with programming with a proof
assistant, as I really wanted to do, and learning more theoretical concepts about λ-calculus
and substitutions. It comforted my will to pursue my studies in the type theory �eld.

It was also the occasion for me to go to England: on the one hand, I discovered other work
methods and habits that you do not have in France, and perfected (a bit) my English, and on
the other hand, it was the occasion for me to visit England, where I had never been before.

References

[1] Agda wiki. http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php?n=Main.

Documentation.

[2] H. P. Barendregt. The lambda calculus: Its syntax and semantics. Revised second edition,
1984.

[3] H. P. Berendregt. Lambda calculi with types. Handbook of Logic in Computer Science,
Volume II, Oxford University Press, 199-.

[4] N. G. De Bruijn. Lambda calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the church-rosser theorem. Indag. Math., pages
381�382, 1972.

[5] Proofs in agda. http://perso.ens-lyon.fr/chantal.keller/Documents-etudes/

Stage/Parallel-substitution.

[6] Conor McBride. Type-preserving renaming and substitution. Functionnal Pearl, 2006.

[7] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework
i: Judgements and properties. Tech. rep., School of Computer Science, Carnegie Mellon
University, Pittsburgh, 2003.

[8] A. Abel. Implementing a normalizer using sized heterogeneous types. Wksh. on Mathe-
matically Structured Functionnal Programming, 2006.

20

A Proof that variable substitutions form a category with �nite

products

In this appendix, we will detail the whole proof that variable substitutions form a category
with �nite products. Please see section 2 for more details about what we need to prove and
variable parallel substitutions.

Neutrality on the left We �rst have to establish three lemmas:

Lemma A.1 For any substitution s, variable v and type σ:
v[s+σ] == vs v[s]
v[idv+σ] == vs v
v[idv] == v

Proof The �rst property can be proved by induction on v. The last two properties can be
mutually proved by induction on v (using the �rst property). �

We can now prove our main theorem:

Theorem A.1 (Neutrality on the left) For any substitution s:

idv ◦ s == s

Proof By induction on s and using lemma A.1. �

Neutrality on the right We need on single lemma:

Lemma A.2 For any substitutions s and s′, variable v and type σ:

(s, v) ◦ s′+σ == s ◦ s′

Proof By induction on s′. �

We can now prove the main theorem:

Theorem A.2 (Neutrality on the right) For any substitution s:

s ◦ idv == s

Proof By induction on s and using lemma A.2. �

21

Associativity We need a preliminary lemma, which proves that applying the composition
of two substitutions is like applying each one successively:

Lemma A.3 For any variable v and substitutions s and s′:

v[s ◦ s′] == (v[s′])[s]

Proof By induction on v. �

Our main theorem is:

Theorem A.3 (Associativity) For any substitutions u, v and w:

u ◦ (v ◦ w) == (u ◦ v) ◦ w

Proof By induction on w and using lemma A.3. �

First projector We want to prove we chose a good candidate for the �rst projector:

Theorem A.4 (First projector) For any substitution s and variable v:

π1(s, v) == s

Proof Lemma A.2 and theorem A.2. �

Second projector We want to prove we chose a good candidate for the second projector:

Theorem A.5 (Second projector) For any substitution s and variable v:

π2(s, v) == v

Proof De�nition of π2. �

Surjective pairing We can now prove the last required theorem:

Theorem A.6 (Surjective pairing) For all s in Subst V ar Γ (∆, σ):

π1 s, π2 s == s

Proof As s is in Subst V ar Γ (∆, σ), s must be an extended substitution. The proof is then
completed by theorems A.4 and A.5. �

22

B Stability of hereditary substitutions

We will use the same commutation lemmas as for soundness. We propose a quite elegant
proof, using concatenation of two spines:

~ts : Sp Γ σ τ ~us : Sp Γ τ ρ

~ts
∧
~us : Sp Γ σ ρ

∧

easily de�ned by pattern matching on ~ts:{
~ε∧ ~us = ~us

(t, ~ts)∧ ~us = t, ~ts
∧
~us

We need those two lemmas about concatenation:

Lemma B.1 For any spines ~ts and ~us and any normal form u:{
~ts
∧
~ε == ~ts

~ts
∧

(u, ~us) == (append ~ts u)∧ ~us

Proof By induction on ~ts. �

Lemma B.2 For any variable x and any spines ~ts and ~us:

(nf ′ x ~ts)~@ ~us == nf ′ x (~ts
∧
~us)

Proof By induction on ~us and using lemma B.1. �

Our main theorem will be mutually recursive with another property:

Theorem B.1 (stability) For any spine ~ts, term t and normal form u:{
nf (embSp ~ts t) == (nf t)~@~ts

nf due == u

Proof By mutual induction on ~ts and u and using lemma B.2. �

C Rewriting rules for hereditary substitutions

Each proof concerning point-wise substitutions relies on rewriting rules that allow to commute
weakening and substitutions in the three possible senses (see section 3.2 for the details of these
rules).

Proving these rules is easy to formally perform, but present some problems to adapt to
our implementation, and especially to the minus notation. Indeed, even righting the rules is
not obvious. For instance the rule:

(t+x)+y == (t+y)+x

23

has no sense with our notations: considering the left hand side of the equality, if y exists in a
context Γ, then x must be in Γ− y and t in (Γ− y)− x, and the right hand side is impossible
to write.

As a consequence, we have to introduce a new notation to be able to write such a rule.
What we miss here is the possibility to know that y exists in a context where x has been
removed! So we introduce a new function with the following prototype:

x : V ar Γ σ y : V ar (Γ− x) τ
x−y : V ar (Γ− y+x) σ

rem

de�ned by pattern matching on the two variables:
vz−y = vz

(vs x)−vz = x

(vs x)−(vs y) = vs x−y

The idea will be to sometimes consider (Γ− x)− y as the same context in which the roles
of x and y are inverted; indeed, the following lemma stands:

Lemma C.1 For any context Γ and any variable x and y:

(Γ− x)− y == (Γ− y+x)− x−y

Proof By induction on x and y. �

Note: In the following of the appendix, this proof will be written P.
Using this equality, we can change the context in which a variable, a term or a normal

form is typed. To do so, we introduce a last function:

p : Γ == ∆ x : T Γ σ

| p > x : T ∆ σ
| >

where T : Con→ Ty → Set. It is de�ned by pattern matching on the proof p, which can only
be the constructor == −refl.

The three lemmas informally described in section 3.2 can be written using these new
notations:

Lemma C.2 For any t of T (where T : Con → Ty → Set), variables x and y and terms or
normal forms u, u1 and u2:


(

(|P > t)+x−y
)+y+x

== (t+y)+x

(|P > t[y := u])+x−y
== t+x[y+x := (|P > u)+x−y

]
|P > (t[x := u1])[y := u2] == (t[y+x := (|P > u2)+x−y

])
[
x−y := |P > u1[y := u2]

]
Proof By induction on t. �

24

D Agda's implementation

The whole code was written in Agda, a programming language including dependant types,
and so useful to check proofs. It also provides an interface that can help to perform the proofs.

In this section, we intend to present the very base of Agda's syntax, and then some of
the source code that shows the need to rephrase the usual notations for λ-calculus so as to
implement it easily.

A short introduction to Agda

Agda is a proof assistant which most important speci�city is to provide a language close to
functional languages (such as Haskell and Coq). As a result, it may be more di�cult to �nd
the term which is the proof of some property, but using Agda is closer to make programs, and
then it makes it more natural to use. As a consequence, it is well adapted to perform proofs
about logics and λ-calculus.

Here is a short introduction to Agda basic syntax. A complete tutorial is available on the
Agda wiki [1].

Data-type declarations

Inductive data-types can be de�ned by a formation rule and constructors. For instance, the
Agda de�nition for the propositional equality presented in section 1.1 is:

data _==_ {A : Set } : A −> A −> Set where
==−r e f l : {a : A} −> a == a

For a given set A, the equality on this set is de�ned as a set of elements that are identical.
The use of the braces allows us to de�ne implicit arguments. The syntax _==_ means that
this relation is in�x : we can write a == a.

Agda checks that everything is well typed and that the induction de�nitions do terminate.

Function declarations

Functions are de�ned as follows: the �rst line de�nes the name and the type of the function,
and the following lines de�ne the core of the function, using generally pattern matching. For
instance, we can de�ne the functions that prove that == is symmetric and transitive:

==−sym : {A : Set } −> {a b : A} −> a == b −> b == a
==−sym ==−r e f l = ==−r e f l

==−t rans : {A : Set } −> {a b c : A} −> a == b −> b == c −> a == c
==−t rans ==−r e f l ==−r e f l = ==−r e f l

Agda checks that everything is well typed and that the function de�nitions do terminate.

Simply typed λ-calculus

We can now implement our de�nition of the simply typed λ-calculus, using the de Bruijn
notation.

Types and contexts:

25

data Ty : Set where
◦ : Ty
→ : Ty −> Ty −> Ty

data Con : Set where
ε : Con
, : Con −> Ty −> Con

Variables:

data Var : Con −> Ty −> Set where
vz : f o r a l l {Γ σ} −> Var (Γ , σ) σ
vs : f o r a l l {τ Γ σ} −> Var Γ σ −> Var (Γ , τ) σ

Terms:

data Tm : Con −> Ty −> Set where
var : f o r a l l {Γ σ} −> Var Γ σ −> Tm Γ σ
λ : f o r a l l {Γ σ τ } −> Tm (Γ , σ) τ −> Tm Γ (σ → τ)
app : f o r a l l {Γ σ τ } −> Tm Γ (σ → τ) −> Tm Γ σ −> Tm Γ τ

Normal forms (using mutually inductive data-types):

mutual
data Nf : Con −> Ty −> Set where
λn : f o r a l l {Γ σ τ } −> Nf (Γ , σ) τ −> Nf Γ (σ → τ)
ne : f o r a l l {Γ} −> Ne Γ ◦ −> Nf Γ ◦

data Ne : Con −> Ty −> Set where
, : f o r a l l {Γ σ τ } −> Var Γ σ −> Sp Γ σ τ −> Ne Γ τ

data Sp : Con −> Ty −> Ty −> Set where
ε : f o r a l l {σ Γ} −> Sp Γ σ σ
, : f o r a l l {Γ σ τ ρ} −> Nf Γ τ −> Sp Γ σ ρ −> Sp Γ (τ → σ) ρ

βη-equivalence:

data _βη−≡_ {Γ : Con} : {σ : Ty} −> Tm Γ σ −> Tm Γ σ −> Set where
r e f l : f o r a l l {σ} −> { t : Tm Γ σ} −> t βη−≡ t
sym : f o r a l l {σ} −> { t1 t2 : Tm Γ σ} −> t1 βη−≡ t2 −> t2 βη−≡ t1

t rans : f o r a l l {σ} −> { t1 t2 t3 : Tm Γ σ} −> t1 βη−≡ t2 −> t2 βη−≡ t3 −>
t1 βη−≡ t3

congλ : f o r a l l {σ τ } −> { t1 t2 : Tm (Γ , σ) τ } −> (t1 βη−≡ t2) −>
λ t1 βη−≡ λ t2

congApp : f o r a l l {σ τ } −> { t1 t2 : Tm Γ (σ → τ) } −> {u1 u2 : Tm Γ σ} −>
t1 βη−≡ t2 −> u1 βη−≡ u2 −> app t1 u1 βη−≡ app t2 u2

beta : f o r a l l {σ τ } −> { t : Tm (Γ , σ) τ } −> {u : Tm Γ σ} −>
app (λ t) u βη−≡ t [vz := u]

eta : f o r a l l {σ τ } −> { t : Tm Γ (σ → τ) } −>
λ (app t+vz (var vz)) βη−≡ t

Parallel substitutions

We will give the code for the de�nition of parallel substitutions, and one example of a proof.
Substitutions:

data Subst (T : Con → Ty → Set) : Con → Con → Set where
ε : f o r a l l {Γ} → Subst T Γ empty
, : f o r a l l {Γ ∆ σ} → Subst T Γ ∆ → T Γ σ → Subst T Γ (ext ∆ σ)

Proof that variable substitutions are associative:

26

aCSVar : f o r a l l {Γ ∆ Θ σ} → (u : Subst Var Γ ∆) → (v : Subst Var ∆ Θ) →
(v ' : Var Θ σ) → v ' [u ◦ v] == (v ' [v]) [u]

aCSVar _ ε ()
aCSVar _ (_ , _) vz = ==−r e f l
aCSVar u (v , _) (vs v ') = aCSVar u v v '

assoCompSVar : f o r a l l {Γ ∆ Θ Ξ} → (u : Subst Var Γ ∆) →
(v : Subst Var ∆ Θ) → (w : Subst Var Θ Ξ) →
(u ◦ v) ◦ w == u ◦ (v ◦ w)

assoCompSVar _ _ ε = ==−r e f l
assoCompSVar u v (w , t) = re f l Subs tExt (assoCompSVar u v w) (aCSVar u v t)

The symbol _ means that we do not care the name of the variable it stands for. () means
that this case (in the pattern matching) is absurd. re�SubstExt is the following function:

r e f l Subs tExt : f o r a l l {T Γ ∆ σ} → { s1 s2 : Subst T Γ ∆} → { t1 t2 : T Γ σ}
→ s1 == s2 → t1 == t2 → s1 , t1 == s2 , t2

r e f l Subs tExt ==−r e f l ==−r e f l = ==−r e f l

Hereditary substitutions

We will present the Agda code for some of the notations we de�ned in section 3.1.1, and
hereditary substitutions.

Minus notation:

− : {σ : Ty} −> (Γ : Con) −> Var Γ σ −> Con
ε − ()
(Γ , σ) − vz = Γ
(Γ , τ) − (vs x) = (Γ − x) , τ

Weakening:

wkv : f o r a l l {Γ σ τ } −> (x : Var Γ σ) −> Var (Γ − x) τ −> Var Γ τ
wkv vz y = vs y
wkv (vs x) vz = vz
wkv (vs x) (vs y) = vs (wkv x y)

mutual
wkNf : f o r a l l {σ Γ τ } −> (x : Var Γ σ) −> Nf (Γ − x) τ −> Nf Γ τ
wkNf x (λn t) = λn (wkNf (vs x) t)
wkNf x (ne (y , us)) = ne (wkv x y , wkSp x us)

wkSp : f o r a l l {σ Γ τ ρ} −> (x : Var Γ σ) −> Sp (Γ − x) τ ρ −> Sp Γ τ ρ
wkSp x ε = ε
wkSp x (u , us) = (wkNf x u) , (wkSp x us)

Equality between variables:

data EqV {Γ : Con} : {σ τ : Ty} −> Var Γ σ −> Var Γ τ −> Set where
same : f o r a l l {σ} −> {x : Var Γ σ} −> EqV {Γ} {σ} {σ} x x
d i f f : f o r a l l {σ τ } −> (x : Var Γ σ) −> (y : Var (Γ − x) τ) −> EqV {Γ}

{σ} {τ } x (wkv x y)

eq : f o r a l l {Γ σ τ } −> (x : Var Γ σ) −> (y : Var Γ τ) −> EqV x y
eq vz vz = same
eq vz (vs x) = d i f f vz x
eq (vs x) vz = d i f f (vs x) vz
eq (vs x) (vs y) with eq x y
eq (vs x) (vs . x) | same = same
eq (vs . x) (vs . (wkv x y)) | (d i f f x y) = d i f f (vs x) (vs y)

The with notation allows us to have a view on an object.
Application of a normal form to a spine:

27

appSp : f o r a l l {Γ σ τ ρ} −> Sp Γ ρ (σ → τ) −> Nf Γ σ −> Sp Γ ρ τ
appSp ε u = (u , ε)
appSp (t , t s) u = (t , appSp t s u)

Hereditary substitutions:

mutual
substNf : f o r a l l {σ Γ τ } −> (Nf Γ τ) −> (x : Var Γ σ) −> Nf (Γ − x) σ −>

Nf (Γ − x) τ
substNf (λn t) x u = λn (substNf t (vs x) (wkNf vz u))
substNf (ne (y , t s)) x u with eq x y
substNf (ne (x , t s)) . x u | same = appNf u (substSp t s x u)
substNf (ne (. (wkv x y ') , t s)) . x u | d i f f x y ' = ne (y ' , substSp t s x

u)

substSp : f o r a l l {Γ σ τ ρ} −> (Sp Γ τ ρ) −> (x : Var Γ σ) −> Nf (Γ − x) σ
−> Sp (Γ − x) τ ρ

substSp ε x u = ε
substSp (t , t s) x u = (substNf t x u) , (substSp t s x u)

appNf : f o r a l l {τ Γ σ} −> Nf Γ σ −> Sp Γ σ τ −> Nf Γ τ
appNf t (u , us) = appNf (substNf t vz u) us
appNf t ε = t

28

