
Typed Iterators for XML ∗

Giuseppe Castagna
PPS (CNRS) - Université Paris 7 - Paris, France

Kim Nguyễn
LRI - Université Paris-Sud 11 - Orsay, France

Abstract. XML transformations are very sensitive to types: XML
types describe the tags and attributes of XML elements as well as
the number, kind, and order of their sub-elements. Therefore, oper-
ations, even simple ones, that modify these features may affect the
types of documents. Operations on XML documents are performed
by iterators that, to be useful, need to be typed by a kind of poly-
morphism that goes beyond what currently exists. For this reason
these iterators are not programmed but, rather, hard-coded in the
languages. However, this approach soon reaches its limits, as the
hard-coded iterators cannot cover fairly standard usage scenarios.

As a solution to this problem we propose a generic language to
define iterators for XML data. This language can either be used as a
compilation target (e.g., for XPATH) or it can be grafted on any stati-
cally typed host programming language (as long as this has product
types) to endow it with XML processing capabilities. We show that
our language mostly offers the required degree of polymorphism,
study its formal properties, and show its expressiveness and practi-
cal impact by providing several usage examples and encodings.

1. Introduction
Research on programming languages to process XML documents
is very active. Since the XML specification is essentially typed,
an important part of this research area is characterised by the
fact of “taking types seriously”. This translates into coding XML
transformations by using mostly (but not exclusively, e.g. Xtatic
[13]) functional languages in which the use of types is pervasive
and goes well beyond the customary partial correctness check: in
these languages types are used to select and sieve data [3, 16, 13], to
speed up execution time [8, 20], to optimise code [4] and memory
usage [2]. All this is possible because XML transformations are very
sensitive to types. XML types (e.g., [7, 30, 25, 17]) describe the tags
and attributes of XML elements, as well as the number, kind, and
order of their sub-elements. Thus even basic operations, such as
changing a tag, renaming an attribute, or adding an element, may
imply conspicuous changes from the type of the input documents to
the type of the output documents. Such changes may be nested deep
inside the structure of documents, which is why good precision of
static type checking and/or of type inference is very hard to achieve.

As an example, consider an operation as simple as capitalising
the tag of an element and imagine that we iterate it on an XML
document of a given DTD. In order to obtain the necessary type
precision, the type system must be able to deduce that the iteration
will produce a document whose type is exactly the DTD of the input
document, whatever it is, where all the tags have been capitalised
(XML types are case-sensitive). Thus the iterator at issue must be
(i) highly polymorphic, since it can be applied to any DTD and (ii)
must return a very precise output type calculated by performing an
abstract execution of the iterator on the input type.

∗A preliminary version of this work was presented at the ACM SIGPLAN
Workshop on Programming Language Techniques for XML (PLAN-X) 2008
(no formal proceedings).

Such a kind of polymorphism is well beyond what currently
exists. It cannot be handled by parametric polymorphism (either
implicit à la ML or explicit à la System F) because it is precisely
the opposite of parametricity which leaves polymorphic elements
untouched. It cannot be handled by subtyping polymorphism be-
cause the least upper bound of transformations such as those at is-
sue is the completely uninformative type of all XML documents.
This kind of polymorphism resembles very much to the applica-
tion of an overloaded function (since to different and possibly unre-
lated input types correspond different and precisely defined output
types), the so-called ad hoc polymorphism. However, since such
polymorphism must be able to cope with a potentially infinite set
of different input contexts, it is out of reach of the ad hoc polymor-
phism, even when coupled (as in Haskell) with the parametric one.

The only solution used so far in XML processing programming
languages is to hard-code these iterators in the language so as to
make it possible to define specific typing rules for them that, in
practice, compute the output type of an iterator by executing it on
the (input) type of its argument. This is what is done in languages
such as Xtatic, CDuce, and XDuce which all provide several built-
in iterators for sequences and XML-trees. But this approach soon
shows its limits: while for an operation as simple as changing
a tag, a predefined operator that iterates a given expression on
an XML tree is available in many languages (e.g. xtransform
in CDuce, map in XDuce, iterate in Xtatic,. . .), for slightly
more complex—but fairly standard—manipulations (e.g. context
sensitive document pruning, or the cleaning of XHTML documents
to cope with “XHTML-deprecated” elements) this is not the case.
Since language designers cannot hard-code in the language as many
iterators as needed, the programmer is then left with the sole choice
of writing functions specifically typed for a single usage, thus
losing the benefits of modularity and code reuse.

The solution to this problem we propose here is to offer the pro-
grammer a restricted language, powerful enough to write complex
iterators and simple enough to type them precisely. That is, a lan-
guage of non first-class operators which are not typed (or are just
lightly typed) at their definition but, rather, are very precisely typed
at the places of their application. This restricted language will then
be embedded in an host language and provide it with user-defined
iterators.

Several formalisms to define iterators over XML data structures
can be found in the literature (see the §6.3 on Related Work).
In this work we present a novel solution directly inspired from
Hosoya’s regular expression patterns [16] that were later refined by
CDuce patterns [10]. Regular expression patterns allow programs
to explore and capture sub-parts of an XML tree at an arbitrary
depth. Therefore the idea is that if we generalise patterns so that
during the exploration they can execute expressions on the explored
sub-trees, then we obtain a very simple and compact language to
define iterators on XML data structures, iterators that we dub filters.

Although the idea is simple the definition and design of the
iterator language is not. In order to fit the usage scenarios we

1 2008/6/16

outlined above, a language designed to define iterators for different
host languages must satisfy precise characteristics.
1. It must be able to call any expression of the host language and

therefore its design must be independent from a particular host
language.

2. It must be statically typed. This has two consequences on the
type system which must be able (i) to associate a domain type
to each iterator, that is a set of expressions for which the iterator
will not fail (so that, say, an iterator for lists cannot be applied
to an XML tree) and (ii) it must be able to deduce a precise type
for the output by running the iterator on the type of the input.

3. A consequence of (ii) in the previous point is that the language
must define only iterators that always terminate. More precisely,
the abstract execution of any iterator on an (input) type —thus
the type checking phase— is required to terminate (therefore
the application of an iterator to some data may diverge only
either because it called a diverging expression of the host lan-
guage or because it was applied to infinite data).

4. It must be expressive enough to define common sequence and
tree operators such as concatenation, reversal, map-functions,
various tree-explorations, XPATH expressions, and so on.

5. It must not come at the cost of modularity and code reuse.

Of course there is a clear tension between requirements 3 and 4:
expressiveness and termination are contrasting requirements, there-
fore a trade-off must be found between them. This yields us to one
of the main technical problems of this work. In all XML program-
ming languages and proposed standards currently available, XML
types essentially are regular trees. We consider as a minimal re-
quirement for a language of iterators for XML to be able to define
an expression, say, leaves that extracts all the leaves of a tree. If
we accept this minimal requirement, then we must also accept the
fact that it is impossible to infer the most precise type for the result
of an iterator. To see why, consider the following declarations:

type A = <a>[] type B = [] type T = [] | [A T B]

which define three types: A and B which type single elements of
tag <a> and respectively, that enclose an empty sequence of
elements (we use square brackets to denote and delimit sequences,
and the content of sequences is described by regular expressions
on types); T which types either the empty sequence or (i.e. the
vertical bar) sequences of three elements, the first element being
of type A, the third of type B and the second a sequence of type T
itself. Note that T is regular: its only sub-trees are A, B, T, and [].
However if we apply to a value of this type the iterator that returns
the sequence of the leaves of a tree, then the precise type of the
result is {[AnBn] | n≥0}, which is not regular. Of course there
are regular approximations of this type such as [(A*) (B*)], or
[]|||[A(A*) (B*)], or []|||[(A*) (B*)B], etc., but there is not a most
precise or principal one (it is easy to build an infinite sequence
of regular approximations of increasing precision, whose limit is
{[AnBn] | n≥0}). Our solution is to let the programmer decide
which approximation to use, by providing explicit type annota-
tions. We study when such annotations are necessary and make the
type-checker use them just in those cases. The study results in the
design of a concrete syntax and semantics for a language to define
iterators for different host languages. In order to maximise modu-
larity and code reuse (requirement 5), we designed the (concrete)
language so that annotations are specified at the application of an
iterator rather than at its definition. This allows one to declare fil-
ters in a separate library. At the time of application the programmer
will add necessary annotations (if needed) which will thus tailor
the filter for the specific type of the argument. Modularity is also
improved by the addition of parametric filters which are obtained
by a technique similar to Wadler’s higher-order macros [29].

More generally, this paper promotes a somewhat radical and
unorthodox approach in which the static typing of highly mod-
ular/polymorphic code is delayed at the place of its application.
This has some clear drawbacks (e.g. a late detection of errors) but
it allows a very rich and precise typing, which is a key issue in
the manipulation of XML documents. The final result is an itera-
tor language that can be grafted on any statically typed host lan-
guage (as long as it possesses product types) in order to supply it
with, for instance, Hosoya’s regular expression filters (which are
XDuce’s iterators), all CDuce’s iterators, precisely-typed operators
on heterogeneous sequences, forward XPATH expressions (i.e. only
with child and descendant axes) as well as XSLT-like transforma-
tions. We implemented filters using CDuce as host language (the
implementation uses the same language used for the CDuce com-
piler, that is OCaml), and the resulting prototype constitutes —in
our ken— the first practical implementation of highly polymorphic
transformations tested on realistic usage scenarios with non-trivial
data-types and applications: comparable approaches (see §6.3) lack
usable implementations.

Outline. The presentation proceeds as follows. In Section 2 we
briefly introduce our language of filters by commentating a couple
of practical examples. In Section 3 we start the formal presentation
by defining the syntax and operational semantics of a calculus of
filters. Section 4 is devoted to the presentation of the type system
and of its properties. We address algorithmic issues in Section 5
where we define a typing algorithm for filters which is sound and
complete with the type system “up to annotations”: provided that
some correct type annotations are given, the algorithm types every
typable filter. We also study annotations and precisely point out
where they are needed by giving sufficient condition for the success
of the algorithm on typable filters. Finally, in Section 6 we formally
define the concrete syntax of a language derived from the calculus
of Section 3 and demonstrate its use by defining and commenting
several examples. Section 6.3 discusses related work. We conclude
our presentation in Section 7 where we sketch some directions for
future works.
Due to space constraints, proofs are omitted in this presentation
but can be found in the second author’s PhD dissertation at http:
//www.lri.fr/~kn/iterXML/, together with an implementation
of the language presented in Section 6.

2. An overview of filters
As we already mentioned, filters can be seen as an extension of
pattern matching: as patterns are matched against values to retrieve
part of an input value, filters are applied to an input value to it-
erate over and transform it into another value. As a first approxi-
mation, one can consider pattern matching as found in Haskell as
well as in various dialects of ML such SML and OCaml. There,
the basic pattern matching construction has the form p -> e (even
though it is never found standalone) where p is a pattern and e an
expression. This construction can be “applied” to an expression: in
such a case the expression is evaluated into a value; the pattern p
is matched against this value and this results into an environment
that associates the “capture variables” (the variables occurring in
the pattern) to the sub-parts of the value they match; finally, the
environment is used to evaluate the expression e.

Usually, several of these constructions can be composed by
using a vertical bar | (a customary syntax for pattern matching
is match e with p1->e1 |. . .| pn->en) denoting alternation,
which is used according a first-match or a any-match policy. In [14]
Haruo Hosoya adds to alternation the Kleene star * and juxtapo-
sition. These allow the program to iterate (sequences of) pattern
matching over sequences and thus to define map-like iterations.1

1 We borrowed our terminology from Hosoya who calls his iterators filters.

2 2008/6/16

What we propose is to generalize such a technique by trans-
forming the constructions of the form p -> e into first class expres-
sions so that they can be nested, denoted by variables, structured by
using the pattern constructors (e.g. the vertical bar, the Kleene star,
or the pair constructor), and composed by semicolons.

We show our idea on a representative example: list concatena-
tion. Let us encode lists à la Lisp, that is as nested pairs with a
special constant ‘nil to denote the empty list. A filter that con-
catenates two lists can be written as follows:

let filter concat = (x, y) -> (x ;
let filter aux =
‘nil -> y

| (head->head,aux) in aux)

To enhance readability we have written keywords and constants in
typewriter font, variables that denote filters are underlined and
in roman style, while capture variables (and, in Section 6, function
names) are written in italics.

The definition of concat introduces most of the syntax of filters.
A filter is: either a pattern filter of the form p->f (e.g. the body of
concat) that when applied to a value matches it against the pattern p
and if this does not fail, then applies the filter f in the environment
returned by the matching of p; or a pair filter (((f1,,,f2))) (e.g. the last
branch of aux) that succeeds only if it is applied to a pair of values,
it applies each filter fi to the respective value, and returns the pair
formed by the results of the two applications; or a union filter f1|||f2
(e.g. the body of aux) which applies f2 on the argument value only
if the application of f1 failed; or a composition filter f1;;;f2 (e.g.
the right hand filter of the body of concat) which when applied
to a given value, first applies f1 to this value and then f2 to the
result of the previous application; finally, filters can also be either
an expression of the host language (in our example the rightmost
occurrence of the variables x, y, and head), or a possibly recursive
filter declaration let filter x = f .

The behaviour of the filter above is equivalent to the following
recursive function (given in pseudo-ML, where we use the same
typesetting conventions):

let concat (x, y) =
let rec aux z = match z with

‘nil -> y
| (head, tail) -> (head, aux tail)

in aux x

The definition of the filter concat can be understood by referring
to its ML equivalent. First, the arguments (the pair of the two lists
one wants to concatenate) are bound to two variables (x and y)
via the pattern (x, y). Then, a second recursive filter aux is de-
fined and applied (via the composition operator “;”) to the result
of the expression “x”, that is to the first list. Note the similar-
ity between (x;let filter aux = ...) and let rec aux z
=...in aux x. The recursive filter aux is the union (“|”) of two
filters, playing the same role as two branches of a pattern match-
ing. If the argument is the constant ‘nil, (this case is handled by
the pattern filter “‘nil -> y”), then the second list y is returned. If
the argument is a pair, (handled by the pair filter “(((,,,)))”), then the
first component is left unchanged (by the use of an identity filter:
head->head) while the second component, which is the tail of the
list, is recursively iterated over by the aux filter. The result of each
component is then recomposed as a pair.

Let us now consider the type analysis by first trying to type the
ML function:

• In a type system with parametric polymorphism à la ML, this
function has type: ∀α. α list × α list → α list. The constraint
is that both arguments must have the same type and the result
will be of that type. This precludes the use of such a typing

discipline with heterogeneous lists: even in the presence of sub-
typing, the type of the elements of the result would be crushed
to the least upper bound of all element types, losing in this
way any precision. This does not fit XML document processing
where heterogeneous sequences (of elements) are pervasive.
• In a type system with regular expression types, the most general

type of the function would be: [Any*] × [Any*] → [Any*]
(Any being the super type of all types). Again, precision is lost
because while any lists is accepted as argument (thanks to sub-
typing its type is “up-casted” to [Any*]), the output type is
uninformative about the type of the elements of the result.

For filters we use a rather different type discipline. When we define
a filter, we do not try to characterise the type of all its possible
results. Instead, we just check that there exists some input type
for which the application of the filter cannot yield a type error or
a failure. For instance consider the filter concat. It is easy to see
that the subfilter aux will not fail as long as it is applied to a list.
Therefore the composition in concat will work if x is bound to a
list. From this we deduce that concat will not fail as long as its first
argument is a list. Thus there exists an input type which ensures a
safe application of concat.

Precision of type inference is achieved by using for concat the
same typing policy as the one used for the hard-coded concate-
nation operator @ of XDuce or CDuce. That is, instead of typing
the operator, one types each single application of the operator. In
terms of the filter concat this corresponds to type the application
concat(l1,l2) for some specific expressions l1 and l2. This al-
lows us to achieve very precise typing. For example, if l1 has type
[String Bool*] and l2 has type [Bool Int?] , then the type sys-
tem infers for the result the type [String Bool+ Int?] which, in
this case, is the most precise one. If concat is applied elsewhere to
an input of different type, then the output type is again computed
from the specific input type and a precise type is given to the whole
application.

We complete this overview by an example of XML transforma-
tion. To that end we add to the filters presented so far the filter
<f1 f2>f3 that accepts XML elements as input, applies the sub-filter
f1 on the element tag, f2 on the element attributes and f3 on the
sequence of children. We will often omit f2 to ease the reading of
the examples, in which case the attributes are copied to the result.

Consider Figure 1. We want to convert the file recipe.xml,
whose content is sketched at the top of the figure, into an XHTML
document to publish on a website. Below it, we see first the type
declaration for such a document, then the definition of two mu-
tually recursive filters. The first one, map_elem, is the union of
two filters. If its argument is an XML element of tag <itemize>,
<enumerate> or <item>, then the tag is changed to , or
, respectively. If the tag is something else, then it is just copied.
The content is then recursively iterated by the map_list filter. If the
argument is not an XML element (a character for example), then it
is just copied to the output. The map_list filter is just an iterator
over sequences which calls map_elem on each element of the in-
put sequence. The last part is the special construct apply f to e
which applies the filter f on the result of an expression e. Here,
the expression is the document, returned by the built-in load_xml
function. This document is fed to a filter which changes the root
tag <recipe> to <html>, extracts the content of the root tag (by
the pattern x ->...), and rebuilds a new element <body> whose
content is the application of map_list to the variable x.

It is worth noticing that precise typing is achieved without re-
sorting to any explicit type annotation. This precision is obtained in
the typing of the apply to construction: in our example the input
has type Recipe, thus the type system abstractly executes the filter
on it and deduces for the result the type:

3 2008/6/16

Content of the file recipe.xml:
<recipe>
<itemize>
<item> 400g of chocolate</item>
<item> 3 eggs </item>...

</itemize>
<enumerate>
<item> Melt the chocolate </item>
<item> Separate the white from the yolk </item>
<item> Beat the whites to foam </item>...

</enumerate>
</recipe>

The types of the data:

type Item = <item>[Char*]
type Enumerate = <enumerate>[Item+]
type Itemize = <itemize> [Item+]
type Recipe = <recipe> [Itemize Enumerate]

Definition of auxiliary filters:

let filter map_elem =
<(itemize->ul
|enumerate ->ol
|item->li
| x ->x) >map_list

| x -> x
and map_list = ([] -> []) | (map_elem,map_list)

Call of the filter in the host language:

apply (<(recipe ->html)>(x->
<body>(apply map_list to x)))

to (load_xml " recipe .xml")

Figure 1. XML document and a transformation into XHTML

<head>[<body>[[[Char*]+] [[Char*]+]]]

Had we applied the filter to more a complex expression in which
itemize and enumerate elements were nested and/or interleaved
with other elements, then we would have found all of them (and
at the right position) in the type of the result. In Section 6, right
after the formal development, we will show more advanced uses of
filters.

3. Syntax and dynamic semantics
Our filters are deeply inspired by CDuce patterns. These patterns
are nothing but types in which capture variables may occur. There-
fore we start our presentation with a brief overview of CDuce types
and patterns as defined in [5] and [10], followed by the definition
of filters and of their operational semantics.

3.1 Types and patterns
Definition 1 (Types [5]). A type is a possibly infinite term pro-
duced by the following grammar:
t ::= b | (((t1,,,t2))) | t1|||t2 | t1&&&t2 | ¬¬¬t | Empty | Any

with two additional requirements:
1. (regularity) the term must be a regular tree (it has only a finite

number of distinct sub-terms);
2. (contractivity) every infinite branch must contain an infinite

number of pair nodes (((_,,,_))).
We use b to range over basic types, while Empty and Any respec-
tively denote the empty type and the type of all values. Besides,
there are product (((t1,,,t2))), union (t1|||t2), intersection (t1&&&t2), and
negation (¬¬¬t) types. Infiniteness of types accounts for recursive
types, and regularity implies that they are finitely representable,
e.g. by recursive equations or by explicit µ-notation (as we do in
Section 5). The contractivity condition rules out meaningless terms
such as X = ¬¬¬X (that is, µα.¬¬¬α, an infinite unary tree where all

nodes are labelled by ¬¬¬). Both conditions are standard when deal-
ing with recursive types (e.g. see [1]).

These types are enough to encode XML types which, we remind,
are given by specifying tags that label sequences of elements whose
content is described by regular expressions on types. For instance:
type Book = <book>[Title (Author+|||Editor+) Price?]
defines a type Book that types elements tagged by <book> and that
contain a title followed by either a non-empty list of authors or a
non-empty list of editors and possibly ended by an optional price
(Title, Author, Editor and Price being types defined in other
declarations, here left unspecified).

Sequences can be encoded à la Lisp by nested pairs. Pairs
can also be used to encode element types, while regular expres-
sion types are encoded by recursive types. Therefore the decla-
ration of Book above can be considered as syntactic sugar for
Book=(‘book, (Title, X|||Y)), X=(Author, X)|||(Author, Z), —
which is the non-empty list of authors— Y=(Editor, Y)|||(Editor, Z)
—the non empty list of editors— and Z=(Price, ‘nil)|||‘nil —
the optional price — and where ‘book and ‘nil are singleton
(basic) types.

Patterns are just types in which capture variables may occur in
a controlled way:

Definition 2 (Patterns [10]). A pattern is a (possibly infinite) term
produced by the following grammar

p ::= x | t | (((p1,,,p2))) | p1|||p2 | p1&&&p2 ,

that is regular, contractive (as in Definition 1), and in which every
subtree of the form p1&&&p2 or p′1|||p′2 satisfies Var(p1)∩Var(p2)=∅
and Var(p′1) = Var(p′2), respectively (where Var(p) is the set of
capture variables occurring in p).

The semantics of both types and patterns is expressed in terms
of values. In the framework of XML processing languages, values
are XML documents and, following Hosoya et al. [18], an XML
type is (interpreted as) the set of XML documents that have that
type. In this paper we do not fix a particular set of values (since
it depends on the host language filters are used in) but we rather
suppose its existence and implicitly assume that it contains all
XML documents. Then we consider a type as the set of values that
have that type, the union, intersection, and negation types as the
corresponding set-theoretic operations, and the subtyping relation,
noted ≤, as set-containment. Since the use of subsumption makes
two equivalent types (that is, two types denoting the same set of
values) operationally indistinguishable, then we will always work
up to type equivalence and consider, e.g. t|||t, Any&&&t and t as the
same type.

The semantics of patterns is defined in terms of matching. In-
formally, the matching of a value v against a pattern p, that we note
v/p, is either a failure (noted Ω) or a substitution from the capture
variables of p to values. The substitution is then used as an environ-
ment in which some expression is evaluated. If the pattern is a type,
then the matching fails if and only if the pattern is matched against
a value that has not that type. If it is a variable, then the matching al-
ways succeeds and returns the substitution that assigns the matched
value to the variable. The pair pattern (((p1,,,p2))) succeeds if and only
if it is matched against a pair of values and each sub-pattern suc-
ceeds on the corresponding projection of the value (the union of the
two substitutions is then returned). An intersection pattern p1&&&p2

succeeds if and only if both patterns succeed (the union of the two
substitutions is then returned). The union pattern p1|||p2 first tries to
match the pattern p1 and if it fails it tries the pattern p2.

For instance the pattern (((Int&&&x,,,y))) succeeds only if the matched
value is a pair of values (v1, v2) in which v1 is an integer —in
which case it returns the substitution {x:=v1, y:=v2}— and fails
otherwise.

4 2008/6/16

(e-expr)
γ `e e(v) ; r

r = eval(γ, e)

(e-prod-ok)

γ `e f1(v1) ; r1
γ `e f2(v2) ; r2

γ `e (((f1,,,f2)))(v1, v2) ; (r1, r2)
if r1 6= Ω
and r2 6= Ω

(e-prod-err1)

γ `e f1(v1) ; r1
γ `e f2(v2) ; r2

γ `e (((f1,,,f2)))(v1, v2) ; Ω
if r1 = Ω
or r2 = Ω

(e-prod-err2)
γ `e (((f1,,,f2)))(v) ; Ω

if v ≡/ (v1, v2)

(e-patt-ok) γ ∪ v/p `e f(v) ; r
γ `e (p→→→ f)(v) ; r

if v/p 6= Ω

(e-patt-err)
γ `e (p→→→ f)(v) ; Ω

if v/p = Ω

(e-comp-ok)

γ `e f1(v) ; r1
γ `e f2(r1) ; r2
γ `e f1;;;f2(v) ; r2

if r1 6= Ω

(e-comp-err) γ `e f1(v) ; Ω
γ `e (f1;;;f2)(v) ; Ω

(e-union1) γ `e f1(v) ; r1
γ `e (f1|||f2)(v) ; r1

if r1 6= Ω

(e-union2)

γ `e f1(v) ; Ω
γ `e f2(v) ; r2

γ `e (f1|||f2)(v) ; r2

Figure 2. Dynamic semantics of filters

This informal semantics of matching (see [10] for the formal
definition) explains the reasons of the restrictions on capture vari-
ables in Definition 2: in intersections both patterns must be matched
so that they have to assign distinct variables, while in union patterns
just one pattern will be matched, hence the same set of variables
must be assigned, whichever alternative is selected.

Types are sets of values, but of course not every set of values is
a type. However there are some useful sets of values that happen
to be types. These are the sets formed by all and only those values
that make some pattern succeed:

Theorem 1 (Accepted type [10]). For all p ∈ P, the set of all
values v such that v/p 6= Ω is a type. We call this set the accepted
type of p and note it by *p+.

The fact that the exact set of values for which a matching succeeds
is a type is not obvious and is of the utmost importance for a precise
typing of pattern matching. In particular, given a pattern p and a
type t contained in *p+, it allows us to compute the exact type of
the capture variables of p when it is matched against a value in t:

Theorem 2 (Type environment [10]). There exists an algorithm
that for all p ∈ P, and t ≤ *p+ returns a type environment
t/p ∈ Var(p)→ Types such that (t/p)(x) = {(v/p)(x) | v : t}.

3.2 Filter calculus
Definition 3 (Filters). A filter f is a (possibly infinite) regular tree
coinductively generated by the following production rules (where
e ranges over expressions of the host language)

f ::= e expression
| p→→→ f pattern, p ∈ P
| f;;;f composition
| (((f,,,f))) product
| f|||f union

and which satisfies the following conditions:
1. (contractivity) for every infinite branch of f , there the number

of occurrences of the pair constructor (_, _) is infinite.
2. (composition) for every subterm f ′ of f , if f ′ is of the form
f1;;;f2, then f ′ is not a subterm of f2.

Here, e is an expression of the host language. The condition on
contractivity is the usual one which rules out meaningless terms.
The condition on composition is however rather new and involved.
In a nutshell it states that recursion cannot traverse composition
semicolons “;”. For example, f=(((f,,,f)));;;g with g=(((g,,,g)))|||x →→→ x
is permitted, while f=(x →→→ (x, x));;;(((f,,,f))) is not. Basically, this
restriction prevents our filters from diverging when they are applied
to a (possibly infinite) type. This ensures the termination both of

the type inference algorithm (as we explain in Section 5) and of the
execution of a filter on a finite value. Henceforward we use F to
denote the set of (well-formed) filters.

We formally define the sets of free and capture variables for
filters, as an extension of free and capture variables for expressions
and patterns of the host language.

Definition 4 (Capture variables). We define the set of capture
variables of a filter f , Var(f) as:

Var(e) = ∅
Var(f1;;;f2) = Var(f1|||f2) = Var((((f1,,,f2)))) = Var(f1) ∪ Var(f2)
Var(p→→→ f) = Var(p) ∪ Var(f)

Definition 5 (Free variables). We define the set of free variables
of a filter f , FV (f) as:

FV(f1;;;f2) = FV(f1|||f2) = FV((((f1,,,f2)))) = FV(f1) ∪ FV(f2)
FV(p→→→ f) = FV(f) \ Var(p)

We suppose that FV(e) is defined (provided by the host language).

3.3 Operational semantics
We define a big step operational semantics for filters and show the
termination of the evaluation of filters f on a finite value v.

The dynamic semantics is given by the inference rules for the
judgement γ `e f(v) ; r in Figure 2 and describes when the
evaluation of the application of filter f on a value v in an environ-
ment yields an object r where r is either a value or Ω. The latter is a
special value which represents a runtime error: it is raised either be-
cause a filter did not match the form of its argument (e-prod-err2)
or because some pattern matching failed (e-patt-err). It is easy to
read the rules of Figure 2 in the light of the informal semantics we
gave in Section 2. Filter application is defined on values, which are
returned by the host language to evaluate an apply to expression.
The expression filter discards its input and evaluates (rather, asks
the host language to evaluate) the expression e in the current en-
vironment (e-expr). The product filter expects a pair as input (we
use ≡ to denote syntactic equivalence), applies its filters compo-
nentwise and returns the pair of the results. The pattern filter first
matches its pattern p against the input value v; if it fails it raises an
error (e-patt-err), otherwise it evaluates its sub-filter in the envi-
ronment augmented by the substitution v/p (e-patt-ok). The alter-
native filter follows the standard first match policy. Finally, com-
position allows us to pass the result of f1 as input to f2. As stated
before, the condition on filter composition ensures termination:

Theorem 3 (Termination of filtering). Let v be a finite value of the
language and f a well-formed filter, in which every expression sub-
term terminates for all well-typed substitution. Then the evaluation
of f(v) terminates.

5 2008/6/16

4. Static semantics
4.1 Type system
We present here a type system for filters. We start by extending the
notion of accepted type to filters:

Definition 6 (Accepted type). For every filter f ∈ F we define the
type *f+ as follows:

*e+ = Any
*(((f1,,,f2)))+ = (((* f1 + ,,, * f2 +)))
*f1|||f2+ = *f1 + ||| * f2+

*p→→→ f+ = *p + &&& * f+
*f1;;;f2+ = *f1+

Input inclusion in the accepted type of a filter is a necessary condi-
tion for filter application to succeed: ∀v/∈ *f+, f(v);Ω. Unfortu-
nately it is not also sufficient since, for instance, the accepted type
of Any→→→ 3 ;;; (((_,,,_)))→→→ 5 is Any, but every application of this filter
fails, since it tries to match 3 against a pair pattern. The problem
lies in the composition operator, f1;;;f2. Indeed, a necessary condi-
tion is that the output type of f1 is a subtype of the input type of
f2. To ensure type safety, we need to infer the output type of the
filter f1. To that end we define the inference rules of Figure 3 in
which we use the notation

_
i=1..n

ti as a shorthand for the finite union
t1||| · · · |||tn.

(t-expr) type(Γ, e) = s
Γ ` e(t) = s

(t-prod)

i = 1..rank(t)
j = 1..2

Γ ` fj(Mij(t)) = sij

Γ ` (((f1,,,f2)))(t) =
_
i

(((si1,,,s
i
2)))

(t-patt) Γ ∪ t/p ` f(t) = s t ≤ *p + &&& * f+
Γ ` (p→→→ f)(t) = s

(t-union)

t ≤ *f1 + ||| * f2+
t1 = t&&& * f1+
t2 = t&&&¬¬¬ * f1+

Γ ` f1(t1) = s1
Γ ` f2(t2) = s2

Γ ` (f1|||f2)(t) =
_

{i|ti 6=Empty}

si

(t-comp)
Γ ` f1(t) = s1 Γ ` f2(s1) = s2

t ≤ *f1+
s1 ≤ *f2+

Γ ` (f1;;;f2)(t) = s2

(t-subs) Γ ` f(t) = s′ s′ ≤ s
Γ ` f(t) = s

Figure 3. Deduction system associated with F

The system proves judgements of the form Γ ` f(t) = s meaning
that in a type environment Γ a filter f applied to an expression
of type t returns (if any) a value of type s. We call F the as-
sociated deduction system and only consider (possibly infinite)
regular derivations of this system. Regularity both for filters and
for deductions prevents Γ from growing indefinitely (regularity of
filters guarantees that the number of distinct variables on an infinite
branch is finite and regularity of deductions ensures that these vari-
ables can be assigned only to finitely many types). However, the
system is not algorithmic (that is, there is not a unique derivation
for every provable judgement) since neither it is syntax-directed
(because of the subsumption rule, the form of the term does not
univoquely determine which rule to apply) nor does it satisfy the
subformula property (the composition rule is a logical cut, thus the
pivotal type in the premise do not occur in the conclusion).

Most of the rules require that the input type is compatible
with the accepted type of the considered filter. To type an (host
language) expression the rule (t-expr) calls the type system of the
host language with the current environment. Typing of the union
pattern (t-union) is straightforward, since it types each branch
for the values that it can be applied to, but only the results of
branches that have a chance to be selected (i.e. those for which
ti is not empty) are considered for the result (see filter mymatch
in Section 6 for an example that justifies this discipline and [3]
for a detailed discussion). To type the filter pattern p →→→ f the
system types f under an environment enriched with t/p; the latter
—intensionally defined by Theorem 2— is the type environment
that assigns to each capture variable in p the most precise type that
can be deduced for it when the pattern is matched against a value
of type t (refer to [10] for formal definition). The subsumption rule
(t-subs), allows the system to approximate an intermediary type
s′ with a broader type s. This rule is one of the reasons this type
system is not algorithmic.

The difficult rules are those for composition and products.
(t-comp) resembles a logical cut since it introduces an interme-
diary type s1 (which is the other reason why the type system is
non-algorithmic). The standard example is the leaves filter and
type T informally discussed in Section 1. There is an infinite num-
ber of regular derivations for Γ ` leaves(T) = s, each one giving
a different s with no lower bound (the limit being the context free
language: {[AnBn] | n≥0}). As for the rule for products, it is not
as straightforward as one could naively expect: to achieve a pre-
cise typing in the presence of union types we must resort to a very
subtle and “surgically precise” technique.

The difficulty arises because the only constraint we have on the
input type t of a product filter is that t is a subtype of (((Any,,,Any))).
However this does not imply that t is a product of just two types:
t in general is an arbitrary finite union of products. This yields to
two original aspects of our approach that, as we argue in Section 6,
allow us to achieve very precise typing. First, as we decompose
a type in a finite union, we apply the same filter to each type of
the decomposition (f1 and f2 in the (t-prod) rule are typed many
times, against different input types) and recompose the result in the
output type. This already allows us to obtain a fine grained typing
of the transformation. The second aspects is the decomposition it-
self. Indeed, while every subtype of (((Any,,,Any))) can be decomposed
in a union of products, the decomposition is not unique. However,
there exists a decomposition (that we dub maximal product decom-
position) given by the operatorM (pronounced [pi:] as for « pea »)
that has better properties (with respect to subtyping). We devote the
next section to define it.

4.2 Typing of Cartesian products
Typing Cartesian products can be tricky since not every decompo-
sition of a product in a finite union of Cartesian products behaves
equally with respect to the subtyping relation. We study the case of
the maximal product decomposition, which is stable with respect
to the subtyping relation and provide better typing properties to the
filter language. Let us illustrate this with interval types. Consider
the following filters (the interval notation i..j being syntactic sugar
for the finite union of integers i|||i+1||| · · · |||j):
f1=0..4→→→ A|5..8→→→ B f2=0..3→→→ C|0..7→→→ D f=(((f1,,,f2)))

and the types t and s:

t = (((0..4,,,0..3)))|||(((5..8,,,0..7))) s = (((4..6,,,1..2)))

It is clear that s≤t: by drawing all intervals on a plane, as in Figure
4, it is easy to check that the rectangle s is contained in the “ ”-
shaped t. However, s overlaps the two rectangles which form t. If
we decompose naively (i.e., syntactically) both types and compute
the result type of f by separately applying the filter on each com-

6 2008/6/16

ponent of the obtained decomposition, then we have:
∅ ` f(t) = (((A,,,C)))|||(((B,,,D)))

but also:
∅ ` f(s) = (((A|||B ,,, C|||D)))

the latter being a supertype of the former. Indeed, in f1, a value

Two disjoint components:
(((0..4,,,0..3))) and (((5..8,,,0..7))). s
overlaps both.

Two non-disjoint components:
(((0..8,,,0..3))) and (((5..8,,,0..7))). s
is included in (((0..8,,,0..3))).

Figure 4. Syntactic and maximal product decompositions

in 4..6 can match either 0..4 or 5..8 (and likewise for f2), hence
the necessity, in this naïve approach, of returning the union of the
output type of the two branches, reflecting in the type the fact that
at run-time either branch can be taken. Therefore, we would have
s ≤ t but f(s) � f(t). The problem is solved by choosing a
decomposition that is stable with respect to the subtyping relation.
One such decomposition is the maximal product decomposition,
notedM, which we define as follows:

Definition 7 (Maximal product decomposition). Let t be a type
such that t ≤ (((Any,,,Any))). Then, there exists n ∈ N such that:

t '
_

i∈1...n

(((ti1,,,t
i
2)))

and that:
i. ∀s1, s2, (((s1,,,s2))) ≤ t =⇒ ∃i∈{1, .., n}, (((s1,,,s2))) ≤ (((ti1,,,t

i
2)))

ii. ∀i ∈ {1, .., n},∀k ∈ {1, .., n}, i 6= k =⇒ (((ti1,,,t
i
2))) � (((tk1,,,t

k
2)))

Given t, n, and tij’s as above, we note:

• M(t) = {(((t11,,,t12))), . . . , (((tn1 ,,,tn2)))}
• Mij(t) = tij
• rank(t)= n.

Although the definition above is not immediate, the intuition it for-
malises is quite simple: the maximal decomposition of a type is the
one formed only by (possibly overlapping) rectangles that are as
large as possible. The right-hand side of Figure 4 shows the max-
imal decomposition of t, the one of s being s itself. Formally, the
maximality of the components is specified by condition (i.): every
rectangle contained in t is contained in a rectangle of its maximal
decomposition (in our example, s is a subtype of the (((0..8,,,0..3)))
component of t). Condition (ii.) instead ensures that only maximal
components are used, by ruling out redundant ones (in our example
{(((0..8,,,0..3))), (((5..8,,,0..7))), (((5..8,,,0..3)))}, which satisfies (i.), would
not be a maximal decomposition because of the extra (((5..8,,,0..3)))).
The key property of our maximal decomposition is that if one prod-
uct type is smaller than another, then every component of the maxi-
mal decomposition of the former is contained in at least one compo-
nent of the maximal decomposition of the latter. It should be noted
the resulting products in the decomposition may be non disjoint (in
our example, the rectangle (((5..8,,,0..3))) is part of the two component
of the decomposition). Since (t-prod) transforms maximal decom-
positions component-wise, this property is the keystone of the proof
that the typing of filters is stable with respect to subtyping:

Lemma 1 (Stability of filtering). For every filter f , types s and
t, and type environment Γ, if s ≤ t and Γ ` f(t) = t′, then
Γ ` f(s) = s′and s′ ≤ t′.

As a concluding remark we want to stress that stability is a key
property to ensure modularity. If a programmer chooses to refine a
type in some existing code, then stability ensures that the result of
the computation of any filter on an input of the refined type will be
a value in a subtype of the previous output type: the behaviour on
the old type is preserved without modifying any piece of code.
We now state the main property of this type system:

Theorem 4 (Subject reduction). Let f , Γ, t and s be such that
Γ ` f(t) = s. For every γ : Γ and v : t, we have that
γ `e f(v) ; v′ implies v′ : s

It should be noted that even though stability with respect to the
type-system is an important property, it is not required to prove
subject reduction. Hence, for any decomposition of a product in a
finite union of Cartesian products, the language is type-safe.

5. Typing algorithm
5.1 Presentation
In the previous section we presented a type system for the filter
algebra which enjoys the desired properties of type safety and pre-
cision. However, in its present state, the system does not translate
directly into a typing algorithm. In fact, for some input types and
particular filters, there exists an infinite number of valid regular
derivations in the set F . To have an effective language, we need to
turn this set of rules into an algorithm. We obtain it by adding type
annotations to recursive filters. We claim that in many useful cases
such annotations are not needed (mainly all map-like filters), while
for other cases (e.g., tree leaves extraction), these annotations make
it possible to type a filter for which there is no best regular output
type. We will then show that this algorithm is sound and complete
with respect to the type-system.

Since the algorithm needs to work on finite representations of
(possibly infinite) regular types, we use the classic “µ” notation to
explicit the recursive binder. µ-types are inductively generated by
the following grammar:

τ ::= µα.τ | α | b | (((τ1,,,τ2))) | τ1|||τ2 | τ1&&&τ2 | ¬¬¬τ | Empty | Any
We use Greek letters τ , σ to range over µ-types and to distinguish
them from regular tree types; recursion variables are ranged over
by α, β,. . . . Contractivity translates into requiring that every oc-
currence of a type variable is separated from its binder by at least
one product constructor. Regular trees and explicit binders are two
equivalent representations for types (cf. [12, 6]). It is well-known
that every recursive term (“µ-term”) represents a recursive tree
and, conversely, we can choose a canonical µ-term that represents
a regular tree.

Definition 8 (Infinite expansion). Given a recursive term τ we note
[τ]∞ its infinite expansion.

Definition 9 (Recursive folding). Given a regular tree t we note
[t]µ the equivalent recursive term with the least number of vari-
ables.

We extend []µ and []∞ to typing environments in a straightfor-
ward way by applying the aforementioned functions to each type in
the image of the environment. These two functions ensure that τ/p,
the maximal product decomposition, and the subtyping relation are
well-defined for µ-types, as well. We extend the definition of filters
with annotations:

Definition 10 (Annotated filters).
f ::= e | p→→→ f | f;;;f | (((f,,,f))) | f|||f unchanged

| fE annotation

7 2008/6/16

Structural rules

(a-expr) typeA (Γ, e) = σ
Γ,∆ `A e(τ) = σ

(a-prod)

i = 1..rank(τ)
j = 1..2

Γ,∆ `A fj(M
i
j(τ)) = σij

Γ,∆ `A (((f1,,,f2)))(τ) =
_
i

(((σi1,,,σ
i
2)))

(a-patt) Γ ∪ τ/p,∆ `A f(τ) = σ τ ≤ *p + &&& * f+
Γ,∆ `A (p→→→ f)(τ) = σ

(a-union)

τ ≤ *f1 + ||| * f2+
τ1 = τ &&& * f1+
τ2 = τ &&&¬¬¬ * f1+

Γ,∆ `A f1(τ1) = σ1

Γ,∆ `A f2(τ2) = σ2

Γ,∆ `A (f1|||f2)(τ) =
_

{i|τi 6=Empty}

σi

(a-comp)

Γ,∆ `A f1(τ) = σ1

Γ,∆ `A f2(σ1) = σ2

τ ≤ *f1+
σ1 ≤ *f2+

Γ,∆ `A (f1;;;f2)(τ) = σ2

Memoization rules

(a-base-rec) (f, τ, σ) ∈ ∆
Γ,∆ `A f(τ) = σ

(a-unfold-rec)

(f, µα.τ, β) /∈ ∆ and β fresh var.
Γ,∆ ∪ {(f, µα.τ, β)} `A f(τ [α← µα.τ]) = σ

Γ,∆ `A f(µα.τ) = µβ.σ

(a-unfold-non-rec)

(f, τ, α) /∈ ∆ and α fresh var.
Γ,∆ ∪ {(f, τ, α)} `A f(τ) = σ

Γ,∆ `A f(τ) = µα.σ

(a-annot)

σ = choose(E) and (f, τ, σ) /∈ ∆
Γ,∆ ∪ {(f, τ, σ)} `A f(τ) = σ′ σ′ ≤ σ

Γ,∆ `A fE(τ) = σ

Figure 5. Deduction system associated with FA

An annotation is a set E of (µ-)types in which the algorithm will
pick an output type for the annotated filter. The algorithm is de-
scribed in Figure 5 as a set of deduction rules for the judgement
Γ,∆ `A f(τ) = σ, where Γ denotes a type environment for pat-
tern variables and ∆ is a memoization environment (which ensures
the termination of the algorithm), that is, a set of triples (f, τ, σ)
where f is a filter and τ and σ types (intuitively, they respectively
are an input and an output type). We assume that the choose() func-
tion in rule (a-annot) always chooses the right type in the annota-
tion set if it exists. In practice, this is implemented by backtracking,
the algorithm trying all the annotations one after the other until a
valid one is found (or a type error is raised). We chose to hide
this aspect of the algorithm in order not to clutter it with tedious
backtracking rules and environments. The order of application of
the rules is the following: one must apply a memoization rule (if
possible) before a structural rule, and a memoization rule must be
followed by a structural rule (if the rule is not terminal). This order
of evaluation is important, since it ensures the termination of the
algorithm.

The only rule which requires some attention, since it does
not derive directly from the non-algorithmic type system is the
(a-annot) rule which cope with all the cases that made the type
system behave non-algorithmically. Recall that there are two such
cases. The first is the subsumption rule (t-subs), where the system
“guesses” the output super-type. This is reflected in the (a-annot)
rule by checking that the output type of the filter is a subtype of the
annotation σ. Secondly, and most importantly, in rule (t-comp) the
intermediary type of the composition is also guessed. As we dis-
cuss hereafter, we require that in that case, the left-hand side filter
of a composition is annotated. To be complete, it should be noted
that, given a derivation in the non algorithmic type system, every
instance of the rule (t-subs) can be erased, except for those occur-
ing at the left-hand side of a composition. This situation is akin to
the one of the simply typed lambda calculus with subtyping, where
every use of the subsumption rule can be erased, but those used to
type the application of a function.

5.2 Properties
Termination and soundness of the algorithm are both straightfor-
ward to state (and prove):

Theorem 5 (Termination of the typing algorithm). For all filters f
and types τ , the typing algorithm for f(τ) terminates.

Theorem 6 (Soundness of the typing algorithm). For all Γ,∆, f, τ,
and σ, if Γ,∆ `A f(τ) = σ, then Γ ` f([τ]∞) = [σ]∞.

Showing completeness is more challenging, though. Indeed, we
have seen that some filters do not have a unique output type for a
given input type and that, in such cases, the filter must be annotated
for the algorithm to succeed. The notion of completeness we choose
is the following. Let us consider Γ, f , t. If there exists a regular
type s (and hence a regular derivation) such that Γ ` f(t) = s,
and if we annotate f with types coming from the derivation of this
judgement, then the algorithm finds a type such that: [Γ]µ,∅ `A

f([t]µ) = [s]µ (the algorithm works on explicit recursive types
instead of regular trees for the system, hence the []µ). Informally,
we state that if we “guide” the algorithm in the good direction, it
will find the expected type. Of course such an algorithm is useful in
practice only if the annotations required are minimal, that is if the
programmer does not have to “guess too much”. We now formalise
all these notions and state the completeness theorem. We proceed in
three steps. First, we highlight the cases where the algorithm fails,
and more precisely, fails due to a lack of annotations (or to incorrect
annotations). Then, we give a sufficient condition on annotations
such that a filter annotated in this way can either be typed or be
detected as ill-typed. Finally, we state the completeness theorem,
ensuring that if a filter is well typed in the type system, with respect
to a certain input type t, then the algorithm succeeds in typing the
filter, provided that the latter is sufficiently annotated. Let us start
by pinpointing the cases where the algorithm fails:

Theorem 7 (Failure cases). The algorithm fails if and only if at
least one of the following three conditions holds:

i. One of the side conditions for the current rule is not true (e.g.
the input type of a product filter is not a product).

ii. One of the meta four operations τ/p, or M(τ), or testing
for equality, or subtyping is applied to a type τ such that
FV(τ) 6=∅.

iii. The choice operator cannot find a suitable type amongst the
given annotations for a certain filter fE.

8 2008/6/16

Case (i.) means that the term is ill-typed and the algorithm fails
with a type error. In case (ii.), the algorithm is deconstructing a type
which contains free recursion variables, that is, a type which it is
currently computing. It therefore fails due to a lack of information
and more annotations are required. In case (iii.) the annotation
provided are either insufficient or wrong. We want to avoid cases
(ii.) and (iii.) while keeping the annotations as minimal as possible.

The intuition, that we formalise hereafter, is that the only case
where such a problem occurs is when, in a composition filter, the
first filter is “recursive” (hence necessitating the introduction of
a type variable to express its output type) and the second filter
deconstructs its input (which in that case might be a type with open
variables). This is the only case where annotations are needed and
we will see in Section 6 that, in practice, these annotations are not
cumbersome. We can now formalise the intuition mentioned above:

Definition 11 (Deconstructing subterms). A filter f deconstructs
its input if and only if f is not an expression filter. A recursive filter
f is a filter such that the associated regular tree is not finite. Let f
be a filter. We define the set of all deconstructing sub-terms of f ,
noted Af , as the set of all sub-terms g of f such that g ≡ f1;;;f2
where f1 is recursive and f2 deconstructs its input.

We can now prevent the algorithm from failing in case (ii.) by
requiring that in all deconstructing sub-terms of a filter the leftmost
one is annotated:

Lemma 2 (Mandatory annotations). Let τ be an input type and
f a filter such that for all f1;;;f2∈Af , f1 ≡ f ′1E for some E. For
all type τ ′ occurring in the derivation of Γ,∆ `A f(τ) = σ, if
FV(τ ′) 6= ∅, then τ ′ is never deconstructed.

Now that we know the only places where it may be necessary to
annotate a filter, it remains define how to annotate these places, that
is to find the correct annotations and thus avoid the last case (iii.) of
failure. Once done, it remains nothing but to state the completeness
theorem. To have the right annotations for a well-typed filter it
suffices to pick their types in the corresponding regular derivation
of the type system. This is formally defined by the following t-
labelling procedure

Definition 12 (t-labelling). Let f be a filter and t a type such that
a regular derivation for Γ ` f(t) = s exists, for some type s. Let
Af = {f1

1 ;;;f1
2 , . . . , f

n
1 ;;;fn2 }, we call Ei the set of all the output

types for f i1 in this derivation. A t-labelling of f , noted [f]t, is
obtained from the filter f by replacing all its f i1;;;f i2 sub-terms in Af
by the corresponding f i1Ei

;;;f i2.

It is important to note that thanks to the regularity of the deriva-
tion of Γ ` f(t) = s, all the sets Ei mentioned in the definition are
finite. We can now use Definition 12 to state the completeness of
the algorithm with respect to t-labellings.

Theorem 8 (Completeness). The algorithm given by the set of
rules FA is complete with respect to the type system F , that is:

if Γ ` f(t) = s, then Γ,∅ `A [f]t([t]µ) = [s]µ.

6. Concrete language
6.1 Syntax
We have implemented our language into the CDuce compiler.
While efficient compilation of our language or possible syntax
enhancements are still matter of study, the type-checking algorithm
proves to be usable in practice2. In this section we give various ex-
amples of filters, to show how they can be used to implement and

2 It should be noted that this early prototype makes use of the product
decomposition operator already available inCDuce, which is not stable with
respect to subtyping but still provides type safety.

type common iterators on heterogeneous data-structures. We also
present some useful extensions to the core filter algebra presented
in Section 3.2, namely parametric filters and an XPATH encoding.
For this purpose we introduce a more declarative and concrete syn-
tax.

Definition 13 (Concrete syntax).
f ::= e | p ->f | f ;f | (f,f) | f|f unchanged
| <f f>f xml
| let filter x= f [and x= f . . .] binding
| x variable

e ::= . . . | apply f to e [where a] application
a ::= x= {τ1, . . . , τn} [and a] annotation

We use the same typesetting conventions as in Section 2 where we
also explained most of the constructions above. In particular recall
that the xml filter is just syntactic sugar over particular products.
The same syntactic sugar will also be used in patterns which, in
practice, turn out to be CDuce’s patterns. What is new here with
respect to the presentation of Section 2 is the construct apply_to
which can now specify an optional (as indicated by the BNF brack-
ets) annotation environment which associates filter variables with
sets of types (the same variable must appear at most once). There is
of course a connection between this syntax and the formal calculus
of annotated filters:

let filter f = f
apply g to v where f = {t1, . . . , tn}

is equivalent to: g[f ← f{t1,...,tn}](v).

6.2 Examples
We now describe some examples of increasing complexity.
Pattern matching: the customary match with (or Haskell’s case
of) construct can be thought of as syntactic sugar for an equivalent
filter. For instance the pattern on the left-hand side becomes the
filter on the right-hand side:

match x with
| [Int∗] & y -> length y
| Int -> string_of x

let filter mymatch =
x -> ([Int∗] &y -> length y

| Int -> string_of x)
apply mymatch to x

Type precision is retained: for both expressions the output type of
mymatch applied to e.g. [Int ∗]|||Int is Int|||String. Note how-
ever that the output type of mymatch applied to a value of type
Int is just String; such a precision is possible thanks to the rule
a-union (or t-union) which discards output types corresponding to
empty input types (here, if the input is an Int, then the [Int ∗]
branch is never chosen, hence the type of its result is not taken into
account whilst computing the output type).
Map: We have already seen in Section 2 the concatenation filter. It
is also possible to define a generic map filter over lists like this:
let filter map =(f , l) -> (l;

let filter aux_map =
[] -> []

| (x -> f x , aux_map)
)

let convert (Int -> String ;
String ->Int) =

| Int & i -> string_of_int i
| s -> int_of_string s

apply map to (convert , [1 2 "17" "1"])
val − : [String String Int Int]=["1" "2" 17 1]

convert is defined in CDuce as an overloaded function that trans-
forms integers into strings and vice versa. The map filter behaves
like the map function available in many functional languages but,
unlike these, our map can be applied to heterogeneous lists and the
overloaded behaviour of the “mapped” function is taken into ac-
count, as shown by the static type returned by the system (the line
starting with “val - :” is the output of the interactive version of
our prototype and consists of the statically computed type followed
by the result).

9 2008/6/16

Comparison with Hosoya’s filters: The example in Figure 1 is a
typical example of tree mapping, the kind of transformation that
can be programmed by Hosoya’s regular expression filters [14]. In
order to illustrate how different our and Hosoya’s typing disciplines
are, even for the cases that can be handled also by Hosoya’s filters,
let us simplify the example and consider the following filter:

let filter replace_a = [] -> []
| ((<a>[] -> <d>[] | x -> x) , replace_a)

This filter simply takes a sequence of XML elements and re-
places every <a> tag by a <d> tag, leaving the other tags un-
changed via the identity filter x->x. In Hosoya’s framework, ev-
ery single expression filter (here the rightmost x) is typed only
once. Its type must thus reflect all the possible values this expres-
sion may evaluate to. If this filter is applied to a value of type
[<a>[] [] <c>[] <d>[]], then x can be bound to values of
type [], <c>[], or <d>[], which in Hosoya’s system yields the
output type [<d>[] (<b|c|d>[]) (<b|c|d>[]) (<b|c|d>[])].
In our system instead thanks to rule(s) (∗-prod) the same expres-
sion may be typed several times under different hypothesis (recall
that sequences are nested pairs) which in this case yields that the
output type is the expected [<d>[] [] <c>[] <d>[]]. Hosoya
justifies his typing policy by stressing that in some cases there is no
lower bound to the output type3 and that using the union of all types
leads to a clean specification of the algorithm and to a simple notion
of completeness. This is true, but the loss of typing precision that
this choice implies seems to us a too high price to pay: filters such
as x→→→ x are in practice used almost everywhere, since they define
a default behaviour in transformations and we cannot afford to lose
precision by using them. The solution we retain is to deduce some
particular type which is always more precise than taking the union
of all possible types for a given expression and which we claim to
be in practice precise enough for common transformations.
Flattening: To illustrate the use of annotations we define a filter
for unbounded flattening of XML elements, that is, a filter that ac-
cepts a sequence of arbitrary nested XML elements and returns the
sequence of all these elements:

let filter flatten =
[] -> []

| (x,_) -> ((<id id> flatten , flatten);
((<_>y,z)->((x,y), z);concat))

| (id , flatten)

If the argument is an empty sequence, then the filter returns the
empty sequence. If the argument is a sequence with an XML ele-
ment as head, then it captures the head (in x), recursively flattens
the children and the tail of the list, captures both results respectively
in y and z, and concatenates everything into a list. Finally if the first
element is not an XML element, then the filter just flattens the tail.
If we apply the filter flatten to an expression mytree of type Recipe
defined in Figure 1, then we need to suggest an approximation:

apply flatten to [mytree]
where flatten = { [(Item|Recipe|Enumerate|Itemize|Char)∗] }

The type algorithm checks that the result has the type specified in
the annotation.
Parametric filters: As we have previously seen with the map ex-
ample, filters allow one to iterate a transformation over a given
input. Usually, the transformation is given by a set of branches,
that is an alternation of filters of the form:

p1->e1|. . .|pn->en
The programmer here is left with two choices. If one encapsulates

3 Even the simple filter x→→→ (x, x) cannot be typed precisely when applied
to Int since its most precise type is the infinite union of all pairs (n, n) for
n ∈ N (our system instead deduces (((Int,,,Int))))

the code of the transformation into a function, as we did with the
map example, one has to annotate this function. On the other hand,
one can choose to inline the transformation in the map filter, thus
relying on the type inference algorithm to infer a precise type.
However, this is clearly bad for modularity, as the iterating part of
the map filter has to be duplicated over and over for every new map
defined. To solve this issue, we introduce, parametric filters. These
are filters which take other filters as argument and allow one, for
instance, to define iterators taking a transformation as parameter.
For instance:

let filter map f =
[] -> []
| (f , map)

;;
let filter g = x -> x+1
;;

let filter h = x&Int ->−x
| x&Bool ->not x

;;
apply (map g) to [1 2 3];;
apply (map h) to [1 ‘true];;

Such filter should not be seen as true “higher-order filters” since
they merely consist in replacing the place-holder names in the def-
inition (f in our example) with the body of the argument filters (g
and h) and typing the resulting filter as a whole. In this respect,
they are reminiscent of Wadlers higher-order macros, which were
introduced to encode higher-order transformation in the context of
deforestation (see [29]).
XML idioms: We can now show how to encode (descending)
XPATH expressions into filters. In a nutshell, XPATH expressions
select nodes in an XML tree. For instance, the expression “//a/b”
selects all the nodes tagged which are below a node tagged
<a>, which can itself be at any depth in the input document. This
XPATH expression is composed of two steps, //a and /b. // repre-
sent the descendant-or-self axis and / stands for child axis.
A constraint given by the XPATH specification [31] is that the re-
sult is an ordered set, meaning that nodes must occur in document
order and without any duplicates. This means that a compositional
semantics of steps is not sufficient to account for the XPATH speci-
fication. Let us consider the following simple document:

<a>[1 <a>[2]]
and the path expression:

//a//a
If we try to apply the XPATH expression, step by step, we obtain:
1. //a applied to <a>[1 <a>[2]] returns [<a>[1 <a>[2]]

<a>[2]]. Indeed, the first node has tag <a> and so does its only
child, hence both appear in the result.

2. To this intermediary result, we apply //a again and obtain:
[<a>[1 <a>[2]] <a>[2] <a>[2]], the first two elements
coming from //a applied to <a>[1 <a>[2]] and the third
one coming from //a applied to <a>[2].

The final result does not comply with the XPATH specification since
the sub-tree <a>[2] is duplicated. To circumvent this issue, the
specification recommends having a unique node id for every node
in a document, thus allowing one to filter out the results so as to
eliminate duplicates and order the result set according to the node
id. Unfortunately, this requires the host language to take node ids
into account in its low-level representation of XML data. This is
not the case of e.g. XDuce, CDuce but also the SYB+XPATH ex-
periment ([19]). Indeed, these implementations rely on much sim-
pler —persistent— data-structures to represent XML documents.
Consequently, these languages provide some kind of hard-coded
combinators, such as single / and //, but do not allow one to
write fully XPATH compliant expressions. Furthermore, their typ-
ing is far from being precise. In the case of CDuce, the output type
will be for instance, [<a>[Any*]*] and in the case of SYB, the
XML type will be encoded by using Haskell type classes, with the
shortcomings we discussed in our Introduction. On the contrary,
filters allows us to encode a non trivial subset of forward XPATH

10 2008/6/16

1

1,2

1,3

`a

`b

`a

`a

_

_

_

let filter f1 =
<(‘a ->‘a)> I_f12;<_>x ->x

| <(x ->x)> I_f1;<_>x ->x
| _ -> []

and filter f12 =
<(‘a ->‘a)> I_f12; <_> x -> x
| res ->

<(‘b ->‘b)>I_f13; <_> x -> (res , x)
| <(x ->x)> I_f1; <_> x ->x
| _ -> []

and filter f13 =
<(‘a ->‘a)> I_f12; <_> x -> x

| <(x ->x)> I_f1; <_> x ->x
| _ -> []

and filter I_f1 =
[] -> []
| (f1 , I_f1);concat

. . .

Figure 6. DFA encoding the //a/b expression

expressions multiple steps composed of the axes: self, child,
descendant-or-self and descendant. The use of CDuce pat-
terns instead of simple tag name test allows us to encode a wide
range of XPATH predicates. Finally, an ad-hoc typing algorithm al-
lows us to compute a precise approximation of the output type au-
tomatically, thus relieving the programmer from writing any type
annotation. Since we do not have enough space to detail the full
encoding and typing algorithm, we illustrate them with a short ex-
ample. Let us consider the XPATH expression “//a/b”. The idea
is to see this path expression as a regular expression on paths in
the input document and encode the corresponding word automaton
into a set of mutually recursive filters. The resulting set of filters is
given in Figure 6 together with the corresponding DFA.

While this set of filters seems complicated, it is nothing but the
deterministic finite word automaton recognizing the regular expres-
sion a*b. The fi’s filters correspond to the states of the DFA. The
transitions are encoded by the branches of each fi filter. Finally,
each I_fi is a simple auxiliary filters which iterates a given fi on a
sequence of XML values and concatenates the intermediate results
(we only gave the code for I_f1, the others being similar). As we
see in f1, if the input tag is an <a>, then the we evaluate the filter
I_f12 which iterates f12 on every child of the input value. Like-
wise, in f12, if the input tag is a , then we iterate f13 on every
child of the current input. However, since this transition leads to
the accept state f13, we memorize the current input in the variable
res which we return as part of the result. This encoding allows us
to ensure both the ordering and the unicity of the element in the
result set. Another point of interest is that, despite the fact that the
recursive calls to the fi’s and I_fi’s appear on the left-hand side of a
composition and thus must be annotated, they all require the same
annotation. The complete description of the annotation inference
process, in the particular case of XPATH, can be found in Chapter 7
of the second author’s PhD thesis. Let us wrap it up in a final ex-
ample:
type doc = <a>[(doc | [<c>[] ∗])∗]
let d:doc = <a>[[] [<c>[]] <a>[[<c>[] <c>[]]]]

apply //a/b to d;;
val d : [[<c>[]∗]∗]= [[<c>[]][<c>[] <c>[]]]

As we can see, the order and unicity of the elements in the
result are respected and the typing is more precise than a generic
[Any*].

7. Related work
There exist various attempts to mix XML types and parametric
polymorphism. The parametric polymorphism currently available
in XDuce, mixes explicit type annotations with well-localised type
reconstruction [15]. Of similar flavour, but following a completely
different approach, is the work by Vouillon [28] where explicit
polymorphism is designed so as that pattern matching does not
break parametricity. A different approach consisting in the “coex-
istence” or juxtaposition of both XML and ML type systems in a
same language [9] is available and actively maintained for OCaml.
While this eases the writing of polymorphic functions on XML val-
ues, this solution does not solve the problem of writing precisely
typed operators. Indeed, both type systems (ML and XDuce) are
kept apart, and a value is either seen as on the ML side —and
can then be polymorphic— or on the XDuce side —and can then
be precisely typed (with XDuce pattern matching for example)—.
Finally, in the same spirit of combining two type systems, a more
general approach was defined by Sulzmann and Lu [26] for Haskell
where the authors mix Haskell type classes with XDuce regular ex-
pression types into a system called XHaskell [27]. They provide a
semantics via a type-directed rewriting of the language into System
F. While the decidability of the general version is not clear, some
restrictions make it tractable and lead to an implementation of this
work using the GHC Haskell compiler as backend. Type safety is
granted, but the programmer is required to heavily annotate the
code: in particular, every polymorphic variable that is instantiated
with a regular expression type has to be explicitly annotated.

A common trait in all these approaches is that a polymorphic
value either is never visited (through pattern matching for exam-
ple) and so is never precisely typed, or if it is visited then it loses
its polymorphic nature and becomes monomorphic and precisely
typed. While this eases the writing of generic function over XML
values it does not address the problem we study here, that is to have
both precision and polymorphism.

For what concerns restricted iterators for XML, the literature is
quite rich. In the framework of our work the most interesting tech-
niques appear to be the k-pebble tree transducers [23], the macro
tree transducers (MTTs) [21], and Hosoya’s regular expression fil-
ters [14]. For macro tree transducers (and k-pebble tree transduc-
ers) the general approach is to use the so-called backward type
inference, in which the output type of the operators is given by
the programmer, and the biggest valid input type is deduced by
the system. This clearly has the advantage of solving the issue of
non-regular results, since the inverse image of a regular tree lan-
guage by an homomorphism is a regular tree language (while the
direct image in general is not regular). However, the good theoret-
ical properties of backward type checking are mitigated by some
challenging issues. First of all, the complexity of backward type
checking is still a concern. Some advances have been made on this
topic, most notably in [22], where the complexity is reduced by
only allowing a limited number of copies of the input, and in [11]
where an efficient implementation coupled with algorithmic opti-
mizations make it possible to type-check small transformations on
real life types (such as XHTML) in a reasonable time. It is never-
theless still unclear how a backward type inference language can
be integrated into a more expressive language, which is needed
if one wants to provide a full-fledged language with precise XML
typing. Regular expression filters, instead, provide quite a natural
way of writing XML transformations and are implemented in the
current XDuce distribution, but they are restricted to map-like op-
erators. In particular, they cannot express XPATH-like expressions
nor fold-like functions over sequences, nor can they perform non-
local transformations. Moreover, even in the cases they can handle,
we saw in Section 6.2 that while they enjoy a property of local pre-

11 2008/6/16

cision (as defined by Hosoya) they still remain imprecise for some
common transformations.

We would also like to emphasize that, to the best of our knowl-
edge, this work is the first to provide precise typing of such XML
transformations, that was tested on real life types (such as the
XHTML or DocBook DTDs) and non-trivial programs (hundreds
of lines of code with heavy use of filters). Indeed, Hosoya’s regular
expression filters, which are implemented in XDuce, do no match
the expressiveness and typing precision of our filters and MTT-
based solutions, while theoretically appealing, still lack an usable
implementation.

8. Conclusion
In this paper we presented a small language of combinators we
dubbed filters. This specific set of combinators allows us to write
and type many XML transformations and, more generally, to pre-
cisely type the application of highly polymorphic iterators over
complex data structures. While type inference is not completely
automatised in some cases (some of which, we admit, are truly of
use for XML transformations), we have precisely pointed out the set
of filters for which annotations may become necessary and verified
that, in practice, those annotations were very light. We believe our
language constitutes a good compilation target for higher-level and
more declarative idioms such as XPATH, fragments of XSLT, or
more functional iterators such as map and fold. This small alge-
bra gives us a broad range of perspectives for future work. First of
all, at the typing level some work is yet to be done. Heuristics can
be used to guess the annotations automatically, based on the con-
text of the filter for example, or by giving a regular approximation
to non-regular equations. In this perspective the work of Neder-
hof [24] constitutes an important base to start from. Formalising
such heuristics seems however challenging.

Changing the target language and pattern algebra has a direct
impact on the typing of the filters. Embedding our combinators
in an object-oriented language, for example, should constitute an
interesting and potentially fruitful extension, the mainstream lan-
guages being known for lacking such polymorphic features (see
the recently added generics in Java and C]). Of course, if we aim
to have filters be used for XML processing in production code, then
efficient compilation of filters is mandatory. Our algebra permits to
study algebraic optimisations via term rewriting such as, say, in-
terleaving a filter and a pattern to avoid two traversals of a data
structure. Furthermore in this area we can surely benefit from the
impressive amount of previous work done on the compilation of
tree automata and tree-transducers in general.

While we focussed our presentation on a simple “core” lan-
guage, we want to stress that several useful extra features can be
found in the prototype, which are obtained either by new syntac-
tic sugar or by minimal extensions to the core algebra. In addi-
tion to parametric filters and the XPATH encoding we presented
in Section 6, our implementation supports, for instance, regular-
expression like syntax (à la Hosoya) to provide a filter such as
[(x -> x+1)*] as well as some typing extensions which al-
low one to type simple, yet useful, composed filters without anno-
tations.

References
[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM

Trans. on Programming Languages, 15(4):575–631, 1993.

[2] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyễn. Type-based
XML projection. In VLDB 2006, pages 271–282, 2006.

[3] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric
general-purpose language. In ICFP ’03, pages 51–63, 2003.

[4] V. Benzaken, G. Castagna, and C. Miachon. A full pattern-based
paradigm for XML query processing. In PADL 05, number 3350 in
LNCS, pages 235–252, 2005.

[5] G. Castagna and A. Frisch. A gentle introduction to semantic
subtyping. In Proc. of PPDP ’05 (full version) and ICALP ’05,
LNCS n. 3580, (summary), 2005. Joint ICALP-PPDP keynote talk.

[6] B. Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, 25:95–169, 1983.

[7] W3C: DTD specifications. http://www.w3.org/TR/REC-xml/#dt-
doctype, 2006.

[8] A. Frisch. Regular tree language recognition with static information.
In Proc. IFIP Conf. on Theor. Comput. Sci. (TCS). Kleuwer, 2004.

[9] A. Frisch. OCaml + XDuce. SIGPLAN Not., 41(9):192–200, 2006.

[10] A. Frisch, G. Castagna, and V. Benzaken. Semantic Subtyping. In
LICS ’02, pages 137–146. IEEE Computer Society Press, 2002.

[11] Alain Frisch and Haruo Hosoya. Towards practial typechecking for
macro tree transducers. In DBPL, 2007.

[12] V. Gapeyev, M. Levin, and B. Pierce. Recursive subtyping revealed.
Journal of Functional Programming, 12(6):511–548, 2003.

[13] V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. The Xtatic
experience. In PLAN-X, 2005.

[14] H. Hosoya. Regular expression filters for XML. In Programming
Languages Technologies for XML (PLAN-X), pages 13–27, 2004.

[15] H. Hosoya, A. Frisch, and G. Castagna. Parametric polymorphism
for XML. In POPL ’05, pages 50–62, 2005.

[16] H. Hosoya and B.C. Pierce. Regular expression pattern matching for
XML. In POPL ’01, 2001.

[17] H. Hosoya and B.C. Pierce. XDuce: A typed XML processing
language. In ACM Trans. on Internet Tech., pages 117–148, 2003.

[18] H. Hosoya, J. Vouillon, and B. Pierce. Regular expression types for
XML. In ICFP ’00, volume 35(9) of SIGPLAN Notices, 2000.

[19] R. Lämmel. Scrap your boilerplate with XPath-like combinators. In
POPL’07, Proceedings. ACM Press, January 2007.

[20] M.Y. Levin and B.C. Pierce. Type-based optimization for regular
patterns. In DBPL ’05, August 2005.

[21] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type checking
with macro tree transducers. In ACM PODS, pages 283–294, 2005.

[22] S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in
polynomial time. In ICDT, pages 254–268, 2007.

[23] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.
J. Comput. Syst. Sci., 66(1), 2003.

[24] M.-J. Nederhof. Practical experiments with regular approximation of
context-free languages. Computat. Linguistics, 26(1):17–44, 2000.

[25] OASIS Committee Specification: Relax-NG. http://relaxng.org/spec-
20011203.html, 2001.

[26] M. Sulzmann and K. Zhuo Ming Lu. A type-safe embedding of
XDuce into ML. El. Notes Theor. Comp. Sci., 148(2):239–264, 2006.

[27] M. Sulzmann and K. Zhuo Ming Lu. XHaskell. In PLAN-X, 2006.

[28] J. Vouillon. Polymorphic regular tree types and patterns. In POPL,
pages 103–114, 2006.

[29] Philip Wadler. Deforestation: Transforming programs to eliminate
trees. Theor. Comput. Sci., 73(2):231–248, 1990.

[30] W3C: XML Schema. http://www.w3.org/XML/Schema, 2004.

[31] W3C: XML Path Language Ver. 1.0. http://www.w3.org/TR/xpath,
1999.

12 2008/6/16

