*

o

Typed lterators for XML
Giuseppe Castagna* Kim Nguyén®
ICFP 2008, Victoria, BC, Canada
LRI, Univere Pors.Sud 11, Ovsay Fromee

1/20

Dealing with XML

XML ?

2/20

Dealing with XML

XML ?

= Tree organized data
= Pervasive (XHTML, Ajax, Web Services, ...)

2/20

Dealing with XML

XML ?

= Tree organized data
= Pervasive (XHTML, Ajax, Web Services, ...)

Types ?

2/20

Dealing with XML

XML ?

= Tree organized data
= Pervasive (XHTML, Ajax, Web Services, ...)

Types ?

= Regular tree grammars (a.k.a. regular types)
= Describe sets of documents very precisely

2/20

Dealing with XML

XML ?

= Tree organized data
= Pervasive (XHTML, Ajax, Web Services, ...)

Types ?

= Regular tree grammars (a.k.a. regular types)
= Describe sets of documents very precisely

Programs 7 (iterators)

2/20

Dealing with XML

XML ?

= Tree organized data
= Pervasive (XHTML, Ajax, Web Services, ...)

Types ?

= Regular tree grammars (a.k.a. regular types)
= Describe sets of documents very precisely

Programs 7 (iterators)

= “remove every <a> element ocurring in the input”
= “convert an xhtml document from transitional to strict

2/20

Dealing with XML

XML ?

= Tree organized data
= Pervasive (XHTML, Ajax, Web Services, ...)

Types ?

= Regular tree grammars (a.k.a. regular types)
= Describe sets of documents very precisely

Programs 7 (iterators)

= “remove every <a> element ocurring in the input”
= “convert an xhtml document from transitional to strict

2/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

3/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

= May be applied to any type of document = polymorphism

3/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

= May be applied to any type of document = polymorphism
= The output type remains precise

<foo>[a* bx] ~> <foo>[bx]

<bar>[b a* b*x] ~» <bar>[b+]

<baz>[c*x b?] ~» <baz>[c*x b?]

3/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

= May be applied to any type of document = polymorphism
= The output type remains precise

<foo>[ax bx] ~» <foo>[bx]
<bar>[b a*x bx] ~» <bar>[b+]

<baz>[c*x b?] ~» <baz>[c*x b?]

Neither parametric polymorphism (a la ML) nor regular
expression types (& la XDuce/CDuce) are up to the task

3/20

Example: List concatenation

] type of /; \ type of £, \ type of (concat ¢; £,) ‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

4/20

Example: List concatenation

]type of /4 \ type of £, \type of (concat ¢; ¢,)‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : ...

let ¢ = concat ¢; ¥, in ...

4/20

Example: List concatenation

]type of /4 \ type of £, \type of (concat ¢; ¢,)‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : o list — o list — o list

let ¢ = concat ¢; ¥, in ...

4/20

Example: List concatenation

]type of /4 \ type of £, \type of (concat ¢; ¢,)‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : « list — « list — « list
let ¢ = concat ¢; ¥, in ...
~——

must have the same type

4/20

Example: List concatenation

]type of /4 \ type of £, \type of (concat ¢; ¢,)‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : [Any*] — [Any*] — [Anyx*]

let ¢ = concat ¢; ¥, in ...

4/20

Example: List concatenation

’type of /; \ type of /> \type of (concat ¢; ¢,)‘

[Int*x] [Bool+] [Int* Bool+ |
[Int] | [Int* Char? 1] [Int+ Char? |

val concat : [Any*] — [Any*] — [Any* |

let ¢ = concat ¢; ¥/, in ...
¢ has type [Anyx*]

4/20

Example: List concatenation

]type of /4 \ type of £, \type of (concat ¢; ¢,)‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : ‘‘no type’”’

let ¢ = concat ¢; ¥, in ...

4/20

Example: List concatenation

]type of /4 \ type of £, \type of (concat ¢; ¢,)‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : ‘‘no type’”’

let { = concat {; {; in ...

type (concat A 05)

4/20

Example: List concatenation

] type of /; \ type of £, \ type of (concat ¢; £,) ‘
[Int*x] [Bool+] [Int* Bool+]
[Int] | [Int*x Char?] [Int+ Char?]

val concat : ‘‘no type’”’

let { = concat {; {; in ...

type (concat A 05)

“Execute the transformation at the type level”

4/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

e If the language is too expressive, it escapes regular types

type t = [1 | [atb]

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

e If the language is too expressive, it escapes regular types

typet = [1 | [atb]
flatten t

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

e If the language is too expressive, it escapes regular types

typet = [1 | [atb]
flatten t ~ { [a" b"] | n> 0}

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

e If the language is too expressive, it escapes regular types

typet = [1 | [atb]
flatten t ~ { [a" b"] | n> 0}

e In general there isn't a best regular approximation

[(a | b)*]
[a*x bx]
0| [a+t b+] ...

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

e If the language is too expressive, it escapes regular types

typet = [1 | [atb]
flatten t ~ { [a" b"] | n> 0}

e In general there isn't a best regular approximation

[(a | b)*]
[a*x bx]
0| [a+t b+] ...

e The language must be expressive enough to express
flattening, reversal, XPath,. ..

5/20

Computation at the type level ?

e Ensure terminations of iterators = not Turing complete
e Turing completeness is useful for non-XML computations

e If the language is too expressive, it escapes regular types

typet = [1 | [atb]
flatten t ~ { [a" b"] | n> 0}

e In general there isn't a best regular approximation

[(a | b)*]
[a*x bx]
0| [a+t b+] ...

e The language must be expressive enough to express
flattening, reversal, XPath,. ..

5/20

Contributions : Filters

Small sub-language of combinators :
e grafted into an host language

= are used to define XML transformations
= the host language is used for non-XML stuff
= implementation with CDuce as host

e can express XPath and XSLT-like transformations
e is precisely typed
e relies on some type annotations for “non-regular cases”

= annotations are sparse and well-localized
= completeness result up-to annotations

6/20

Host language

Filters : iterate expressions of the host language over a
data-structure (list, tree, XML document,. ..)

Requirements for the host language :
e type algebra with a product constructor

7/20

Filters

Definition (filter)

A filter is a regular (possibly infinite) production of

f = e (expression of the host language)
| — f (pattern)
| (f f) (product)
| f|f (union)
| fif (composition)

f(v)~r

with some restrictions

Examples

id = x— x

9/20

Examples

id = x— x

id("foo") ~»
id("foo")

9/20

Examples

id = x— x

id("foo") ~»
(x = x)("foo")

9/20

Examples

id = x— x

id("foo") ~»

.

9/20

Examples

id = x— x

id("foo") ~»

foo"

9/20

Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

bump([1 2 3]) ~»
bump((1,(2,(3,[1))))

9/20

Examples

id = x— x

bump = [1-[]
| (x = x+ 1,bump)

bump([1 2 31) ~

9/20

Examples

id = x— x

bump = [1-[]
| (x = x+ 1,bump)

bump([1 2 31) ~
(2, (3, (bump(3,[1))))

9/20

Examples

id = x— x

bump = [1-[]
| (x = x+ 1,bump)

bump([1 2 31) ~
(2,(3,4, (bump [1))))

9/20

Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

bump([1 2 31) ~
(2,3, 4, (bump [1))))

9/20

Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

bump([1 2 31) ~
(2,@3,4,1)))

9/20

Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=vy
| (z = z,aux)

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=y
| (z = z,aux)

concat(([1 2 31,[4 5])) ~
concat((1,(2,(3,[1))),(4,(5,[1)))

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=y
| (z = z,aux)
concat(([1 2 3]1,[4 5])) ~
X

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=y
| (z = z,aux)

concat(([1 2 3]1,[4 5])) ~
(1,(2,(3,[1))

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=y
| (z = z,aux)

concat(([1 2 31,[4 5])) ~
aux((1,(2,(3,[1))))

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=y
| (z = z,aux)

concat(([1 2 3]1,[4 5])) ~
(1, Caux((2, (3, 0O0N)N

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=y
| (z = z,aux)

concat(([1 2 31,[4 5])) ~
(1, (2, (aux((3, 1))

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=vy
| (z = z,aux)

concat(([1 2 3]1,[4 5])) ~
(1,(2,(3,aux [1)))

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = []—[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=vy
| (z = z,aux)

concat(([1 2 3]1,[4 5])) ~
(1,02,(3, ¥y)))))

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
aux = []—=vy
| (z = z,aux)

concat(([1 2 3]1,[4 5])) ~
(1,(2,(3,(4,(5,01)))))

(1,(2,3,L DN

(4,(5,0L 1))

9/20

Termination

Well-formedness conditions:

10/20

Termination

Well-formedness conditions:

concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)

10/20

Termination

Well-formedness conditions:

concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)

e contractivity

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)

aux = []—=vy
| (z— z,aux)

e contractivity
e |ocal recursion for the composition

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)

aux = []—=vy
| (z— z,aux)

e contractivity
e |ocal recursion for the composition

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)
e contractivity
e |ocal recursion for the composition

Example:

bad = x — (x, x);bad

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)
e contractivity
e |ocal recursion for the composition

Example:

bad = x — (x,x);bad bad(0)

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)
e contractivity
e |ocal recursion for the composition

Example:

bad = x — (x,x);bad bad((0,0))

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)
e contractivity
e |ocal recursion for the composition

Example:

bad = x — (x, x);bad bad(((0,0),(0,0)))

10/20

Termination

Well-formedness conditions:

concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)

e contractivity
e |ocal recursion for the composition

Example:

bad = x = (x,x);bad bad((((0,0),(0,0)),((0,0), (0,

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)
e contractivity
e |ocal recursion for the composition

Example:

bad = x — (x, x);bad

10/20

Termination
Well-formedness conditions:
concat = (x,y) = (x;aux)

aux = []—=vy
| (z— z,aux)

e contractivity
e |ocal recursion for the composition

Example:

10/20

Termination
Well-formedness conditions:

concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)

e contractivity
e |ocal recursion for the composition

Example:

Theorem

The evaluation of a filter on a finite value terminates.

10/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) =

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) = []

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) = 01 |

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) = T [(.)

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) = [1] (Int,)

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) = [| (Int,bump(t))

11/20

Typing example (1/2)

bump = []—=]] t = [1]|(Int,t) (= [Intx*])
| (x = x+ 1,bump)

Let us compute bump(t) :

bump(t) [1 | (Int,bump(t))

[Intx*]

11/20

Typing example (2/2)
flatten t= [| [atb]l
“flattens nested lists"

12/20

Typing example (2/2)
flatten t= [| [atb]l
“flattens nested lists"

Let us compute flatten(t):

flatten(t) =

12/20

Typing example (2/2)
flatten t= [| [atb]l
“flattens nested lists"

Let us compute flatten(t):
flatten(t) = []

12/20

Typing example (2/2)
flatten t= [| [atb]l
“flattens nested lists"

Let us compute flatten(t):

flatten(t) = []
| [ab]

12/20

Typing example (2/2)

flatten t= [| [athb]l
“flattens nested lists”

Let us compute flatten(t):

= [
| [ab]
| [aabb]

flatten(t)

12/20

Typing example (2/2)

flatten t= [| [athb]l
“flattens nested lists”

Let us compute flatten(t):

[]

flatten(t) =
| [ab]
1

[aabbl
[aaabbb]

12/20

Typing example (2/2)

flatten t= [| [athb]l
“flattens nested lists”

Let us compute flatten(t):

[]
[ab]

flatten(t) =
|
| [aabb]
|
|

[aaabbb]

12/20

Typing example (2/2)

flatten t= [| [athb]l
“flattens nested lists”

Let us compute flatten(t):

flatten(t)]

v T

[
[
[
[

PP
p o T

b]
bbbl

|
|
|
< [(alb)*]

12/20

Typing example (2/2)
flatten t= [| [atb]l
“flattens nested lists"

Let us compute flatten(t):

flatten(t)

12/20

Typing example (2/2)

flatten t= [| [athb]l
“flattens nested lists”

Let us compute flatten(t):

flatten(t)]

v T

[
[
[
[

PP
p o T

b]
bbbl

|
|
1
<[]0 [atb+]

12/20

Typing example (2/2)

flatten t= [| [athb]l
“flattens nested lists”

Let us compute flatten(t):

[]

[a b]
[aabbl
[aaabbb]

flatten(t)

|
|
1
<[]0 [atb+]

Theorem

Subject reduction for filters

12/20

Typing algorithm

e Possible to erase the subsumption rule “almost
everywhere”’
= The subsumption is only necessary to type the left-hand side

of a ;" this is where we put the annotation.

13/20

Typing algorithm

f{[a* bx] 118

e Possible to erase the subsumption rule “almost
everywhere”’

= The subsumption is only necessary to type the left-hand side
of a ;" this is where we put the annotation.

13/20

Typing algorithm

f{[a* bx] 118

e Possible to erase the subsumption rule “almost
everywhere”’

= The subsumption is only necessary to type the left-hand side
of a ;" this is where we put the annotation.

e Algorithm is sound w.r.t. the type system

13/20

Typing algorithm

f{[a* bx] 118

e Possible to erase the subsumption rule “almost
everywhere”’
= The subsumption is only necessary to type the left-hand side
of a ;" this is where we put the annotation.

e Algorithm is sound w.r.t. the type system
e Algorithm is complete up-to annotations

= “for every valid derivation in the system, | can annotate the
filter so that the algorithm find the exact same type”

13/20

Typing algorithm

f{[a* bx] 118

e Possible to erase the subsumption rule “almost
everywhere”’
= The subsumption is only necessary to type the left-hand side
of a ;" this is where we put the annotation.

e Algorithm is sound w.r.t. the type system
e Algorithm is complete up-to annotations

= “for every valid derivation in the system, | can annotate the
filter so that the algorithm find the exact same type”

13/20

Implementation and examples

Added the filters as a sublanguage of CDuce:

Definition (Concrete syntax)

f o= el|p->f|f; ;f| (f,f)]| fIf unchanged
| <f >f xml
| let filter x=f [and x=f...] binding
| x variable

e == ... |apply f to e[where a] application

a o= x={t;,...,t,} [and a| annotation

14/20

Examples (1)
Pattern matching:
match e with

| p1 -> el

| pn -> en

15/20

Examples (1)

Pattern matching:
apply (p1 -> el) | ... | (pn -> en) to e

15/20

Examples (1)

Pattern matching:

apply (pl -> el) | | (pn -> en) to e

Tree mapping:

let filter up = < (‘section -> ‘chapter
o | ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x ->x) >uplist
| x -> x
and filter uplist = [] -> [1 | (up,uplist)

15/20

Examples (1)

Pattern matching:

apply (pl -> el) | | (pn -> en) to e

Tree mapping:

let filter up = < (‘section -> ‘chapter
o | ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x ->x) >uplist
| x -> x
and filter uplist = [] -> [1 | (up,uplist)

If e: <doc>[<section>[(<subsection>[Char+]|Char)*]J+] then:
applyup to e

has type: <doc>[<chapter>[(<section>[Char+]|Char)* 1+]
15/20

Examples (2)

let filter flatten = [] -> []
| ([Any*] -> flatten, flatten);concat

| (x->x, flatten)

typet = [‘at ‘b] |

type s = [‘cs ‘d] | [‘c ‘d]

let u : t =

let v : s =

apply flatten to u where {| flatten = { [(‘al‘b)* 1 } |3}
apply flatten to v where {| flatten = { [(‘cl‘d+ 1 } |}

16/20

XPath encoding

//a/b : “returns exactly all s which are under an <a>"

17/20

XPath encoding

//a/b : “returns exactly all s which are under an <a>"
Any

(2 \
O—~0—0G

17/20

XPath encoding

//a/b : “returns exactly all s which are under an <a>"
Any\'a ‘a

Q. Q.
O A
N

Any\'a

17/20

XPath encoding

//a/b : “returns exactly all s which are under an <a>"
efaa <f2 let filter f1 =
‘a ‘b <(fa -> ‘a)> I_f12; < >x -> x
@ml@ ~a | <Cx ->x)>I_fl; <>x ->x
I _ >[I

Any\'a

and filter f12 =

<(fa -> ‘fa)> I_f12; <> x -> x

| res -> <(‘b -> ‘D)>I_£13; <_> x -> (res,x)
| <(x ->x)> I_f1; <> x ->x

| _ > [1]
and filter f13 = and filter I_f1 =
<(‘a -> ‘a)> I_f12; <> x ->x L > 1[I
| <(x -> x)> I_f1; <> x -> x | (f1,I_f1);concat

| -S> [

17/20

XPath encoding and typing

e XPath encoding:
e self, child and descendant-or-self axes
e handles some predicates by rewriting to patterns
e respects XPath semantics (document order, no
duplicates,. . .)

18/20

XPath encoding and typing

e XPath encoding:
e self, child and descendant-or-self axes
e handles some predicates by rewriting to patterns
e respects XPath semantics (document order, no
duplicates,. . .)
e XPath typing:
e Only need one annotation
e Use of an ad-hoc algorithm to compute the annotation

= Automatic type inference for a non-trivial subset of
XPath

18/20

Conclusion

19/20

Conclusion

Filters :
e provide a way to define
= expressive (CDuce iterators, XSLT, XPath,...)
= precisely typed (esp. typing products, see paper)
= modular
transformations within an host language
e implementation

= integrated with CDuce
= encoding and automatic typing of an XPath fragment
= other syntactical constructs (“parametrized filters”, ...)

19/20

Future work

e How to infer annotations in the general case 7

20/20

Future work

e How to infer annotations in the general case 7

o Efficient compilation

20/20

Future work

e How to infer annotations in the general case 7
o Efficient compilation
e Integration with other languages

20/20

Future work

e How to infer annotations in the general case 7
o Efficient compilation
e Integration with other languages

20/20

Future work

e How to infer annotations in the general case 7
o Efficient compilation
e Integration with other languages

20/20

Real typing rules

type(l,e)=s rut/pk-rf(t)=s t<lpl&]ff

ce(t)=s re(p—=1f(t)=s

n(t) ={(t1.t). ... (t1.13)} THAh(t)=s; [Fh(t)=s;

I (f1.£)(t) = Vies o (s1:52)

t< U JI11S
ti=t&1ff
to =t \Zflj I'l—fl(tl)zsl r}_fg(tg)252

I+ (filf2)(t) = \/{i|t,-7éEmpty} Si

t<f]J
S1 Szfgj /_l—fl(t):sl rl_f2(51):S2
/_I_(fl;fg)(t)ZSZ

MFe(t)=5s s <s

21/20

Typing the union
bump = []—=1]] t = [Int]|(Int,t) (=
| (x = x+ 1,bump)Int+])

22/20

Typing the union
bump = [] =] t = [Int]|(Int,t) (=
| (x = x+ 1,bump)Int+])

{x:Int}F x(Int) = Int :
oFII([])=1L] @ x—x+1(Int) = Int & F bump(t) =
gFI1=I[N([])=[] oF(x— x+ 1,bump)((Int,t)) = (Int,s
@ = bump(t) =s

With the simple typing rule:
s = [Intx]
With the precise typing rule:

c — [Tn++1 22/20

Product decomposition

In general, if t < (Any,Any), t = (t1,t1)]...|(¢],t3) for
some n.
Problem: there is more than one way to decompose t.

The decomposition affects the properties of the type-system.

23/20

Product decomposition

In general, if t < (Any,Any), t = (t1,t1)]...|(¢],t3) for
some n.

Problem: there is more than one way to decompose t.

The decomposition affects the properties of the type-system.
Consider:

f;=0.3 > Al4.7—B £,=0.4—Cl0.6 =D f=(f,F)
and the types t and s:
t =(0..3,0..4)|(4..7,0..6) s=(2.51.3)
We can prove that:
o+ f(t) = (A,C)|(B,D)

but also:

23/20

Maximal product decomposition

=N W Pbds oo N

123450

Two disjoint components:
(0..3,0..4) and (4..7,0..6).
s overlaps both.

=N WS 01O

1234507

Two non-disjoint com-
ponents: (0..7,0..4) and
(4..7,0..6). s is included
in (0..7,0..4).

24/20

