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Being both polymorphic and precise

“remove every <a> element ocurring in the input”

= May be applied to any type of document = polymorphism
= The output type remains precise

<foo>[ ax bx ] ~» <foo>[ bx ]
<bar>[ b a*x bx ] ~» <bar>[ b+ ]

<baz>[ c*x b? ] ~» <baz>[ c*x b? ]

Neither parametric polymorphism (a la ML) nor regular
expression types (& la XDuce/CDuce) are up to the task
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Example: List concatenation

] type of /; \ type of £, \ type of (concat ¢; £, ) ‘
[ Int*x ] [ Bool+ ] [ Int* Bool+ ]
[ Int ] | [ Int*x Char? ] [ Int+ Char? ]

val concat : ‘‘no type’”’

let { = concat {; {; in ...

type (concat A 05)

“Execute the transformation at the type level”
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Contributions : Filters

Small sub-language of combinators :
e grafted into an host language

= are used to define XML transformations
= the host language is used for non-XML stuff
= implementation with CDuce as host

e can express XPath and XSLT-like transformations
e is precisely typed
e relies on some type annotations for “non-regular cases”

= annotations are sparse and well-localized
= completeness result up-to annotations
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Host language

Filters : iterate expressions of the host language over a
data-structure (list, tree, XML document,. .. )

Requirements for the host language :
e type algebra with a product constructor
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Filters

Definition (filter)

A filter is a regular (possibly infinite) production of

f = e (expression of the host language)
| — f (pattern)
| (f f)  (product)
| f|f (union)
| fif (composition)

f(v)~r

with some restrictions
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Examples

id = x— x

bump = [] =[]
| (x = x+ 1,bump)

concat = (x,y) = (x;aux)
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Termination
Well-formedness conditions:

concat = (x,y) = (x;aux)
aux = []—=vy
| (z— z,aux)

e contractivity
e |ocal recursion for the composition

Example:

Theorem

The evaluation of a filter on a finite value terminates.
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“flattens nested lists”

Let us compute flatten(t):

[]
[ ab]

flatten(t) =
|
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|
|
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Typing example (2/2)

flatten t= [ | [athb]l
“flattens nested lists”

Let us compute flatten(t):

flatten(t) ]

v T

[
[
[
[

PP
p o T

b ]
bbbl

|
|
|
< [ (alb)* ]
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Typing example (2/2)

flatten t= [ | [athb]l
“flattens nested lists”

Let us compute flatten(t):

[]

[ a b ]
[aabbl
[aaabbb]

flatten(t)

|
|
1
<[]0 [atb+ ]

Theorem

Subject reduction for filters
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Implementation and examples

Added the filters as a sublanguage of CDuce:

Definition (Concrete syntax)

f o= el|p->f|f; ;f| (f,f)]| fIf unchanged
| <f >f xml
|  let filter x=f [ and x=f...] binding
| x variable

e == ... |apply f to e[ where a] application

a o= x={t;,...,t,} [ and a| annotation

14/20



Examples (1)
Pattern matching:
match e with

| p1 -> el

| pn -> en
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Examples (1)

Pattern matching:

apply (pl -> el) | | (pn -> en) to e

Tree mapping:

let filter up = < ( ‘section -> ‘chapter
o | ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x ->x ) >uplist
| x -> x
and filter uplist = [] -> [1 | (up,uplist)

If e: <doc>[ <section>[ (<subsection>[Char+]|Char)* ]J+] then:
applyup to e

has type: <doc>[ <chapter>[ (<section>[Char+]|Char)* 1+ ]
15/20



Examples (2)

let filter flatten = [] -> []
| ([Any*] -> flatten, flatten);concat

| (x->x, flatten)

typet = [ ‘at ‘b ] |

type s = [ ‘cs ‘d] | [‘c ‘d]

let u : t =

let v : s =

apply flatten to u where {| flatten = { [ (‘al‘b)* 1 } |3}
apply flatten to v where {| flatten = { [ (‘cl‘d+ 1 } |}

16/20
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XPath encoding

//a/b : “returns exactly all <b>s which are under an <a>"
Any\'a ‘a

Q. Q.
O A
N

Any\'a
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XPath encoding

//a/b : “returns exactly all <b>s which are under an <a>"
efaa <f2 let filter f1 =
‘a ‘b <(fa -> ‘a)> I_f12; < >x -> x
@ml@ ~a | <Cx ->x)>I_fl; <>x ->x
I _ >[I

Any\'a

and filter f12 =

<(fa -> ‘fa)> I_f12; <> x -> x

| res -> <(‘b -> ‘D)>I_£13; <_> x -> (res,x)
| <(x ->x)> I_f1; <> x ->x

| _ > [1]
and filter f13 = and filter I_f1 =
<(‘a -> ‘a)> I_f12; <> x ->x L > 1[I
| <(x -> x)> I_f1; <> x -> x | (f1,I_f1);concat

| -S> [

17/20



XPath encoding and typing

e XPath encoding:
e self, child and descendant-or-self axes
e handles some predicates by rewriting to patterns
e respects XPath semantics (document order, no
duplicates,. . .)
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XPath encoding and typing

e XPath encoding:
e self, child and descendant-or-self axes
e handles some predicates by rewriting to patterns
e respects XPath semantics (document order, no
duplicates,. . .)
e XPath typing:
e Only need one annotation
e Use of an ad-hoc algorithm to compute the annotation

= Automatic type inference for a non-trivial subset of
XPath
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Conclusion

Filters :
e provide a way to define
= expressive (CDuce iterators, XSLT, XPath,...)
= precisely typed (esp. typing products, see paper)
= modular
transformations within an host language
e implementation

= integrated with CDuce
= encoding and automatic typing of an XPath fragment
= other syntactical constructs (“parametrized filters”, ...)
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Future work

e How to infer annotations in the general case 7
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Real typing rules

type(l,e)=s rut/pk-rf(t)=s t<lpl&]ff

ce(t)=s re(p—=1f(t)=s

n(t) ={(t1.t). ... (t1.13)} THAh(t)=s; [Fh(t)=s;

I (f1.£)(t) = Vies o (s1:52)

t< U JI11S
ti=t&1ff
to =t \Zflj I'l—fl(tl)zsl r}_fg(tg)252

I+ (filf2)(t) = \/{i|t,-7éEmpty} Si

t<f]J
S1 Szfgj /_l—fl(t):sl rl_f2(51):S2
/_I_(fl;fg)(t)ZSZ

MFe(t)=5s s <s
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Typing the union
bump = []—=1]] t = [Int]|(Int,t) (=
| (x = x+ 1,bump)Int+])
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Typing the union
bump = [] =] t = [Int]|(Int,t) (=
| (x = x+ 1,bump)Int+])

{x:Int}F x(Int) = Int :
oFII([])=1L] @ x—x+1(Int) = Int & F bump(t) =
gFI1=I[N([])=[] oF(x— x+ 1,bump)((Int,t)) = (Int,s
@ = bump(t) =s

With the simple typing rule:
s = [Intx]
With the precise typing rule:

c — [Tn++1 22/20



Product decomposition

In general, if t < (Any,Any), t = (t1,t1)]...|(¢],t3) for
some n.
Problem: there is more than one way to decompose t.

The decomposition affects the properties of the type-system.

23/20



Product decomposition

In general, if t < (Any,Any), t = (t1,t1)]...|(¢],t3) for
some n.

Problem: there is more than one way to decompose t.

The decomposition affects the properties of the type-system.
Consider:

f;=0.3 > Al4.7—B £,=0.4—Cl0.6 =D f=(f,F)
and the types t and s:
t =(0..3,0..4)|(4..7,0..6) s=(2.51.3)
We can prove that:
o+ f(t) = (A,C)|(B,D)

but also:
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Maximal product decomposition

=N W Pbds oo N

123450

Two disjoint components:
(0..3,0..4) and (4..7,0..6).
s overlaps both.

=N WS 01O

1234507

Two non-disjoint  com-
ponents:  (0..7,0..4) and
(4..7,0..6). s is included
in (0..7,0..4).
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