
Typed Iterators for XML

Giuseppe Castagna? Kim Nguyễn♦

ICFP 2008, Victoria, BC, Canada

? PPS (CNRS), Université Paris 7, Paris, France
♦ LRI, Université Paris-Sud 11, Orsay, France

1/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . .)

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”

2/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

⇒ May be applied to any type of document = polymorphism
⇒ The output type remains precise
<foo>[a* b*] ; <foo>[b*]

<bar>[b a* b*] ; <bar>[b+]

<baz>[c* b?] ; <baz>[c* b?]

Neither parametric polymorphism (à la ML) nor regular
expression types (à la XDuce/CDuce) are up to the task

3/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

⇒ May be applied to any type of document = polymorphism

⇒ The output type remains precise
<foo>[a* b*] ; <foo>[b*]

<bar>[b a* b*] ; <bar>[b+]

<baz>[c* b?] ; <baz>[c* b?]

Neither parametric polymorphism (à la ML) nor regular
expression types (à la XDuce/CDuce) are up to the task

3/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

⇒ May be applied to any type of document = polymorphism
⇒ The output type remains precise
<foo>[a* b*] ; <foo>[b*]

<bar>[b a* b*] ; <bar>[b+]

<baz>[c* b?] ; <baz>[c* b?]

Neither parametric polymorphism (à la ML) nor regular
expression types (à la XDuce/CDuce) are up to the task

3/20

Being both polymorphic and precise

“remove every <a> element ocurring in the input”

⇒ May be applied to any type of document = polymorphism
⇒ The output type remains precise
<foo>[a* b*] ; <foo>[b*]

<bar>[b a* b*] ; <bar>[b+]

<baz>[c* b?] ; <baz>[c* b?]

Neither parametric polymorphism (à la ML) nor regular
expression types (à la XDuce/CDuce) are up to the task

3/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat :

in . . .

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : . . .

let ` = concat `1 `2 in . . .

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : α list → α list → α list

let ` = concat `1 `2 in . . .

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : α list → α list → α list

let ` = concat `1 `2︸ ︷︷ ︸ in . . .

must have the same type

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : [Any*] → [Any*] → [Any*]

let ` = concat `1 `2 in . . .

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : [Any*] → [Any*] → [Any*]

let `︸︷︷︸ = concat `1 `2 in . . .

` has type [Any*]

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : “no type”

let ` = concat `1 `2 in . . .

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : “no type”

let ` = concat `1 `2︸ ︷︷ ︸ in . . .

type (concat `1 `2)

4/20

Example: List concatenation

type of `1 type of `2 type of (concat `1 `2)

[Int*] [Bool+] [Int* Bool+]
[Int] [Int* Char?] [Int+ Char?]

...

val concat : “no type”

let ` = concat `1 `2︸ ︷︷ ︸ in . . .

type (concat `1 `2)

“Execute the transformation at the type level”

4/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete

• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations

• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]

flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t

; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete
• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [a t b]
flatten t ; { [an bn] | n ≥ 0}

• In general there isn’t a best regular approximation

[(a | b)*]
[a* b*]
[] | [a+ b+] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .

5/20

Contributions : Filters

Small sub-language of combinators :
• grafted into an host language
⇒ are used to define XML transformations
⇒ the host language is used for non-XML stuff
⇒ implementation with CDuce as host

• can express XPath and XSLT-like transformations
• is precisely typed
• relies on some type annotations for “non-regular cases”
⇒ annotations are sparse and well-localized
⇒ completeness result up-to annotations

6/20

Host language

Filters : iterate expressions of the host language over a
data-structure (list, tree, XML document,. . .)

Requirements for the host language :
• type algebra with a product constructor

7/20

Filters

Definition (filter)

A filter is a regular (possibly infinite) production of :

f ::= e (expression of the host language)
| p→→→ f (pattern)
| (((f ,,,f))) (product)
| f |||f (union)
| f ;;;f (composition)

f (v) ; r

with some restrictions

8/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

id("foo") ;
id("foo")

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

id("foo") ;
(x →→→ x)("foo")

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

id("foo") ;
x x "foo"

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

id("foo") ;
"foo" x "foo"

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

bump([1 2 3]) ;
bump((1,(2,(3,[]))))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

bump([1 2 3]) ;
(2,(bump(2,(3,[])))) x 1

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

bump([1 2 3]) ;
(2,(3,(bump(3,[])))) x 2

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

bump([1 2 3]) ;
(2,(3,(4,(bump [])))) x 3

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

bump([1 2 3]) ;
(2,(3,(4,(bump []))))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

bump([1 2 3]) ;
(2,(3,(4,[])))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
concat((1,(2,(3,[]))),(4,(5,[])))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
x x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
(1,(2,(3,[]))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
aux((1,(2,(3,[])))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
(1,(aux((2,(3,[])))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
(1,(2,(aux((3,[])))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
(1,(2,(3,aux []))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
(1,(2,(3, y))))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Examples
id = x →→→ x

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

concat(([1 2 3],[4 5])) ;
(1,(2,(3,(4,(5,[]))))) x (1,(2,(3,[])))

y (4,(5,[]))

9/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity

• local recursion for the composition

Example:

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad bad(0)

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad bad((0,0))

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad bad(((0,0),(0,0)))

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad bad((((0,0),(0,0)),((0,0),(0,0))))

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad . . .

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = []→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

bad = x →→→ (x , x);;;bad

Theorem
The evaluation of a filter on a finite value terminates.

10/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) =

[]

|

(((

Int

,,,

bump(t)

)))

≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) =

[]

|

(((

Int

,,,

bump(t)

)))

≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) = []

|

(((

Int

,,,

bump(t)

)))

≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) = [] |

(((

Int

,,,

bump(t)

)))
≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) = [] | (((

Int

,,,

bump(t)

)))

≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) = [] | (((Int,,,

bump(t)

)))

≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) = [] | (((Int,,,bump(t))))

≡ [Int*]

11/20

Typing example (1/2)

bump = []→→→ []
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) = [] | (((Int,,,bump(t))))
≡ [Int*]

11/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) =

[]
| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []

| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]

| [a a b b]
| [a a a b b b]
| . . .
≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]

| [a a a b b b]
| . . .
≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]

| . . .
≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]
| . . .

≤ []

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ [(a|b)*]

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ [a* b*]

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ [] | [a+ b+]

Theorem
Subject reduction for filters

12/20

Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [a t b]

Let us compute flatten(t):

flatten(t) = []
| [a b]
| [a a b b]
| [a a a b b b]
| . . .
≤ [] | [a+ b+]

Theorem
Subject reduction for filters

12/20

Typing algorithm

f{[a* b*]};;;g

• Possible to erase the subsumption rule “almost
everywhere”
⇒ The subsumption is only necessary to type the left-hand side

of a “;;;”: this is where we put the annotation.

• Algorithm is sound w.r.t. the type system
• Algorithm is complete up-to annotations
⇒ “for every valid derivation in the system, I can annotate the

filter so that the algorithm find the exact same type”

13/20

Typing algorithm

f{[a* b*]};;;g

• Possible to erase the subsumption rule “almost
everywhere”
⇒ The subsumption is only necessary to type the left-hand side

of a “;;;”: this is where we put the annotation.

• Algorithm is sound w.r.t. the type system
• Algorithm is complete up-to annotations
⇒ “for every valid derivation in the system, I can annotate the

filter so that the algorithm find the exact same type”

13/20

Typing algorithm

f{[a* b*]};;;g

• Possible to erase the subsumption rule “almost
everywhere”
⇒ The subsumption is only necessary to type the left-hand side

of a “;;;”: this is where we put the annotation.

• Algorithm is sound w.r.t. the type system

• Algorithm is complete up-to annotations
⇒ “for every valid derivation in the system, I can annotate the

filter so that the algorithm find the exact same type”

13/20

Typing algorithm

f{[a* b*]};;;g

• Possible to erase the subsumption rule “almost
everywhere”
⇒ The subsumption is only necessary to type the left-hand side

of a “;;;”: this is where we put the annotation.

• Algorithm is sound w.r.t. the type system
• Algorithm is complete up-to annotations
⇒ “for every valid derivation in the system, I can annotate the

filter so that the algorithm find the exact same type”

13/20

Typing algorithm

f{[a* b*]};;;g

• Possible to erase the subsumption rule “almost
everywhere”
⇒ The subsumption is only necessary to type the left-hand side

of a “;;;”: this is where we put the annotation.

• Algorithm is sound w.r.t. the type system
• Algorithm is complete up-to annotations
⇒ “for every valid derivation in the system, I can annotate the

filter so that the algorithm find the exact same type”

13/20

Implementation and examples

Added the filters as a sublanguage of CDuce:

Definition (Concrete syntax)

f ::= e | p ->f | f ;f | (f ,f) | f |f unchanged
| <f f >f xml
| let filter x=f [and x=f . . .] binding
| x variable

e ::= . . . | apply f to e [where a] application
a ::= x={t1, . . . ,tn} [and a] annotation

14/20

Examples (1)
Pattern matching:

match e with
| p1 -> e1

...
| pn -> en

Tree mapping:

let filter up = < (‘section -> ‘chapter
| ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x -> x) >uplist

| x -> x
and filter uplist = [] -> [] | (up,uplist)

If e : <doc>[<section>[(<subsection>[Char+]|Char)*]+] then:
apply up to e

has type: <doc>[<chapter>[(<section>[Char+]|Char)*]+]

15/20

Examples (1)
Pattern matching:

apply (p1 -> e1) | ... | (pn -> en) to e

Tree mapping:

let filter up = < (‘section -> ‘chapter
| ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x -> x) >uplist

| x -> x
and filter uplist = [] -> [] | (up,uplist)

If e : <doc>[<section>[(<subsection>[Char+]|Char)*]+] then:
apply up to e

has type: <doc>[<chapter>[(<section>[Char+]|Char)*]+]

15/20

Examples (1)
Pattern matching:

apply (p1 -> e1) | ... | (pn -> en) to e

Tree mapping:

let filter up = < (‘section -> ‘chapter
| ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x -> x) >uplist

| x -> x
and filter uplist = [] -> [] | (up,uplist)

If e : <doc>[<section>[(<subsection>[Char+]|Char)*]+] then:
apply up to e

has type: <doc>[<chapter>[(<section>[Char+]|Char)*]+]

15/20

Examples (1)
Pattern matching:

apply (p1 -> e1) | ... | (pn -> en) to e

Tree mapping:

let filter up = < (‘section -> ‘chapter
| ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x -> x) >uplist

| x -> x
and filter uplist = [] -> [] | (up,uplist)

If e : <doc>[<section>[(<subsection>[Char+]|Char)*]+] then:
apply up to e

has type: <doc>[<chapter>[(<section>[Char+]|Char)*]+]
15/20

Examples (2)

let filter flatten = [] -> []
| ([Any*] -> flatten, flatten);concat
| (x->x, flatten)

type t = [‘a t ‘b] | []
type s = [‘c s ‘d] | [‘c ‘d]

let u : t = ...
let v : s = ...

apply flatten to u where {| flatten = { [(‘a|‘b)*] } |}
apply flatten to v where {| flatten = { [(‘c|‘d)+] } |}

16/20

XPath encoding
//a/b : “returns exactly all s which are under an <a>”

let filter f1 =
<(‘a -> ‘a)> I_f12; <_>x -> x

| <(x -> x)> I_f1; <_>x -> x
| _ -> []

and filter f12 =
<(‘a -> ‘a)> I_f12; <_> x -> x
| res -> <(‘b -> ‘b)>I_f13; <_> x -> (res,x)
| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter f13 =
<(‘a -> ‘a)> I_f12; <_> x -> x

| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter I_f1 =
[] -> []

| (f1,I_f1);concat

17/20

XPath encoding
//a/b : “returns exactly all s which are under an <a>”

let filter f1 =
<(‘a -> ‘a)> I_f12; <_>x -> x

| <(x -> x)> I_f1; <_>x -> x
| _ -> []

and filter f12 =
<(‘a -> ‘a)> I_f12; <_> x -> x
| res -> <(‘b -> ‘b)>I_f13; <_> x -> (res,x)
| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter f13 =
<(‘a -> ‘a)> I_f12; <_> x -> x

| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter I_f1 =
[] -> []

| (f1,I_f1);concat

17/20

XPath encoding
//a/b : “returns exactly all s which are under an <a>”

let filter f1 =
<(‘a -> ‘a)> I_f12; <_>x -> x

| <(x -> x)> I_f1; <_>x -> x
| _ -> []

and filter f12 =
<(‘a -> ‘a)> I_f12; <_> x -> x
| res -> <(‘b -> ‘b)>I_f13; <_> x -> (res,x)
| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter f13 =
<(‘a -> ‘a)> I_f12; <_> x -> x

| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter I_f1 =
[] -> []

| (f1,I_f1);concat

17/20

XPath encoding
//a/b : “returns exactly all s which are under an <a>”

let filter f1 =
<(‘a -> ‘a)> I_f12; <_>x -> x

| <(x -> x)> I_f1; <_>x -> x
| _ -> []

and filter f12 =
<(‘a -> ‘a)> I_f12; <_> x -> x
| res -> <(‘b -> ‘b)>I_f13; <_> x -> (res,x)
| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter f13 =
<(‘a -> ‘a)> I_f12; <_> x -> x

| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter I_f1 =
[] -> []

| (f1,I_f1);concat
17/20

XPath encoding and typing

• XPath encoding:
• self, child and descendant-or-self axes
• handles some predicates by rewriting to patterns
• respects XPath semantics (document order, no

duplicates,. . .)

• XPath typing:
• Only need one annotation
• Use of an ad-hoc algorithm to compute the annotation

⇒ Automatic type inference for a non-trivial subset of
XPath

18/20

XPath encoding and typing

• XPath encoding:
• self, child and descendant-or-self axes
• handles some predicates by rewriting to patterns
• respects XPath semantics (document order, no

duplicates,. . .)
• XPath typing:

• Only need one annotation
• Use of an ad-hoc algorithm to compute the annotation

⇒ Automatic type inference for a non-trivial subset of
XPath

18/20

Conclusion

Filters :
• provide a way to define
⇒ expressive (CDuce iterators, XSLT, XPath,. . .)
⇒ precisely typed (esp. typing products, see paper)
⇒ modular

transformations within an host language
• implementation
⇒ integrated with CDuce
⇒ encoding and automatic typing of an XPath fragment
⇒ other syntactical constructs (“parametrized filters”, . . .)

19/20

Conclusion

Filters :
• provide a way to define
⇒ expressive (CDuce iterators, XSLT, XPath,. . .)
⇒ precisely typed (esp. typing products, see paper)
⇒ modular

transformations within an host language
• implementation
⇒ integrated with CDuce
⇒ encoding and automatic typing of an XPath fragment
⇒ other syntactical constructs (“parametrized filters”, . . .)

19/20

Future work

• How to infer annotations in the general case ?

• Efficient compilation
• Integration with other languages

20/20

Future work

• How to infer annotations in the general case ?
• Efficient compilation

• Integration with other languages

20/20

Future work

• How to infer annotations in the general case ?
• Efficient compilation
• Integration with other languages

20/20

Future work

• How to infer annotations in the general case ?
• Efficient compilation
• Integration with other languages

20/20

Future work

• How to infer annotations in the general case ?
• Efficient compilation
• Integration with other languages

20/20

Real typing rules
type(Γ , e) = s

Γ ` e(t) = s

Γ ∪ t/p ` f (t) = s t ≤ *p +&&& * f +
Γ ` (p→→→ f)(t) = s

π(t) = {(((t11 ,,,t12))), . . . , (((tn1 ,,,tn2)))} Γ ` f1 (t
i
1) = s i1 Γ ` f2 (t

i
2) = s i2

Γ ` (((f1,,,f2)))(t) =
∨

i∈1 ..n (((s
i
1,,,s

i
2)))

t ≤ *f1 + ||| * f2+
t1 = t &&& * f1+
t2 = t r *f1+ Γ ` f1 (t1) = s1 Γ ` f2 (t2) = s2

Γ ` (f1|||f2)(t) =
∨

{i |ti 6=Empty} si

t ≤ *f1+
s1 ≤ *f2+ Γ ` f1 (t) = s1 Γ ` f2 (s1) = s2

Γ ` (f1;;;f2)(t) = s2

Γ ` e(t) = s ′ s ′ ≤ s

Γ ` e(t) = s
21/20

Typing the union
bump = []→→→ []

||| (((x →→→ x + 1,,,bump)))
t = [Int]|||(((Int,,,t))) (≡
[Int+])

∅ ` []([]) = []

∅ ` []→→→ []([]) = []

{x : Int} ` x(Int) = Int

∅ ` x →→→ x + 1(Int) = Int

...
∅ ` bump(t) = s

∅ ` (((x →→→ x + 1,,,bump)))((((Int,,,t)))) = (((Int,,,s)))

∅ ` bump(t) = s

With the simple typing rule:

s = [Int*]

With the precise typing rule:

s = [Int+]

22/20

Typing the union
bump = []→→→ []

||| (((x →→→ x + 1,,,bump)))
t = [Int]|||(((Int,,,t))) (≡
[Int+])

∅ ` []([]) = []

∅ ` []→→→ []([]) = []

{x : Int} ` x(Int) = Int

∅ ` x →→→ x + 1(Int) = Int

...
∅ ` bump(t) = s

∅ ` (((x →→→ x + 1,,,bump)))((((Int,,,t)))) = (((Int,,,s)))

∅ ` bump(t) = s

With the simple typing rule:

s = [Int*]

With the precise typing rule:

s = [Int+] 22/20

Product decomposition
In general, if t ≤ (((Any,,,Any))), t = (((t11 ,,,t

1
2)))||| . . . |||(((tn1 ,,,tn2))) for

some n.
Problem: there is more than one way to decompose t.
The decomposition affects the properties of the type-system.

Consider:

f1=0..3→→→ A|4..7→→→ B f2=0..4→→→ C|0..6→→→ D f =(((f1,,,f2)))

and the types t and s:

t = (((0..3,,,0..4)))|||(((4..7,,,0..6))) s = (((2..5,,,1..3)))

We can prove that:

∅ ` f (t) = (((A,,,C)))|||(((B,,,D)))
but also:

∅ ` f (s) = (((A|||B ,,, C|||D)))

23/20

Product decomposition
In general, if t ≤ (((Any,,,Any))), t = (((t11 ,,,t

1
2)))||| . . . |||(((tn1 ,,,tn2))) for

some n.
Problem: there is more than one way to decompose t.
The decomposition affects the properties of the type-system.
Consider:

f1=0..3→→→ A|4..7→→→ B f2=0..4→→→ C|0..6→→→ D f =(((f1,,,f2)))

and the types t and s:

t = (((0..3,,,0..4)))|||(((4..7,,,0..6))) s = (((2..5,,,1..3)))

We can prove that:

∅ ` f (t) = (((A,,,C)))|||(((B,,,D)))
but also:

∅ ` f (s) = (((A|||B ,,, C|||D)))
23/20

Maximal product decomposition

0 1 2 3 4 5 6 7 80
1
2
3
4
5
6
7

t

s

Two disjoint components:
(((0..3,,,0..4))) and (((4..7,,,0..6))).
s overlaps both.

0 1 2 3 4 5 6 7 80
1
2
3
4
5
6
7

t

s

Two non-disjoint com-
ponents: (((0..7,,,0..4))) and
(((4..7,,,0..6))). s is included
in (((0..7,,,0..4))).

24/20

