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Dealing with XML

XML ?

⇒ Tree organized data
⇒ Pervasive (XHTML, Ajax, Web Services, . . . )

Types ?

⇒ Regular tree grammars (a.k.a. regular types)
⇒ Describe sets of documents very precisely

Programs ? (iterators)

⇒ “remove every <a> element ocurring in the input”
⇒ “convert an xhtml document from transitional to strict”
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Being both polymorphic and precise

“remove every <a> element ocurring in the input”

⇒ May be applied to any type of document = polymorphism
⇒ The output type remains precise
<foo>[ a* b* ] ; <foo>[ b* ]

<bar>[ b a* b* ] ; <bar>[ b+ ]

<baz>[ c* b? ] ; <baz>[ c* b? ]

Neither parametric polymorphism (à la ML) nor regular
expression types (à la XDuce/CDuce) are up to the task
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Example: List concatenation

type of `1 type of `2 type of (concat `1 `2 )

[ Int* ] [ Bool+ ] [ Int* Bool+ ]
[ Int ] [ Int* Char? ] [ Int+ Char? ]

... ... ...

val concat :

in . . .
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type of `1 type of `2 type of (concat `1 `2 )

[ Int* ] [ Bool+ ] [ Int* Bool+ ]
[ Int ] [ Int* Char? ] [ Int+ Char? ]

... ... ...

val concat : “no type”

let ` = concat `1 `2︸ ︷︷ ︸ in . . .

type (concat `1 `2 )

“Execute the transformation at the type level”
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Computation at the type level ?

• Ensure terminations of iterators ⇒ not Turing complete

• Turing completeness is useful for non-XML computations
• If the language is too expressive, it escapes regular types

type t = [] | [ a t b ]
flatten t ; { [ an bn ] | n ≥ 0}

• In general there isn’t a best regular approximation

[ (a | b)* ]
[ a* b* ]
[] | [ a+ b+ ] . . .

• The language must be expressive enough to express
flattening, reversal, XPath,. . .
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Contributions : Filters

Small sub-language of combinators :
• grafted into an host language
⇒ are used to define XML transformations
⇒ the host language is used for non-XML stuff
⇒ implementation with CDuce as host

• can express XPath and XSLT-like transformations
• is precisely typed
• relies on some type annotations for “non-regular cases”
⇒ annotations are sparse and well-localized
⇒ completeness result up-to annotations
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Host language

Filters : iterate expressions of the host language over a
data-structure (list, tree, XML document,. . . )

Requirements for the host language :
• type algebra with a product constructor
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Filters

Definition (filter)

A filter is a regular (possibly infinite) production of :

f ::= e (expression of the host language)
| p→→→ f (pattern)
| (((f ,,,f ))) (product)
| f |||f (union)
| f ;;;f (composition)

f (v) ; r

with some restrictions
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Examples
id = x →→→ x

bump = [ ]→→→ [ ]
||| (((x →→→ x + 1,,,bump)))

concat = (((x,,,y)))→→→ (x;;;aux)
aux = [ ]→→→ y

||| (((z →→→ z,,,aux)))
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Termination
Well-formedness conditions:

concat = (((x,,,y)))→→→ (x;;;aux)
aux = [ ]→→→ y

||| (((z →→→ z,,,aux)))

• contractivity
• local recursion for the composition

Example:

Theorem
The evaluation of a filter on a finite value terminates.
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Typing example (1/2)

bump = [ ]→→→ [ ]
||| (((x →→→ x + 1,,,bump)))

t = []|||(((Int,,,t))) (≡ [Int*])

Let us compute bump(t) :

bump(t) =

[]

|

(((

Int

,,,

bump(t)

)))

≡ [ Int* ]
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Typing example (2/2)
flatten
“flattens nested lists”

t = [] | [ a t b ]

Let us compute flatten(t):

flatten(t) = []
| [ a b ]
| [ a a b b ]
| [ a a a b b b ]
| . . .
≤ [ ]

Theorem
Subject reduction for filters

12/20
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Typing algorithm

f{[a* b*]};;;g

• Possible to erase the subsumption rule “almost
everywhere”
⇒ The subsumption is only necessary to type the left-hand side

of a “;;;”: this is where we put the annotation.

• Algorithm is sound w.r.t. the type system
• Algorithm is complete up-to annotations
⇒ “for every valid derivation in the system, I can annotate the

filter so that the algorithm find the exact same type”
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Implementation and examples

Added the filters as a sublanguage of CDuce:

Definition (Concrete syntax)

f ::= e | p ->f | f ;f | (f ,f ) | f |f unchanged
| <f f >f xml
| let filter x=f [ and x=f . . .] binding
| x variable

e ::= . . . | apply f to e [ where a ] application
a ::= x={t1, . . . ,tn} [ and a ] annotation

14/20



Examples (1)
Pattern matching:

match e with
| p1 -> e1

...
| pn -> en

Tree mapping:

let filter up = < ( ‘section -> ‘chapter
| ‘subsection -> ‘section
| ‘paragraph -> ‘subsection
| x -> x ) >uplist

| x -> x
and filter uplist = [] -> [] | (up,uplist)

If e : <doc>[ <section>[ (<subsection>[Char+]|Char)* ]+] then:
apply up to e

has type: <doc>[ <chapter>[ (<section>[Char+]|Char)* ]+ ]

15/20
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Examples (2)

let filter flatten = [] -> []
| ([Any*] -> flatten, flatten);concat
| (x->x, flatten)

type t = [ ‘a t ‘b ] | []
type s = [ ‘c s ‘d ] | [‘c ‘d ]

let u : t = ...
let v : s = ...

apply flatten to u where {| flatten = { [ (‘a|‘b)* ] } |}
apply flatten to v where {| flatten = { [ (‘c|‘d)+ ] } |}

16/20



XPath encoding
//a/b : “returns exactly all <b>s which are under an <a>”

let filter f1 =
<(‘a -> ‘a)> I_f12; <_>x -> x

| <( x -> x )> I_f1; <_>x -> x
| _ -> []

and filter f12 =
<(‘a -> ‘a)> I_f12; <_> x -> x
| res -> <(‘b -> ‘b)>I_f13; <_> x -> (res,x)
| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter f13 =
<(‘a -> ‘a)> I_f12; <_> x -> x

| <(x -> x)> I_f1; <_> x -> x
| _ -> []

and filter I_f1 =
[] -> []

| (f1,I_f1);concat
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XPath encoding and typing

• XPath encoding:
• self, child and descendant-or-self axes
• handles some predicates by rewriting to patterns
• respects XPath semantics (document order, no

duplicates,. . . )

• XPath typing:
• Only need one annotation
• Use of an ad-hoc algorithm to compute the annotation

⇒ Automatic type inference for a non-trivial subset of
XPath
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Conclusion

Filters :
• provide a way to define
⇒ expressive (CDuce iterators, XSLT, XPath,. . . )
⇒ precisely typed (esp. typing products, see paper)
⇒ modular

transformations within an host language
• implementation
⇒ integrated with CDuce
⇒ encoding and automatic typing of an XPath fragment
⇒ other syntactical constructs (“parametrized filters”, . . . )
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Future work

• How to infer annotations in the general case ?

• Efficient compilation
• Integration with other languages
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Real typing rules
type(Γ , e) = s

Γ ` e(t) = s

Γ ∪ t/p ` f (t) = s t ≤ *p +&&& * f +
Γ ` (p→→→ f )(t) = s

π(t) = {(((t11 ,,,t12 ))), . . . , (((tn1 ,,,tn2)))} Γ ` f1 (t
i
1 ) = s i1 Γ ` f2 (t

i
2 ) = s i2

Γ ` (((f1,,,f2)))(t) =
∨

i∈1 ..n (((s
i
1,,,s

i
2)))

t ≤ *f1 + ||| * f2+
t1 = t &&& * f1+
t2 = t r *f1+ Γ ` f1 (t1 ) = s1 Γ ` f2 (t2 ) = s2

Γ ` (f1|||f2 )(t) =
∨

{i |ti 6=Empty} si

t ≤ *f1+
s1 ≤ *f2+ Γ ` f1 (t) = s1 Γ ` f2 (s1 ) = s2

Γ ` (f1;;;f2 )(t) = s2

Γ ` e(t) = s ′ s ′ ≤ s

Γ ` e(t) = s
21/20



Typing the union
bump = [ ]→→→ [ ]

||| (((x →→→ x + 1,,,bump)))
t = [Int]|||(((Int,,,t))) (≡
[Int+])

∅ ` [ ]([ ]) = [ ]

∅ ` [ ]→→→ [ ]([ ]) = [ ]

{x : Int} ` x(Int) = Int

∅ ` x →→→ x + 1(Int) = Int

...
∅ ` bump(t) = s

∅ ` (((x →→→ x + 1,,,bump)))((((Int,,,t)))) = (((Int,,,s)))

∅ ` bump(t) = s

With the simple typing rule:

s = [Int*]

With the precise typing rule:

s = [Int+]
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Product decomposition
In general, if t ≤ (((Any,,,Any))), t = (((t11 ,,,t

1
2 )))||| . . . |||(((tn1 ,,,tn2))) for

some n.
Problem: there is more than one way to decompose t.
The decomposition affects the properties of the type-system.

Consider:

f1=0..3→→→ A|4..7→→→ B f2=0..4→→→ C|0..6→→→ D f =(((f1,,,f2)))

and the types t and s:

t = (((0..3,,,0..4)))|||(((4..7,,,0..6))) s = (((2..5,,,1..3)))

We can prove that:

∅ ` f (t) = (((A,,,C)))|||(((B,,,D)))
but also:

∅ ` f (s) = (((A|||B ,,, C|||D)))
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Maximal product decomposition

0 1 2 3 4 5 6 7 80
1
2
3
4
5
6
7

t

s

Two disjoint components:
(((0..3,,,0..4))) and (((4..7,,,0..6))).
s overlaps both.

0 1 2 3 4 5 6 7 80
1
2
3
4
5
6
7

t

s

Two non-disjoint com-
ponents: (((0..7,,,0..4))) and
(((4..7,,,0..6))). s is included
in (((0..7,,,0..4))).
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