
Static and Dynamic Semantics of
NoSQL Languages
POPL 2013, Rome, Jan. 23-25 2013

Véronique Benzaken1 Giuseppe Castagna2
Kim Nguyễn1 Jérôme Siméon3

1 LRI, Université Paris-Sud, Orsay, France
2 CNRS, PPS, Univ Paris Diderot, Paris, France
3 IBM Watson Research, Hawthorne, NY, USA

Not Only SQL?

SQL (and the Relational DBMS) are not good for everything

NoSQL is class of Database Management Systems that :
Optimized for scalability and performances
Often implemented on top of MapReduce? frameworks
? : distributed computations as the combination of node-local
operations (Map) and global agregation of intermediary results
(Reduce)
Data-intensive applications

Writing applications directly with MapReduce is tedious

Introduction 2 : 18

Not Only SQL?

SQL (and the Relational DBMS) are not good for everything

NoSQL is class of Database Management Systems that :
Optimized for scalability and performances
Often implemented on top of MapReduce? frameworks
? : distributed computations as the combination of node-local
operations (Map) and global agregation of intermediary results
(Reduce)
Data-intensive applications

Writing applications directly with MapReduce is tedious

Introduction 2 : 18

NoSQL programming languages

High-level sequence operations (compiled to MapReduce)
Often less expressive than SQL (no join for instance)
Collection of tuples, key-value pairs (records), . . .
Flat or nested model

Problems :
Not standard (yet) : Jaql, Pig/Latin, Sawzall, Unql, . . .
No formal semantics⇒ hard to reason about the code
Weak notion of schema (data types)⇒ hard to specify program
input/output (unusual for the DB community)
No static typing (usual for the DB community)

Introduction 3 : 18

NoSQL programming languages

High-level sequence operations (compiled to MapReduce)
Often less expressive than SQL (no join for instance)
Collection of tuples, key-value pairs (records), . . .
Flat or nested model

Problems :
Not standard (yet) : Jaql, Pig/Latin, Sawzall, Unql, . . .
No formal semantics⇒ hard to reason about the code
Weak notion of schema (data types)⇒ hard to specify program
input/output (unusual for the DB community)
No static typing (usual for the DB community)

Introduction 3 : 18

NoSQL programming languages

High-level sequence operations (compiled to MapReduce)
Often less expressive than SQL (no join for instance)
Collection of tuples, key-value pairs (records), . . .
Flat or nested model

Problems :
Not standard (yet) : Jaql, Pig/Latin, Sawzall, Unql, . . .
No formal semantics⇒ hard to reason about the code
Weak notion of schema (data types)⇒ hard to specify program
input/output (unusual for the DB community)
No static typing (usual for the DB community)

Introduction 3 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]

union(
depts -> filter each x (x.size > 50) ->

transform x with { x.*, kind:"department" },
empls -> filter each x (x.salary > 2000) ->

transform x with { x.*, kind:"employee" }
)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .

[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?

∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .

[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .

“Some sophisticated dependent type” what about type inference ?

Introduction 4 : 18

Jaql in a nutshell

Data-model is JavaScript Object Notation (JSON)

//sequence of department records
depts = [{depnum:154, name:"HR", size:40}, ...];
//sequence of employee records
empls = [{name:"Kim", depid:"210", salary:1000}, ...]
union(

depts -> filter each x (x.size > 50) ->
transform x with { x.*, kind:"department" },

empls -> filter each x (x.salary > 2000) ->
transform x with { x.*, kind:"employee" }

)

Question : what’s the type of union ?
∀α.[α] → [α] → [α] seems too restrictive. . .
[any] → [any] → [any] seems too imprecise. . .
“Some sophisticated dependent type” what about type inference ?
Introduction 4 : 18

Outline

Using semantic subtyping to define JSON schema
A way to precisely describe the data

Filters
Recursive combinators that implement sequence iterators

Filters (Types)
Evaluating the program over an input type to compute the output type

Disclaimer : I’m “mostly” telling the truth (details in the paper)

Introduction 5 : 18

JSON schema using regular expression types

What type can we give to depts, employee and the result of union ?

type Depts = [{size:int, name:string, depnum:int}*]
type Emp = [{name:string, depid: string, salary:int }*]

[({size:int, name:string, depnum:int; kind:"department" }
|{name:string, depid:string, salary:int; kind:"employee"})*]

How can we achieve that ?

Types 6 : 18

JSON schema using regular expression types

What type can we give to depts, employee and the result of union ?

type Depts = [{size:int, name:string, depnum:int}*]
type Emp = [{name:string, depid: string, salary:int }*]

[({size:int, name:string, depnum:int; kind:"department" }
|{name:string, depid:string, salary:int; kind:"employee"})*]

How can we achieve that ?

Types 6 : 18

JSON schema using regular expression types

What type can we give to depts, employee and the result of union ?

type Depts = [{size:int, name:string, depnum:int}*]
type Emp = [{name:string, depid: string, salary:int }*]

[({size:int, name:string, depnum:int; kind:"department" }
|{name:string, depid:string, salary:int; kind:"employee"})*]

How can we achieve that ?

Types 6 : 18

Semantic subtyping 1/2

Definition (Types)

t ::= int | string | . . . (basic types)
| ‘nil | 42 | . . . (singleton types)
| (((t ,,,t))) (products)
| {{{`:t , . . . , `:t}}} (closed records)
| {{{`:t , . . . , `:t ,}}} (open records)
| t |||t (union types)
| t&&&t (intersection types)
| ¬¬¬t (negation type)
| empty (empty type)
| any (any type)
| µT .t (recursive types)
| T (recursion variable)

µT .(
‘nil
|||((({{{"name" : string ,}}},,,T)))

)
≡

[{name: string, ..}*]

Types 7 : 18

Semantic subtyping 2/2

Definition (Semantic subtyping)

s ≤ t ⇔ Js K ⊆ Jt K

J_K : set-theoretic interpretation : a type is the set of the value that
have that type

Arbitrary regular expressions : [char+ (int|bool)?]
Semantic equivalence of types :

(((int,,,int)))|||(((2,,,4))) ≡ (((int,,,int)))
{{{"id":int ,}}}&&&{{{"here":bool ,}}} ≡ {{{"id":int,"here":bool ,}}}
{{{"id":int ,}}}|||{{{"id":bool ,}}} ≡ {{{"id":(int ||| bool) ,}}}

Decidable emptiness (since s ≤ t ⇔ s&&&¬¬¬t = empty)
Decidable finiteness (since types are regular)

Types 8 : 18

Basic expressions

Definition (Basic expressions)

e ::= c (constants)
| x (variables)
| (e , e) (pairs)
| {e :e , ..., e :e} (records)
| e + e (record concatenation)
| e \ ` (field deletion)
| op(e , ..., e) (built-in operators)
| f e (filter application)

Example

{"age":30, "name":"Kim"}+ {"age":31} {"age":31, "name":"Kim"}

{"age":30, "name":"Kim"} \ "name" {"age":30}

{strconcat("a", "ge"):30} {"age":30}

Filters 9 : 18

Basic expression typing

[VARS]

Γ ` x : Γ(x)

[CONSTANT]

Γ ` c : c

[PROD]
Γ ` e1 : t1 Γ ` e2 : t2
Γ ` (e1, e2) : (((t1,,,t2)))

[FOREIGN]
Γ ` e1 : t1 · · · Γ ` en : tn

Γ ` op(e1,..., en) : type((Γ, x1:t1, ..., xn :tn),op(x1,..., xn))

[RCD-FIN]
Γ ` e : `1||| · · · |||`n Γ ` e ′ : t

Γ ` {e :e ′} : {{{`1:t}}}||| · · · |||{{{`n :t}}}

[RCD-INF]
Γ ` e : t Γ ` e ′ : t ′ t ≤ string

t is infiniteΓ ` {e :e ′} : {{{..}}}

· · ·
Filters 10 : 18

Filters

Definition (Filters)
f ::= e (expression)
| p=>f (pattern)
| f | f (union)
| f ;f (composition)
| (f ,f) (product)
| {`:f , . . . , `:f , ..} (record)
| let X = f (rec. definition)
| X a (guarded rec.)

a ::= x (variables)
| c (constants)
| (a,a) (pairs)
| {`:a , ..., `:a} (record)

p ::= types with
capture variables

Definition ((Big-step) semantics of filters)

δ; γ `eval f (v) r

δ : recursion variable environment
γ : capture variable environment
r is either a value or Ω (error)

Filters 11 : 18

Filters (by example)

Jaql expression Filter
Field access e.` e;{{{` : x ,}}}=>x

Conditional
if e1 then e2
else e3

e1;‘true=>e2|‘false=>e3

Filter filter each x
with x.size < 50

let X =
‘nil => ‘nil
|(((x ,,,xs)))=> if x.size < 50

then (x,X xs)
else X xs

Transform
transform each x
with
{x.*,age:x.age+1}

let X = ‘nil => ‘nil
|({"age" : i =>i + 1 , ..},y=>X y)

Filters 12 : 18

Typing filter application

“Evaluate the filter on the type of its argument”

Definition (Type inference)
Γ ; ∆ ;M `fil f (t) : s

Γ capture variable environment
∆ recursion variable environment
M memoization environment (for recursive types)

Γ ∪ t /p ; ∆ ;M `fil f (t) : s
t ≤ *p+

Γ ; ∆ ;M `fil p=>f (t) : s
i = 1,2 Γ ; ∆ ;M `fil fi (t) : si

Γ ; ∆ ;M `fil f1|f2(t) : s1|||s2

Γ ; ∆, (X 7→ f) ;M , ((X , t) 7→ T) `fil f (t) : s
T fresh

Γ ; ∆ ;M `fil (let X = f)(t) : µT .s

t = type(Γ, a)
((X , t) 7→ T) ∈ MΓ ; ∆ ;M `fil (X a)(s) : T

. . .

Type inference 13 : 18

Typing filter application

“Evaluate the filter on the type of its argument”
Definition (Type inference)

Γ ; ∆ ;M `fil f (t) : s
Γ capture variable environment
∆ recursion variable environment
M memoization environment (for recursive types)

Γ ∪ t /p ; ∆ ;M `fil f (t) : s
t ≤ *p+

Γ ; ∆ ;M `fil p=>f (t) : s
i = 1,2 Γ ; ∆ ;M `fil fi (t) : si

Γ ; ∆ ;M `fil f1|f2(t) : s1|||s2

Γ ; ∆, (X 7→ f) ;M , ((X , t) 7→ T) `fil f (t) : s
T fresh

Γ ; ∆ ;M `fil (let X = f)(t) : µT .s

t = type(Γ, a)
((X , t) 7→ T) ∈ MΓ ; ∆ ;M `fil (X a)(s) : T

. . .
Type inference 13 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments

Y (T) 7→ U
i 7→ int
y 7→ T

Output type

µU .

‘nil

|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments

Y (T) 7→ U
i 7→ int
y 7→ T

Output type

µU .

‘nil

|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments

Y (T) 7→ U
i 7→ int
y 7→ T

Output type

µU .

‘nil

|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments

Y (T) 7→ U
i 7→ int
y 7→ T

Output type

µU .

‘nil

|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .

‘nil

|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .

‘nil

|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .‘nil|||

(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .‘nil|||(((

{{{"name":string, "age":

int

}}}

,,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .‘nil|||((({{{"name":string, "age":

int

}}},,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int

y 7→ T

Output type
µU .‘nil|||((({{{"name":string, "age":int}}},,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .‘nil|||((({{{"name":string, "age":int}}},,,

U

)))

Type inference 14 : 18

Typing filter application (example)

Typing the application of
transform each x with { x.*, age: x.age+1 }

to a value of type
[{name:string, age:int}*]

let Y = ‘nil =>‘nil
|({"age" : i =>i + 1 , ..},y=>Y y)

µT .‘nil
|||((({{{"name":string, "age":int}}},,,T)))

Environments
Y (T) 7→ U

i 7→ int
y 7→ T

Output type
µU .‘nil|||((({{{"name":string, "age":int}}},,,U)))

Type inference 14 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1
Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...
How to refuse such ill-founded filters ?
1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,
2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1

Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...
How to refuse such ill-founded filters ?
1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,
2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1
Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...

How to refuse such ill-founded filters ?
1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,
2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1
Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...
How to refuse such ill-founded filters ?

1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,
2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1
Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...
How to refuse such ill-founded filters ?
1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,

2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1
Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...
How to refuse such ill-founded filters ?
1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,
2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Typing problem : Termination

What about :

let Y = ‘nil =>‘nil
|(((x ,,,y)))=>Y (x , (x , y))

applied to µT . ‘nil|||(((int,,,T)))

Y (T) 7→ U1
Y ((((int,,,(((int,,,T))))))) 7→ U2
Y ((((int,,,(((int,,,(((int,,,(((int,,,T))))))))))))) 7→ U3
...
How to refuse such ill-founded filters ?
1 Assign an identifier to each (term) variable : x 7→ i1, y 7→ i2,
2 For each recursive call, build an abstract value : (i1, (i1, i2))

3 Apply the filter to the abstract values. Variables must be bound to
exactly one identifier : x 7→ i1, y 7→ (i1, i2)

Type inference 15 : 18

Notable results

1 Type safety (of course !)
If ∅ ;∅ ;∅ `fil f (t) : s , then ∀v : t , ∅ ;∅ `eval f (v) r implies r : s
(in particular, r 6= Ω)

2 Precise typing of record expressions

3 Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

4 Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

5 Arbitrary filters are Turing-complete
6 Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

7 Sound (approximate) typing of non structural operators (group_by,
join, order_by, . . .)

Summary and future work 16 : 18

Notable results

1 Type safety (of course !)
If ∅ ;∅ ;∅ `fil f (t) : s , then ∀v : t , ∅ ;∅ `eval f (v) r implies r : s
(in particular, r 6= Ω)

2 Precise typing of record expressions
3 Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

4 Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

5 Arbitrary filters are Turing-complete
6 Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

7 Sound (approximate) typing of non structural operators (group_by,
join, order_by, . . .)

Summary and future work 16 : 18

Notable results

1 Type safety (of course !)
If ∅ ;∅ ;∅ `fil f (t) : s , then ∀v : t , ∅ ;∅ `eval f (v) r implies r : s
(in particular, r 6= Ω)

2 Precise typing of record expressions
3 Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

4 Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

5 Arbitrary filters are Turing-complete
6 Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

7 Sound (approximate) typing of non structural operators (group_by,
join, order_by, . . .)

Summary and future work 16 : 18

Notable results

1 Type safety (of course !)
If ∅ ;∅ ;∅ `fil f (t) : s , then ∀v : t , ∅ ;∅ `eval f (v) r implies r : s
(in particular, r 6= Ω)

2 Precise typing of record expressions
3 Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

4 Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

5 Arbitrary filters are Turing-complete

6 Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

7 Sound (approximate) typing of non structural operators (group_by,
join, order_by, . . .)

Summary and future work 16 : 18

Notable results

1 Type safety (of course !)
If ∅ ;∅ ;∅ `fil f (t) : s , then ∀v : t , ∅ ;∅ `eval f (v) r implies r : s
(in particular, r 6= Ω)

2 Precise typing of record expressions
3 Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

4 Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

5 Arbitrary filters are Turing-complete
6 Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

7 Sound (approximate) typing of non structural operators (group_by,
join, order_by, . . .)

Summary and future work 16 : 18

Notable results

1 Type safety (of course !)
If ∅ ;∅ ;∅ `fil f (t) : s , then ∀v : t , ∅ ;∅ `eval f (v) r implies r : s
(in particular, r 6= Ω)

2 Precise typing of record expressions
3 Encode and type all Jaql and Pig/Latin operators as well as XML
Schemas and downward XPath

4 Typechecking is EXPTIME (semantic subtyping is EXPTIME
complete already)

5 Arbitrary filters are Turing-complete
6 Typeable filters are more-expressive than Top-down tree
transducers with regular look-ahead

7 Sound (approximate) typing of non structural operators (group_by,
join, order_by, . . .)

Summary and future work 16 : 18

Some thoughts. . .

DB community always comes up with interesting languages :
SQL, XML query languages, NoSQL languages, RDF querying. . .
Almost never a decent “safety oriented” static analysis
Filter as type level combinators allows us to balance :

expressivity
decidability
precision
exotic use of polymorphism and subtyping

with some costs
Not for higher-order languages
Modularity

Summary and future work 17 : 18

Summary, future work

Summary :
1 Precise JSON schema via regexp type via semantic subtyping
2 Expressive calculus of combinators to encode iterators
3 Precise typing of filter application
⇒ framework for ensuring type-safety of NoSQL programs

Future work :
1 Relax some conditions on static analysis (allows one to express

count, average, sum and other numerical agregate functions)

let X = (((c ,,,‘nil)))=>c
|(((c ,,,(((x ,,,xs))))))=>X (c + x , xs)

2 Implementation effort to integrate in the Jaql framework
3 Study connections between filters and the actual compilation
scheme (MapReduce)
Summary and future work 18 : 18

	Introduction
	Types
	Filters
	Type inference
	Summary and future work

