
Computation of chromatic polynomials using

triangulations and clique trees

P. Berthomé1, S. Lebresne2, and K. Nguy˜̂en1

1 Laboratoire de Recherche en Informatique (LRI), CNRS UMR 8623, Université
Paris-Sud, 91405, Orsay-Cedex, France, {Pascal.Berthome,Kim.Nguyen}@lri.fr

2 Preuves, Programmes et Systèmes (PPS), CNRS UMR 7126, Université Paris 7,
Case 7014, 2 Place Jussieu, 75251 PARIS Cedex 05, France,

Sylvain.Lebresne@pps.jussieu.fr

Abstract In this paper, we present a new algorithm for computing the
chromatic polynomial of a general graph G. Our method is based on the
addition of edges and contraction of non-edges of G, the base case of the
recursion being chordal graphs. The set of edges to be considered is taken
from a triangulation of G. To achieve our goal, we use the properties of
triangulations and clique-trees with respect to the previous operations,
and guide our algorithm to efficiently divide the original problem.
Furthermore, we give some lower bounds of the general complexity of our
method, and provide experimental results for several families of graphs.
Finally, we exhibit an original measure of a triangulation of a graph.
Keywords: Chromatic polynomial, chordal graphs, minimal triangula-
tion, clique tree.

Résumé Dans cet article, nous présentons un nouvel algorithme pour
calculer le polynôme chromatique d’un graphe quelconque G. Notre méthode
s’appuie sur l’ajout récursif d’arêtes et de contraction de non-arêtes de
G, la récursion s’arrêtant pour les graphes triangulés. L’ensemble des
arêtes que l’on considère dans ce processus forme une une triangulation
de G. Afin de calculer efficacement ce polynôme, nous étudions l’impact
de l’ajout d’arêtes et de la contraction sur un arbre de cliques. Notre
algorithme est alors guidé par ces opérations afin de diviser le problème
le plus rapidement possible.

De plus, nous donnons quelques bornes inférieures induites par notre
méthode. Nous fournissons par ailleurs une étude expérimentale de notre
algorithme sur plusieurs familles de graphes.

Enfin, nous mettons en évidence un nouveau paramètre concernant les
triangulations de graphe.

Mots-Clés : polynôme chromatique, graphes triangulés, triangulations
minimales, arbres de cliques

2 P. Berthomé, S. Lebresne, and K. Nguyêen

1 Introduction

Introduced by Birkhoff and Lewis in 1946 [4], the chromatic polynomial of a
graph G counts the number of ways of properly coloring G. This polynomial also
captures many combinatorial information about a graph, describing acyclic ori-
entations, the all-terminal reliability, and the spanning trees. More surprisingly,
this polynomial is closely related in physics with the zero-temperature partition
function of the q-state Potts antiferromagnet, motivating the computation this
polynomial for some class of graphs by physicists (see, for example [6]). Created
in order to give some proof of the famous 4-color theorem, the chromatic polyno-
mial has been studied for itself. Studies include among others the search of the
real/complex roots of the polynomial [14, 6], and the search of graphs uniquely
defined by their chromatic polynomials [7].

Once we have the chromatic polynomial of any graph, its chromatic number,
i.e., the minimum number of colors needed to properly coloring the graph, is
simply the first integral non-zero of the polynomial, thus, this can be computed
in polynomial time. However, since the general determination of the chromatic
number of a graph is NP-complete [10, GT4], the determination of the chromatic
polynomial induces heuristic (or exponential) methods, unless P=NP. As shown
in [17], the chromatic polynomial includes many other notions than the chro-
matic number, thus its computation reveals to be quite complex even when the
chromatic number is known, e.g., in the bipartite graphs. Conversely, it is clear
that the class of graphs for which the chromatic polynomial is easy to determine
is included in the class of graphs for which the determination of the chromatic
number is easy. Recently, it was shown that computing the coefficients of this
polynomial in general graphs is #P-hard [16].

Several papers deal with the effective computation of this polynomial. Many
of them use the paradigm of edge contraction/deletion in order to develop an
exponential time algorithm. The main strategies developed in the literature stop
the recursion to graphs for which the polynomial is easy to compute or is al-
ready known. We can note the work of Haggard [13, 11, 12], in which this latter
paradigm is used at the extreme: during the computation tables of chromatic
polynomials are made and, at each step, if the considered graph (a minor of the
original graph) is small enough, the method first checks whether the chromatic
polynomial of an isomorphic graph has already been computed during the begin-
ning of the process. This method allowed the author to compute the chromatic
polynomial of a planar graph having 60 vertices, the so-called truncated icosa-
hedron. This method is very efficient when the number of isomorphic minors is
very important. Other papers, such as [17], use as base case chordal graphs for
which the chromatic polynomial is easy to determine [5].

In this paper, we also use the chordal graphs as base cases in the recursion
tree. However, we improve the global computation by exploiting the clique-tree
associated to the considered chordal graphs. Another important difference with
most of the literature is that we prefer an edge addition/contraction method
rather than the classical edge contraction/deletion method.

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 3

In the remaining of the paper, we recall in Section 2 known results on the
chromatic polynomials, chordal graphs and the triangulation of a graph. In Sec-
tion 3, we provide results that lead to our algorithm for computing the chromatic
polynomial in Section 4 and give lower bounds of the time complexity in Sec-
tion 5. In Section 6, we provide some experimental results and comparison with
other methods. Finally, we conclude the paper in Section 7. In Appendix A, we
provide a complete proof of Theorem 1.

2 Preliminaries

In the following, we use classical graph theory on undirected graphs. Notions
may be found for example in [2]. The notation G1 ∼ G2 will denote that both
graphs are isomorphic; the notation G denote the complement of G = (V, E),
i.e., G = (V, E′), with E′ = {(x, y) 6∈ E}.

2.1 Chromatic polynomials

Let G = (V, E) be an undirected loop-less graph, with n = |V | and m = |E|.
A proper coloring of G with k colors is simply a function φ from V into Ik =
{1, . . . , k} (I0 = ∅) such that two neighbors in the graph have different colors.
For a given integer λ ≥ 0, the chromatic polynomial1 P (G, λ) is the number of
distinct proper colorings of G using at most λ colors. In [17], the different forms
of this polynomial are reviewed. According to the chosen basis, the coefficients
reflect different properties of the graph. As example, let give some well-known
chromatic polynomials, leading to the most popular basis for writing these poly-
nomials.

Name Chromatic polynomial

Empty graph K̄n λn

Complete graph Kn λ(n) =
n−1∏
i=0

(λ − i)

Trees Tn λ(λ − 1)n−1

Here are some simple results that are the base of the computation of the
chromatic polynomial. If e is an edge of G, we note G− e the graph obtained by
removing e from E, and G/e, the graph obtained by contracting e. If e is not an
edge of G, we denote G + e the graph obtained by adding e to G. In this case,
we can define G/e by (G + e)/e. Using this notation, the two following relations
can be easily established.

P (G, λ) = P (G + e, λ) + P (G/e, λ), if e 6∈ E (1)

P (G, λ) = P (G − e, λ) − P (G/e, λ), if e ∈ E (2)

1 It is sometimes called chromial as in [8].

4 P. Berthomé, S. Lebresne, and K. Nguyêen

Both formulations can be applied to compute recursively the chromatic poly-
nomial. Base case in Formulation 1 is the complete graph, since we add edges
to the initial graph, and to any contracted graph, whereas the base cases with
the other formulation are the trees or the empty graphs. If the computations
are using only one formulation and only one base case, we can derive directly
the coefficients of the polynomials using the corresponding base. However, these
formulations clearly lead to an exponential exploration and is not practical in
many simple cases. For example, even for simple graphs as rings, the number
of recursion steps, i.e., the size of the recursion tree is O(2n2

) as explained in
Section 52.

Note that these two equations simply verify that the object we are talk-
ing about is a polynomial, since it is obtained by a finite combination (addi-
tion/subtraction) of elementary polynomials. Algorithm 1 presents formally this
algorithm.

Algorithm 1: Primitive-Chromatic(G)
⊲ G = (V, E) be a graph
⊲ Returns the Chromatic polynomial of G

1 begin

2 if G is a complete graph Kn then Return λ(n)

3 Let e 6∈ E, G1 = G + e and G2 = G/e.
4 P1 ← Chromatic-Polynomial(G1)
5 P2 ← Chromatic-Polynomial(G2)
6 return P1 + P2

7 end

In order to improve the computation of this polynomial, we split the problem
into smaller problems using the following simple folklore lemmas.

Lemma 1. Let G be a graph composed by two connected components G1 and
G2, then we have:

P (G, λ) = P (G1, λ)P (G2, λ) (3)

Using this lemma, we can find again the chromatic polynomial of the empty
graph. Another simple consequence of this lemma is that the most interesting
study only concerns connected graphs.

Lemma 2 ([14]). Let G be a graph and G1 and G2 be subgraphs of G such
that G = G1 ∪ G2 and G1 ∩ G2 ∼ Kr, then we have:

P (G, λ) =
P (G1, λ)P (G2, λ)

λ(r)
(4)

Using this lemma, we can derive the chromatic polynomial of the trees, by elim-
inating all the leaves, one by one. Another application is the computation of the
chromatic polynomial of the chordal graphs as shown below. Lemma 1 may be

2 Actually, this number is related to the number of partitions of an n-set into blocks
of size > 1 [18, Seq A000296].

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 5

seen as special case of Lemma 2 by assuming that the chromatic polynomial of
the null graph (no vertex) is 1.

In this paper, we will use this lemma to break down the effective complexity
of computation of the chromatic polynomial. The goal in the recursion steps of
our algorithm is first to complete separators of the graph in order to split the
computation of the chromatic polynomial of a large graph into several compu-
tations for smaller ones. The edges that should be added in this process should
belong to some triangulation of the input graph.

2.2 Triangulation and clique trees

A chordal graph G is a graph in which there are no induced cycles of length > 3.
This class of graphs is very large and includes many subclasses such as trees,
complete graphs, interval graphs. Furthermore, many problems that are NP-
complete in general graphs are polynomially solvable in the chordal graphs, such
as the colorability problem [10, GT4]. One useful representation of a chordal
graphs is the clique-tree. The following definition is derived from [1].

Definition 1. A clique-tree of a given chordal graph G = (V, E) is a tree T =
(V , E) such that:

– V = {C1, C2, . . . , Cj} is the set of the maximal cliques of G;
– for every vertex v in G, the set of maximal cliques containing v induces a

subtree of T .

A simple example is given in Figure 1. It has been shown that there may exists
several non-isomorphic clique trees of the same chordal graph [9]. Note that any
edge in the clique tree represents a minimal separator of G. This provides a
simple method to compute the chromatic polynomial for this family of graphs
as shown in Lemma 3 below.

a

b

g f e

dc

abg bcfg

cdfg

bcef

Figure 1. A chordal graph and its clique tree

For a general graph G = (V, E), a triangulation of G is a set of edges F such
that G′ = (V, E∪F) is chordal. Finding a triangulation with the minimum num-
ber of edges is known as the minimal fill-in problem and is NP-complete [19]. A

6 P. Berthomé, S. Lebresne, and K. Nguyêen

triangulation is minimal if no proper subset of it is a triangulation. Many effi-
cient algorithms have been designed for computing a minimal triangulation. For
example, the minimum degree heuristic and its variations [3] appear to be very
efficient in practice for the minimum fill-in problem, however it does not con-
stitute an approximation algorithm. In [15], a O(k) approximation polynomial
algorithm is given, where k is the minimum fill-in value.

In this paper, we define another measure of a triangulation, that will have
a direct connection with the computational complexity of our method. Before
this, we need to introduce the augmented clique tree, an useful data structure
for our computation process.

Definition 2. Let G = (V, E) be a graph and F a minimal triangulation of G.
Let T = (V , E) a clique tree of G′ = (V, E ∪F). The augmented clique tree of
G for F is T = (V , E , φ), where φ is a labeling of E by subsets of F defined by:

φ(Vi, Vj) = F ∩ E(G′[Vi ∩ Vj]),

where G′[U] denotes the subgraph of G′ induced by U a subset of V (G′).

a

b

g f e

dc

abg bcfg

cdfg

bcef

(b,g)

(b,f), (c,f)

(c,f)

Figure 2. A graph and its augmented clique tree for the triangulation F =
{(b, f), (b, g), (c, f)}

Note that the edges of T constitute the minimal separators of G′, the trian-
gulation of G. Consequently, the labeling defines for any edge of T the subset of
F that has to be added in G to complete this separator.

Definition 3. Given a graph G and a minimal triangulation F of G, we define
the thickness of the triangulation F as:

Th(G, F) = max
(Vi,V j)∈E

|φ(Vi, V j)| (5)

As extension, we define the thickness of triangulation of the graph G as
the minimum for all the triangulations of G of the thickness of triangulations.

Th(G) = min
F a triangulation of G

Th(G, F) (6)

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 7

For example, in Figure 2, the thickness of the proposed triangulation is 2. We
will show in Section 7 that the thickness of a graph is an original parameter of
the triangulation of a graph and that it is disconnected to the minimum fill-in.

Lemma 3 ([5]). Let G = (V, E) be a chordal graph. Let T = (V , E) be a clique-
tree representation of G, V = {V1, . . . , Vk}. Then, the chromatic polynomial of
G is:

P (G, λ) =

k∏
i=1

λ(|Vi|)

∏
(Vi,Vj)∈E

λ(|Vi∩Vj |)
(7)

Proof. This is a direct consequence of Lemma 2 applied recursively to any leaf
of the clique tree.

�

Note that the form of the chromatic polynomial of any chordal graph is of
the form:

P (G, λ) =

k∏

i=0

(λ − i)αi (8)

where the αi’s are non-negative integers. The converse is not true as shown in [7],
where a family of non-chordal graphs has been exhibited with the same type of
chromatic polynomials as in Equation 8. However, the coefficients αi all equal
to 1 define the complete graphs and (α0 = 1, α1 = n − 1, αi = 0 define the
trees. One interesting question should be to determine the vectors α verifying
the property of uniquely defining a family of chordal graph.

3 Evolution of the clique tree

In this section, we exhibit some properties of the augmented clique tree under
the edge contraction and graph separation operations.

3.1 Clique tree and edge contraction

Let’s consider a computation tree of the chromatic polynomial based on Equa-
tion 1 as shown in Figure 3. The root node will compute the global polynomial
of G, its left child represent G+e for a given non edge e of G and the right child
G/e, for the same e. Then, this scheme appears until the node has to compute a
base case. In this latter case, the node is a leaf of the computation tree and the
corresponding graph is a base case, i.e., a complete graph if no optimization is
provided or a chordal graph as explained in the following.

Since a complete graph is also a chordal graph, we can prune this computation
tree such that all the leaves are chordal graphs. The main goal of our algorithm is
to find a way to pre-compute this computation tree in such a way that it becomes

8 P. Berthomé, S. Lebresne, and K. Nguyêen

G + e G/e

G

G + e + e′ G + e/e′ G/e + e′′ G/e/e′′

Figure 3. Computation tree for the chromatic polynomial

minimal. One efficient way to do that is to compute a single triangulation of G,
say F , and operate on this set in the same time as operating on the graph. At
each node of the computation tree, we associate three elements:

1. the graph G1 whose chromatic polynomial has to be computed;
2. a triangulation of G1, say F1, and
3. the clique tree T1 of G′

1 = G1 +F = (V (G1), E(G1)∪F1), i.e., an augmented
clique tree of G1 and F1.

Then, we obtain the following theorem.

Theorem 1. Let G be a graph, F a triangulation of G, and T a clique tree of
G + F . Let e be an element of F . Let G1 = G + e and G2 = G/e. Then, there
exists F1, F2, T1 and T2 such that:

1. F1 is a triangulation of G1 and T1 is a clique tree of G1 + F1;
2. F2 is a triangulation of G2, and T2 is a clique tree of G2 + F2.

All these sets can be computed in quadratic time from G, F and T .

Proof. This proof is divided into two parts.

The first one considers the graph G1 = G + e. From the previous remarks,
it is easy to see that F1 = F − e and T1 = T is a valid choice. These two sets
can be clearly obtained in linear time.

The second part of the proof concerns G2 = G/e. We will just sketch the
proof here, for the sake of clarity. A detailed proof for this case is more tedious
and is given in Appendix A. First, let us remark that if a graph is chordal, then
it remains chordal after an edge contraction. In our case, G + F is chordal, and
consequently, so is (G + F)/e. Let denote a and b the extremities of e. The
operation, /e on a set or a graph simply consists in identifying both extremities
of e and remove redundant elements.

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 9

Then F2 can be defined as E((G+F)/e)−E(G/e). It simply corresponds to
the elements of F/e that are edges of G/e. This occurs when an edge of type (b, x)
in F collapses into an edge (a, x) in E(G). Then, the clique tree corresponding
to G2 + F2 can be obtained from the description of this graph. However, there
exists a clever way to do this, simply based on the description of T . This method
is described in Algorithm 2. This algorithm and the contraction algorithms can
be performed in O(n2) operations, where n is the number of vertices of G.

�

Algorithm 2: Clique-Tree-Contraction(T,e)
⊲ T is a clique-tree of a given chordal graph G and e = (i, j) is an edge of G

1 begin

2 Within any clique set, replace the elements j by i
3 while there exists two neighbor cliques c1 and c2 such that c1 ⊆ c2

4 Contract the edge c1, c2 in T
5 return T ′, the resulting tree after renaming and contractions
6 end

We illustrate our method on a simple example in Figure 4. Let consider the
cycle with 7 vertices and one of its minimal triangulation in Figure 4(a). Fig-
ure 4(c) shows the result on C7 of the contraction of the edge (1, 5). Figure 4(b)
shows how the (augmented) clique tree evolves using Algorithm 2.

1 2

3

4

5

6

7

(a) The cycle C7

and one triangula-
tion F

123
13

134
14

145
15

156 167
16

123
13

134 16714 16123
13

134 16714 16123
13

134 16714 16123
13

134 16714 16123
13

134 16714 16

123
13

134 167

(b) Evolution of a clique
tree

1

2

3

46

7

(c) C7/(1, 5)

Figure 4. The clique-tree contraction on the cycle. The triangulation sets are shown
in dashed lines.

3.2 Clique tree and graph separation

We have previously seen that we can stop the computation once we reach a
chordal graph, thus yielding a complexity which is directly related to the mini-
mum fill-in of the graph. But this technique leads to another optimization. Let’s

10 P. Berthomé, S. Lebresne, and K. Nguyêen

consider the computation tree of the general computation of the chromatic poly-
nomial shown in Figure 3 in which the first objective is to complete an edge of the
augmented clique tree. This leads to a computation tree in which only the edges
that fill a minimum separator of the triangulation of the graph are concerned.
For any leaf of this computation tree, we obtain some graph for which a given
separator is filled, at least the separator concerned by this “local” operation.
Others may have been also affected since some edges of the triangulation may
appear in several separators in the clique tree, as shown by Theorem 1. As con-
sequence we can use Lemma 2 to divide the problem of the computation of the
chromatic polynomial of this “leaf” graph into the computation of two smaller
graphs for which the clique tree is smaller as shown in the following theorem.

Theorem 2. Let G be a graph and G1 and G2 be subgraphs of G such that
G = G1 ∪ G2 and G1 ∩ G2 ∼ Kr. Let F be a triangulation of G and T be
the clique tree of G + F . Then, the triangulation set F can be divided into two
disjoint sets F1 and F2 such that F1 (resp. F2) is a triangulation of G1 (resp.
G2). Furthermore, the clique trees of the triangulated graphs can be obtained
from T by removing only one edge.

Proof. First, since G1 ∩ G2 ∼ Kr, there is no edge of F that can be added to
G1 ∩G2. Consequently any edge of F has to be added either on G\G2 or G\G1.
Then let consider F1 (resp. F2) the subset of F for which both extremities are
in G1 (resp.F2). Using the above remark, these two sets form a partition of F .

Considering a clique tree of G + F , since G1 ∩ G2 is isomorphic to Kr, it
corresponds to a separator of G, consequently for G + F . Thus, there exists an
edge e in this tree that represents this separator. Consequently, removing this
edge from the tree creates two clique trees T1 and T2. It is straightforward to
see that Ti is a triangulation tree of Gi + Fi, i = 1, 2.

�

These two operations performed on an initial triangulation of the input graph
lead to our general algorithm presented in the following section.

4 General algorithm

Using the results of the previous section, we present an algorithm for computing
the chromatic polynomial of a given graph G as well as some bounds on its
complexity. The idea of the algorithm is quite simple. First, using Theorem 1 we
pre-compute a triangulation for a given graph G and use it to add (and contract)
edges, the computation holds until a chordal graph is reached. The second opti-
mization is to direct the choice of the edge in the addition/contraction algorithm
in order to arise to a separator. For this choice, we use the augmented clique tree.
Actually, if a label of the augmented clique tree is empty, the corresponding edge
is a separator of the graph associated. The choice of the edge to add/contract
at each step has a direct impact on the efficiency of the algorithm. We discuss
the impact of the choice function in Section 4.2.

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 11

4.1 Algorithm

Algorithm 3: Chromatic-Polynomial(G, T)
⊲ T is an augmented clique-tree of the graph G
⊲ Returns the Chromatic polynomial of G

1 begin

2 if G is triangulated then return ChromaticPolynomial(G,T) using Lemma 3
3 if ∃e ∈ T such that φ(e) = ∅
4 Decompose G using Theorem 2:
5 Let G1, T1, G2, T2 and Kr the resulting elements
6 P1 ← Chromatic-Polynomial(G1 , T1)
7 P2 ← Chromatic-Polynomial(G2 , T2)
8 return P1 × P2/P (Kr)
9 Let e = ChoiceFunction(G,T)
10 Using Theorem 1, we compute
11 G1 = G + e, and the resulting T1 = T
12 G2 = G/e, and the resulting T2

13 return Chromatic-Polynomial(G1 , T1) + Chromatic-Polynomial(G2 , T2)
14 end

The correctness of this algorithm is straightforward given Equation 1 and
Theorems 1 and 2.

4.2 The choice function

The choice function used in Step 9 has a great impact on the overall efficiency
of the algorithm. Let us remind that the main idea of our method is to add all
the edges of φ(e) for a given edge e of the augmented clique tree, in order to
create a clique on the graph and then, be able to split it into two smaller graphs.
Nevertheless, to have this method perform efficiently, we need to separate the
graph so that the number of edges added to each graph is evenly distributed.

For example, we can clearly see that if one choses always to add edges (of
the set labeling an edge) at the extremity of the augmented clique tree, this will
lead to a computation of exactly the same complexity as the one of Algorithm 1.

The function we use in the implementation chooses the edge e of the aug-
mented clique such that the cardinal of the union of labellings of the sub-tree in
“the right” and in “the left” of e are the closest (we try to be as fair as possible
a priori). And for this particular edge e, we add all the edge of φ(e) and then
separate the graph. We can remark that it is not necessarily the best choice, for
at least two reasons. The first one is that we don’t consider the cardinality of
each set labeling the edge of the augmented clique tree. Secondly, merges can
occur during the edges contraction and can change these sets, making them still
correct but less optimal.

Thus, taking these two points into account when implementing the choice
function, we can clearly improve our algorithm. However, it’s unlikely that there
is a best choice function for all graphs. Experimentation might be the key to
fine-tune ad-hoc parameters to compute practically certain (class of) graphs.

12 P. Berthomé, S. Lebresne, and K. Nguyêen

4.3 Application on cycles

In this section, we provide a simple example of the behavior of our algorithm
given two different strategies for the choice function. Before this, we just an-
ticipates the result of the following section concerning the number of nodes
developed by a general recursion tree using Algorithm 1 is O(2n2

).

As shown in Figure 4(a), a triangulation F of the cycles is simple. The first
strategy consist in adding the edges in the recursion from left to right, as shown
in Figure 5. Note that, in our general algorithm, the Step 3 is inefficient, and
could be removed in this case.

Figure 5. First step of triangulation process on C7.

Let Un be the number of nodes in the recursion tree for this strategy. We
have the following recursion equation:

{
Un+2 = 1 + Un+1 + Un

Ui = 1 i ≤ 3
(9)

The solution of this equation is dominated by an exponential term in O(ρn),
where ρ is the golden ratio ((1 +

√
5)/2). To be more precise, we have:

Un =

(
1 −

√
5

5

)
ρn + o(ρn) = 0.56 ρn + o(ρn).

For the second strategy, we add the edge in order to complete a more central
edge in the augmented clique tree, as shown in Figure 6.

Let consider now Vn as the number of nodes generated by Algorithm 3. We
note that the recurrence equation depends on the parity of n leading to the
following equation. For small values of n, we obtain slightly better values than
by the recursion equation due to triangulated graphs that are directly generated
by Step 9.

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 13

A

B B

Figure 6. First steps of Algorithm 3 on C7. We only give here two levels of recursion.
We denote the recursion of type A when it corresponds to Step 9, the recursions of
type B to Step 3.

V2n = 3 + 2Vn + 2Vn+1

V2n+1 = 3 + Vn + 2Vn+1 + Vn+2

Vi = 1 i ≤ 3
V4 = 3
V5 = 7

(10)

This recursion is satisfied by Vn =
⌊

(n−1)2

2

⌋
− 1, for n > 3.

This simple example shows that the choice function is important and atten-
tion should be paied in its optimization.

5 A lower bound of the complexity

In this section, we provide a simple lower bound of the complexity of the previous
algorithm directly connected to the structure of the triangulation set, viewed as
a simple graph. For this, we analyze our basic Algorithm 1 in terms of number
of recursion nodes in Section 5.1 and derive some lower bounds for Algorithm 3
in Section 5.2.

5.1 Tight analysis of Algorithm 1

In this section, we consider the basic algorithm for computing the chromatic
polynomial of a graph using the completion strategy. Let consider that the edges
to added are in the set F . We have the following result.

14 P. Berthomé, S. Lebresne, and K. Nguyêen

Lemma 4. Let F be an edge set using labels in {1, . . . , k}, and n ≥ k. Let∑
bn
i λ(i) be the chromatic polynomial of Gn = Kn \ F . Then, the value s(n) =∑

bn
i is independent of n.

Proof. This can be shown in two ways. First, using [17], it is known that s(n)
counts the number of clique covers of Kn \ F , more precisely bn

i is the number of
clique covers of Gn using i cliques. Note that, for n ≥ k, Gn is exactly composed
by Gk and n− k isolated points, and the set of edges of Gk is exactly the set F .
Consequently, given a clique cover of Gk using i cliques, we can associate in a
canonical way an unique clique cover of Gn using i+n−k cliques: add the n−k
K1 corresponding to the isolated points. Indeed, this clearly provides a bijection
between the set of clique covers of Gk using i cliques and the set of clique covers
of Gn using i + n − k cliques. Since these sets are finite, we have bk

i = bn
i+n−k.

Since Gn contains n − k isolated points, bn
i = 0 for i < n − k. Finally, we have

s(n) = s(k), for n > k.

The second way uses the recursion tree induced by the computation of
P (Gn, λ) using of Equation 1 and stopping the recursion when the graphs are
cliques. Using this paradigm s(n) counts the number of leaves of this particular
recursion tree. In order to conclude, we just have to note that given a recursion
tree for some n, we can derive a similar (having the same structure) one for n′:
the idea is then to introduce the edges in the same order within both trees.

�

Let consider now the consequence of this lemma for the complexity of Algo-
rithm 1: the way the edges are considered is not important: the number of steps
will be exactly the same whatever the choice made in Step 3.

Definition 4. Let F be an edge set using labels in {1, . . . , k}. We define cc(F)
as the number of clique covers of F .

Lemma 4 provides a way to compute this value using the chromatic polynomial.
For example, it is easy to see that cc(F) = 2 is F is reduced to one edge,
and 2k if F is a matching of size k. In the case of a cycle, F corresponds to a
complete graph minus the cycle. It can be shown that the clique cover is exactly
the number of partitions of an n-set into blocks of size > 1 [18, Seq A000296]
(where the first elements are 1, 0, 1, 1, 4, 11, 41, 162, 715, 3425, 17722, 98253,
580317, 3633280, 24011157, 166888165, 1216070380, 9264071767, 73600798037,
608476008122, 5224266196935, 46499892038437, 428369924118314, . . .).

Theorem 3. The number of recursion nodes developed by Algorithm 1 is exactly
2cc(G) − 1.

Proof. This is a direct consequence of Lemma 4 and of the fact that the recursion
tree has a special shape: all the internal nodes have 2 children, leading to the
desired size.

�

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 15

In the following section, we show the impact of this bound on our algorithm
and any algorithm that would be based on addition of edges and merges of
non-adjacent vertices.

5.2 Lower bound for Algorithm 3

In Section 4, we have exhibited some strategy to speed up the final execution of
Algorithm 3. The main point is to find the best edge in clique tree to complete
in order to apply the separation step (Step 3).

Theorem 4. Let G be graph and F a triangulation of G. Let T be the augmented
clique tree of G and F . Let F1 be the label of an edge of T . Then, the number of
nodes in the recursion tree induced by Algorithm 3 is greater than 2cc(F1) − 1.

Proof. The idea is to develop the recursion tree as done in the proof of Lemma 4
on F1. In order to quantify the size of this tree, we prune it in the following way:
we restrict the edges to add in Step 9 of Algorithm 3 to F1. Furthermore, we
consider the steps of separation of the clique tree (Step 3) as final steps. This
reduced recursion tree can be mapped onto the recursion tree of F1 (seen as a
graph) using our initial algorithm (Algorithm 1). Using Theorem 3, we obtain
the desired result.

This choice to select only the edges in F1 is valid since the studied recur-
sion tree corresponds to the quotient of the effective recursion tree by the steps
induced by the edges in the considered label.

�

Thus, given a triangulation of a graph, we can evaluate a lower bound of the
complexity, and thus of the general computation time. The characteristic of this
computation is that it is based on the same algorithm, but on smaller graphs. The
computation of this lower bound can be performed efficiently compared to the
global time. However, this bound can be very far from the effective complexity
of the algorithm since we only consider some local operations.

One initial test before using this complex one should be to consider a maximal
matching of the set F1 (of size k). As shown before, this bound is lower bounded
by 2k. This first filter would only restrict our computation to very large graph
for which the separators are also large.

To conclude this section, better lower bounds should be found in order to
capture very efficiently the time that will be spent in the real computation of
our algorithm.

6 Experiments

In this section, we provide experimental results on several classes of graphs. The
algorithms are coded in OCAML. In the following, we never consider triangulated
graphs since Lemma 2 gives an efficient solution. All the computations of the

16 P. Berthomé, S. Lebresne, and K. Nguyêen

thickness of triangulation parameter have been performed using the minimum
degree heuristic. This only provides an upper bound of the parameter and a
decomposition for this value.

6.1 Small thickness of triangulation

In this section, we examine the behavior of this algorithm on graphs having a
small thickness of triangulation. In this class, we consider the cycles, the wheels,
the tori and the cylinders and some circulant graphs.

Cycle: Cn, n nodes, n edges, thickness of triangulation: 1. The clique tree is
a chain, as we have seen in the previous sections. Even the closed form of the
chromatic polynomial is known, this constitutes a good benchmark for generic
algorithms.

n 100 200 300 400 500 600 700 800 900 1000
Time (s) 0.45 2.25 5.79 12.00 20.40 32.10 48.54 70.37 97.85 129.77

Cylinders 3 times n: Cyl(3, n), 3n nodes, 6n− 3 edges, thickness of triangu-
lation: 2. The clique tree is a chain. There is no real challenge here since each
cycle is a separator and we can split efficiently the graph into smaller pieces.
The overhead comes from the use of very long integers.

n 5 10 15 20 25 30 35 40 45 50
|V (G)| 15 30 45 60 75 90 105 120 135 150
density .25 .13 .08 .06 .05 .04 .03 .03 .02 .02
Time (s) 0.01 0.01 0.02 0.04 0.06 0.08 0.12 0.16 0.20 0.27

n 55 100 150 200 250 300 350 400 450 500
|V (G)| 165 300 450 600 750 900 1050 1200 1350 1500
density .02 .01 .008 .006 .005 .004 .003 .003 .002 .002
Time (s) 0.34 1.50 4.61 11.08 22.22 42.63 64.02 94.72 136.60 188.63

Cylinders 4 times n: Cyl(4, n), 4n nodes, 8n− 4 edges, thickness of triangu-
lation: 4. The clique tree is a chain with extremities having two leaves.

n 5 10 15 20 25
|V (G)| 20 40 60 80 100
density .18 .09 .06 .04 .03
Time (s) 0.09 2.20 9.59 66.16 129.97

The thickness of triangulation increases a lot with the size of the cycle in
the cylinder. The corresponding clique tree is more and more compact. All these
tends to let more complex the chromatic polynomial.

Grids 2 times n: M(2, n), 2n nodes, 3n− 2 edges, thickness of triangulation:
1. Same comment as for Cyl(3, n).

n 100 200 300 400 500 600 700 800 900
Time (s) 0.64 4.22 13.88 34.35 70.55 138.67 214.07 324.66 469.44

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 17

Grids 3 times n: M(3, n), 3n nodes, 5n− 3 edges, thickness of triangulation:
2. In this example, we see the influence of the choice of the first edge in the
triangulation process (Step 9 in Algorithm 3). The augmented clique tree in this
case is the same as for the cylinders Cyl(4, n). However, the choice made in this
example was to take the most central edge of the augmented clique tree. For
even n, this edge has load 2, whereas it has load 1 for odd n.

n 5 10 15 20 25 30 35 40 45 50 55
Time (s) 0.03 0.07 0.20 0.47 0.43 1.49 1.58 3.02 2.40 4.77 5.39

n 60 65 70 75 80 85 90 95 100 150 200
Time (s) 10.18 5.2 13.94 11.91 23.01 12.37 26.21 28.08 40.94 159.61 563.78

Grids 4 times n: M(4, n), 4n nodes, 7n− 4 edges, thickness of triangulation:
5. The clique tree is more compact than before. Here again, the choice of the
first edge is crucial to obtain good performance. As example, for n = 8, the first
edge of the clique tree to be completed has thickness 5, inducing a 32 overhead,
whereas for n = 9, the first edge has thickness 3, inducing only an 8 overhead.

n 4 5 6 7 8 9 10 11 12
Time (s) 0.05 0.07 0.42 0.63 1.63 0.91 4.76 6.60 13.14

n 13 14 15 16 17 18 19 20 25
Time (s) 7.83 35.62 38.44 96.40 15.29 149.33 185.65 383.59 250.97

Miscellaneous grids. Here are several results on different grids M(n, m).

(n, m) (2, 50) (3, 10) (3, 20) (4, 10) (5, 5) (5, 7) (6, 6)
#vertices 100 30 60 40 25 35 36
#edges 148 47 97 66 40 58 60
density 0.02 0.10 .05 .08 0.13 0.09 0.09

Thickness 1 3 3 5 8 8 14
Time (s) 0.10 0.16 1.03 5.56 0.85 12.35 74.84

Circulant graphs: Circ(n), n nodes, 2n edges, thickness of triangulation: 4,
the clique tree is a chain. In this experiment, we only present the circulant graphs
with generators (+1, +2). The thickness of the other circulant is very large, and
the time for processing the graphs is very large. One characteristic of this family
is that all the edges in the clique tree have the same thickness.

n 10 20 30 40 50 60 70 80 90 100 120

Time (s) 0.00 0.16 0.90 3.11 8.15 19.85 42.25 103.74 209.48 424.38 1608.03

6.2 Random graphs

Many experiments on random graphs have been performed. However, we would
like to emphasize several characteristics. The aim was to determine the link
between the efficiency of computation, the size and the density of the graph.
Each value is the mean of 3 test graphs. This clearly does not give a significant

18 P. Berthomé, S. Lebresne, and K. Nguyêen

sample. However, it gives some tendency on the global behavior. As shown in
the following table, the completion time of the algorithm widely depends on
the density of the graph, the most difficult instances stand for medium density
(around 50%).

From these experiments, we can see that the curves of the thickness of tri-
angulation follows the time’s. Some correlations with the size of the tree have
been observed during other complementary investigations.

18 vertices

density 16.56 20.48 30.50 41.39 50.98 59.91 69.93 79.30 90.63
#edges Clique Tree 14.33 13.67 10.67 9.67 7.33 6.33 5.67 4.67 3.00
diameter Clique Tree 7.33 5.33 4.67 5.00 3.33 4.00 4.00 3.33 2.00

Size Max Clique 4.67 5.33 8.33 9.33 11.67 12.67 13.33 14.33 16.00
Thickness 4.33 3.33 14.33 14.00 19.67 18.33 17.33 14.33 6.67
Time (s) 0.01 0.02 1.56 2.89 19.63 7.42 5.67 2.26 0.10

20 vertices

density 13.33 19.65 30.00 40.53 51.05 60.70 70.53 81.75 91.05
#edges Clique Tree 16.67 14.67 11.67 9.33 7.00 6.33 5.33 4.33 3.33
diameter Clique Tree 7.00 6.67 5.67 4.00 4.00 3.67 3.00 2.67 2.00

Size Max Clique 4.33 6.33 9.33 11.67 13.67 14.67 15.33 16.67 17.33
Thickness 3.00 7.33 19.00 27.00 25.33 27.00 22.67 16.00 10.00
Time (s) 0.00 0.09 12.93 169.48 186.51 130.10 57.91 32.57 0.59

21 vertices

density 13.02 20.48 30.79 41.43 51.75 60.63 70.63 81.59 90.79
#edges Clique Tree 17.33 15.00 12.00 9.33 7.67 7.33 5.67 4.33 3.33
diameter Clique Tree 7.33 6.67 6.00 5.33 4.00 4.67 3.00 2.33 2.00

Size Max Clique 4.33 7.00 10.00 12.67 14.67 14.67 16.33 17.67 18.67
Thickness 2.00 9.67 20.67 35.33 28.33 30.33 26.67 18.67 12.33
Time (s) 0.01 0.36 59.43 19431 1150 478.33 120.52 55.63 2.02

22 vertices

density 13.28 20.20 30.30 40.98 51.80 60.61 71.43 81.96 91.05
#edges Clique Tree 18.33 16.33 12.67 9.67 7.33 7.00 5.67 4.67 3.33
diameter Clique Tree 6.33 7.33 6.00 5.33 4.33 4.33 3.00 2.67 2.33

Size Max Clique 4.33 6.67 10.33 13.33 15.67 16.00 17.33 18.33 19.67
Thickness 3.33 11.00 19.67 36.00 34.00 37.00 27.67 21.33 13.00
Time (s) 0.03 0.66 193.85 20801 ****2 **** 340.67 100.35 3.34

25 vertices

density 12.78 20.56 30.67 41.56 52.44 61.44 72.00 81.33 90.33
#edges Clique Tree 20.67 16.67 13.33 9.67 8.00 7.33 6.00 4.67 4.00
diameter Clique Tree 7.33 6.67 6.00 4.33 4.67 3.67 3.67 3.00 2.67

Size Max Clique 5.33 8.67 12.67 16.33 18.00 18.67 20.00 21.33 22.00
Thickness 8.00 15.00 32.00 55.00 55.33 52.00 42.00 32.33 18.00
Time (s) 0.54 14.32 840.51 **** **** **** **** 6701 33.62

1 One of the graphs leads to a memory overflow.
2 Two or more graphs of this experiment lead to a memory overflow.

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 19

7 Conclusion

This work constitutes a first approach of the computation of the chromatic poly-
nomial using the triangulation theory of the graphs. Doing this, we have enlight-
ened some correlations between a new parameter of triangulation, namely the
thickness of triangulation, and the computation time of our algorithm. Some
non-trivial lower bounds, using the computation of chromatic polynomials on
small graphs have been shown.

Many questions arise from this work. First of all, is this new parameter can be
optimized independently from the other classical parameters of triangulation, as
the minimum fill-in. In the example of Figure 7, we show that both parameters
are not optimal for the same triangulations. In this example, only two minimal
triangulations are possible (up to symmetry). The minimal degree heuristic finds
the triangulation that minimizes the fill-in.

q

r

r

q

p p

(a) Graph

q

r

r

q

p p

(b) Fill-In = 27;
Thickness = 18

q

r

r

q

p p

(c) Fill-In = 28;
Thickness = 16

Figure 7. A graph for which the minimum fill-in and the thickness of triangulation
does not exist for the same triangulations. Each circle denotes a complete graph and
each edge represents a complete bipartite graph, and p = 2, q = 3 and r = 6.

Here are some simple questions that are still open on this new parameter:

– Does the determination of the thickness of triangulation is NPO-complete?
– Does there exists some simple approximation schemes?
– What are the connections with the classical graph parameters, such as the

treewidth?
– Are the graphs with small thickness easy to recognize?

Concerning the computation of the chromatic polynomial itself, this work
constitutes a first step in the elaboration of a new heuristic. Studies on the
choice function have to be performed and analyzed. Another direction of exper-
imentation could be to use the two opposite approaches for this computation.

20 P. Berthomé, S. Lebresne, and K. Nguyêen

First, use the remove and contract edges paradigm (Equation 2) in order to
break large cliques, inducing large thickness, then use our approach when the
triangulation induces a small enough thickness.

Acknowledgments

The authors thank Ioan Todinca for the counterexample of Figure 7.

References

1. B. Aspvall and P. Heggernes. Finding minimum height elimination trees for interval
graphs in polynomial time. BIT, 34(4):484–509, 1994.

2. C. Berge. Graphs and Hypergraphs. North Holland, Amsterdam, 1973.
3. A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the

minimal triangulation process. In H.L. Bodlaender, editor, Graph Theoretical Con-
cepts in Computer Science (WG) 2003, volume 2880 of Lecture Notes in Computer
Science, pages 58–70, October 2003.

4. G.D. Birkhoff and D.C. Lewis. Chromatic polynomials. Transactions of the Amer-
ican Mathematical Society, 60:355–451, 1946.

5. N. Chandrasekharan, C.E.V. Madhavan, and R. Laskar. Chromatic polynomials
of chordal graphs. Congressus Numerantium, 61:133–142, 1988.

6. S-C. Chang. Exact chromatic polynomials for toroidal chain of complete graphs.
Physica A, 313:397–426, 2002.

7. F.M. Dong, K.L. Tep, K.M. Koh, and M.D. Hendy. Non-chordal graphs having
integral-root chromatic polynomial II. Discrete Mathematics, 245:247–253, 2002.

8. B. Eisenberg. Generalized lower bonds for the absolute values of the coefficients of
chromatic polynomials. In Recent Trends in Graph Theory, volume 186 of Lecture
Notes in Mathematics, pages 85–94. Springer-Verlag, 1971.

9. P. Galinier, M. Habib, and C. Paul. Chordal graphs and their clique graph. In
M. Nagl, editor, Graph Theoretical Concepts in Computer Science (WG), volume
1017 of Lecture Notes in Computer Science, pages 358–371, Aachen, Germany,
June 1995. 21st Internationnal Workshop WG’95, Springer.

10. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

11. G. Haggard. Computing chromatic polynomials of large graphs I. Journal of
Combinatorial Mathematics and Combinatorial Computing, 13:175–186, 1993.

12. G. Haggard. Using thresholds to compute chromatic polynomials. Ars Combina-
toria, 58:85–95, 2001.

13. G. Haggard and T.R. Mathies. Note on the computation of chromatic polynomials.
Discrete Mathematics, 199:227–231, 1999.

14. B. Jackson. Zeros of chromatic and flow polynomials of graphs. Journal of Geom-
etry, 76:95–109, 2003.

15. A. Natanzon, R. Shamir, and R. Sharan. A polynomial approximation algorithm
for the minimum fill-in problem. In ACM, editor, ACM Symposium On Theory of
Computing, pages 41–47, New York, NY, USA, 1998. ACM Press.

16. J. Oxley and D. Welsh. Chromatic, flow and reliability polynomials: the complexity
of their coefficients. Combinatorics, Probability and Computing, 11:403–426, 2002.

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 21

17. D.R Shier and N. Chandrasekharan. Algorithms for computing the chromatic
polynomial. Journal of Combinatorial Mathematics and Combinatorial Computing,
4:213–222, 1988.

18. N.J.A. Sloane. On-line encyclopedia of integer sequences. http://www.research.
att.com/~njas/sequences/index.html.

19. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 2(1):77–79, March 1981.

22 P. Berthomé, S. Lebresne, and K. Nguyêen

Appendix

A Proof of Theorem 1

For the sake of simplicity and as far as we treat undirected graphs, we will
consider that (a, b) and (b, a) represent the same edge.
Let

– G = (V, E) be a chordal graph.
– T = (V , E) be a clique tree of G.
– e = (i, j)∈E.
– G/e = (V/e, E/e) be the graph obtained by contracting the edge e in G:

• V/e = (V − {i, j})∪{µ}
• E/e = {(a, b)∈E | {a, b}⊆(V − {i, j})}

∪ ({(µ, a) | ((i, a)∈E)∨ ((j, a)∈E)} − {µ, µ})

(here, µ represent the “new” vertex resulting in the contraction of i and j).
Let C∆ = (V∆, E∆) where:

– ∆(v) =

{
V if i/∈V ∧j /∈V
(V − {i, j})∪{µ} otherwise

– V∆ = {∆(V) | v∈V}
– E∆ = {(∆(a), ∆(b)) | (a, b)∈ E)}

Let C′ = (V ′, E ′) be the graph obtained by contracting an edge (e1, e2) in C∆

each time that e1⊆e2. We want to show that C′ is a clique tree of G/e. The
proof is decomposed in two steps:

1. We will first show that for C∆ the following properties hold:
a. it’s a tree.
b. V∆ is composed only of cliques of G/e and contain all the maximal cliques.
c. ∀ v∈V/e, the set of elements of V∆ containing v is a sub-tree of C∆.

2. Then, we will show that C′ is actually a clique tree of G/e, that is to say
that:
a. it’s a tree.
b. C′ contains only the maximal cliques of G/e. In fact, we show that any

non-maximal clique of G/e in V∆ is eliminated in V ′, based on Property
1.a.

c. ∀ v∈V/e, the set of elements of V ′ containing v is a sub-tree of C′.

We will first demonstrate some useful lemma.

Lemma 5. if α is a clique of G/e and µ/∈α, then α is clique of G.

Proof. It’s obvious because edges of E and E∆ are the same as far as neither i
nor j nor µ are concerned.

�

RR LRI-1403, March 2005 — Computation of Chromatic Polynomials. . . 23

Lemma 6. if α∪{µ} (µ/∈α) is a clique of G/e, then α∪{i} or α∪{j} are
cliques of G.

Proof. Let α be a set of element of V/e with µ/∈α and such that α∪ {µ} is a
clique of G/e. By Lemma 5, we know that α is a clique of G. Suppose that
neither α∪{i}, nor α∪ {j} are cliques of G. We can infer that their exists u and
v in α such that:

– (i, u)/∈E (α∪{i} is not a clique of G)
but (j, u)∈E (else (µ, u)/∈E/e)

– (j, v)/∈E (α∪{j} is not a clique of G)
but (i, v)∈E (else (µ, v)/∈E/e)

– u 6=v (because for example, (i, u)∈E but (i, v)/∈E).
– (u, v)∈E (u and v are in α, clique of G).

It leads that the path ijuv in G is a cycle of length 4 (without chords). But it’s
absurd as G is chordal.

�

We can now go on with the main proof:

1. a. C∆ is a tree: derived from definition.
b. V∆ is composed only of cliques of G/e and contain all the maxi-

mal cliques:
– ∀ v∈V , ∆(v) is a clique of G/e (V∆ contains only cliques of

G/e):
Let v∈V , v is a clique of G, then by cases analysis:
• j /∈v and i/∈v: then ∆(v) = v and v is always a clique of G/e.
• j∈v or i∈v: ∆(v) = (v − {i, j})∪{µ}, but v − {i, j} is clearly a

clique of G/e and, as v is a clique of G and as
{(µ, a) | ((i, a)∈E)∨ ((j, a)∈E)}⊆E/e, v is a clique of G/e.

– V∆ contains all the maximal cliques of G/e:
We suppose that there exists α a maximal clique of G/e which is not
in V∆. We will show that it leads always to a contradiction. We have
two cases:
i. µ/∈α: by Lemma 5, α is a clique of G. We also have two cases:

• α is maximal: then α∈V and ∆(α) = α is in V∆, absurd.
• α is not maximal: there exists a maximal clique β such that

α⊂β (and β∈V):
∗ if β = α∪{j} or β = α∪{i}, then ∆(β) = α∪{µ}. But, as

µ/∈α, ∆(β) is a clique of G/e such that α⊂∆(β). It contradict
the maximality of α.

∗ otherwise, there exists a vertex v∈V , different from i and
j, such that β = α∪{v}∪γ for some γ. But then, ∆(β) =
α∪{v}∪γ′ for some γ′. This comes in contradiction with the
hypothesis of α being maximal.

ii. µ∈α: let α− = α − µ, by Lemma 6, we know that either α−∪{i}
or α−∪ {j} is a clique of G. Let’s call α′ this clique. There are
two distinct cases:

24 P. Berthomé, S. Lebresne, and K. Nguyêen

• α′ is maximal: then α′∈V and ∆(α′) = α is in V∆, absurd.
• α′ is not maximal: there exists a maximal clique β such that

α′⊂β (and β∈V):
∗ if β = α′∪{j} or β = α′∪{i}, then ∆(β) = α∪{µ} = α. It’s

absurd as α/∈V∆.
∗ otherwise, there exists a vertex v∈V , different from i and

j, such that β = α′∪{v}∪γ for some γ. But then, ∆(β) =
α∪{v}∪γ′ for some γ′. It is absurd as α is maximal.

c. ∀ v∈V/e, the set of elements of V∆ containing v is a sub-tree of
C∆.
Let’s remember that this property is true for C. Let v be an element of
V/e. if v 6=µ, as the property is true for that vertex for C, it is necessarily
true for C∆ as we only change all the occurrences of j and i to µ. For v =
µ, µ occurs in all the vertices of C∆ resulting of vertices of C containing
i or j. But, in C, for i and j, the set of elements of V containing them
forms two sub-trees. And, as e∈E, e is in a maximal clique of G, these
two sub-tree are connected by at least one vertex of C. Consequently, in
the renaming, the set of elements of V∆ contains µ is a sub-tree of C∆.

2. a. C′ is a tree: derived from definition.
b. We want to show that the contractions done for obtaining C′

suppress all and only the non-maximal cliques of V ′ from G/e.
We know that C∆ contains only cliques of G/e in V ′, and we know that
there is in particular the maximal cliques of G/e. For any clique c of V ′

which is not maximal, we know that there is a maximal clique α in V ′

which includes it. And by Property 1.b, we know that there exists a path
in C′ from c to α, such that all c is included in all the clique of this path.
Then, by contraction, this clique will be suppressed. And of course, no
maximal clique can be suppressed.

c. ∀ v∈V/e, the set of elements of V ′ containing v is a sub-tree of
C′.
We have showed that this property is true for C∆. The operation from
C∆ to C′ is to contract edges when the vertex at each sides is included
one in the other (and we keep the bigger one). This operation clearly
couldn’t break the property.

All these elements complete the proof of Theorem 1.

