
M1 MPRI : Automates et Applications
Course 1

Basics of regular word languages

kn@lri.fr

January 16, 2024

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 2 / 102

Goal of this course

Study automata and their connections with language theory and
logic. Automata have two flavours:

they are algebraic objects, defined mathematically and equiped
with formal properties

they are computing objects, you can run them to get a result

The course is an overview of different type of automata (and
languages and logics), that give the vocabulary to explores such
objects in more detailes in M2.

Automates et Applications Regular languages M1 MPRI 3 / 102

MC2C and organisation

Evaluation

an assignment (that include proofs and a bit of progamming)
(40% of the final grade)

a written exam, 2h, 60% of the final grade

Each session (tuesday morning) is divided (roughly) between 1h30
lecture and 1h30 exercises.

Automates et Applications Regular languages M1 MPRI 4 / 102

Overview of the course

We will study the following concepts

1 Basics of regular word languages and word automata

2 Regular tree languages (1)

3 Regular tree languages (2)

4 ω-regular languages and Büchi automata

5 Automata and logics

6 (extra) Introduction to Markov chains (aka. automata with
probabilities)

Automates et Applications Regular languages M1 MPRI 5 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 6 / 102

Alphabets

Définition (Alphabet)
An alphabet is a set of elements called symbols or letters.

We denote alphabets with Σ and a, b, . . . to range over symbols.

We always consider finite alphabets (even though most results
can be generalized to infinite alphabets).

Automates et Applications Regular languages M1 MPRI 7 / 102

Words

Définition (Word)
A word over an alphabet Σ is a sequence of symbols. The empty word
(made of 0 symbol) is written ϵ.

We first focus on finite words, and we will later study the case of
infinite words.

We writeΣ∗ the set of finite words over an alphabet Σ (we will come
back to this notation and its meaning).

Words can be seen like a formal definition for character strings as
used in programming languages. Alphabet correspond to the
notion of CharSet, such as ASCII, Latin-1, Latin-9 or UCS (also known
as “Unicode”).

Automates et Applications Regular languages M1 MPRI 8 / 102

Length

Définition
Length Let w ∈ Σ∗ be an n symbols word. We call n the length of w and
we write |w | = n.

Automates et Applications Regular languages M1 MPRI 9 / 102

Examples

Let Σ = {a, b, c}. The set of words of length at most two is over Σ is:

{ϵ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}

Consider a 64bit CPU. The set of possible values for a register is the
set of words over Σ = {0, 1} of length 64 (exactly).

Automates et Applications Regular languages M1 MPRI 10 / 102

Concatenation

Définition (Concatenation)
Let u = a1a2 . . . an and v = b1b2 . . . bm two words of length n et m. The
concatenation of u and v is the word w = a1a2 . . . anb1b2 . . . bm of
length n +m. We write the concatenation by simple juxtaposition
w = uv or u · v (to disambiguate or emphasize the operation).

Automates et Applications Regular languages M1 MPRI 11 / 102

Properties of concatenation

Let Σ be an alphabet. The set (Σ∗, ·) equipped with the
concatenation is amonoid:

Identity element for all word v ∈ Σ∗, we have ϵv = vϵ = v

Associativity for all u, v ,w ∈ Σ∗, w have u(vw) = (uv)w .

Remark : the length function |_| : Σ∗ → N is a monoid morphism
between Σ∗ and N, equipped with addition.

|ϵ| = 0

For all u, v ∈ Σ∗, |u|+ |v | = |uv |

Automates et Applications Regular languages M1 MPRI 12 / 102

Properties of concatenation

Let Σ be an alphabet. The set (Σ∗, ·) equipped with the
concatenation is amonoid:

Identity element for all word v ∈ Σ∗, we have ϵv = vϵ = v

Associativity for all u, v ,w ∈ Σ∗, w have u(vw) = (uv)w .

Remark : the length function |_| : Σ∗ → N is a monoid morphism
between Σ∗ and N, equipped with addition.

|ϵ| = 0

For all u, v ∈ Σ∗, |u|+ |v | = |uv |

Automates et Applications Regular languages M1 MPRI 12 / 102

Power

Définition
Power Let v ∈ Σ∗ and n ∈ N, we define vn by:

v0 = ϵ

vn = vvn−1, for n ≥ 1

Example: let Σ = {a, b}, the word a4b2 is aaaabb.

Automates et Applications Regular languages M1 MPRI 13 / 102

Prefix, suffix and substring

Définition (Prefix, suffix)
Let w = uv , three words in Σ∗. We say that:

u is a prefix of w

v is a suffix of w

Question : Let Σ = {a, b}. Give all prefixes of the word abbab.

{ϵ, a, ab, abb, abba, abbab}

Définition (substring)
Let v a word in Σ∗. We say that u is a substring of v if there existsup and
us such that v = upuus .

Warning in french: substring≡facteur

Automates et Applications Regular languages M1 MPRI 14 / 102

Prefix, suffix and substring

Définition (Prefix, suffix)
Let w = uv , three words in Σ∗. We say that:

u is a prefix of w

v is a suffix of w

Question : Let Σ = {a, b}. Give all prefixes of the word abbab.

{ϵ, a, ab, abb, abba, abbab}

Définition (substring)
Let v a word in Σ∗. We say that u is a substring of v if there existsup and
us such that v = upuus .

Warning in french: substring≡facteur
Automates et Applications Regular languages M1 MPRI 14 / 102

Embedding

Définition (embedding)
Let v = x1 . . . xn a word in Σ∗. The word u = xi1 . . . xik is an embedding
of v if 1 ≤ i1 < . . . ik ≤ n.

Informally, an embedding of v is v where somme symbols have
been erased. For instance, for the word abcabc , aa, abab and cac are
embedding.

Warning in french: embedding≡sous-mot.

Automates et Applications Regular languages M1 MPRI 15 / 102

Mirror

Définition (mirror)
Let v = x1 . . . xn a word in Σ∗, we call mirror word and write vR the
word vR = xn . . . x1.

Remark: a word v such that v = vR is called a palindrome.

Automates et Applications Regular languages M1 MPRI 16 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 17 / 102

Language

Définition (language)
A language L over an alphabet Σ is a subset of Σ∗. We write P(Σ∗) the
set of languages over Σ.

Recall that P(E) is the powerset of E , i.e. the set of all subsets of E .
Do not confuse the following: Σ∗, the set of all words and P(Σ∗) the
set of all languages. If Σ = {a, b}, then:

Σ∗ = {ϵ, a, b, aa, ab, ba, aaa, aab, aba, . . .}

P(Σ∗) = {{}, {ϵ}, {ϵ, a}, {ϵ, aaaaba, b}, . . .}

Automates et Applications Regular languages M1 MPRI 18 / 102

Examples of languages

Examples :

L = {abc, bac, acb} on Σ = {a, b, c}

L = {abnc | n ∈ N} = {ac, abc, abbc, ab3c, . . .}

L = {an | n is prime} = {aa, aaa, aaaaa, a7, a11, . . .}

Languages are set, and we can therefore talk about the usual
set-theoretic operations on sets (union, intersection,
complements). We can also define word specific operations.

Automates et Applications Regular languages M1 MPRI 19 / 102

Union, intersection, complement

Définition (Union, intersection)
Let L1 et L2 two languages over the same alphabet Σ. We define the
union language L1 ∪ L2 and the intersection L1 ∩ L2 with the usual
set-theoretic operations.

Définition (Complement)
Let L be a language over an alphabet Σ. We call complement of L and
we write L̄ the set Σ∗ \ L.

Automates et Applications Regular languages M1 MPRI 20 / 102

Concatenation and power

Définition (concatenation of languages)
Let L1 and L2 be two languages over an alphabet Σ. The concatenation
language L1 and L2 is the set L1L2 defined as:

L1L2 = {w | ∃u ∈ L1,∃v ∈ L2,w = uv}

Définition (power of a language)
Let L be a language over an alphabet Σ and n ∈ N. The power language
Ln is defined as:

Ln = {v1 . . . vn | vi ∈ L for 1 ≤ i ≤ n}

Remark: L0 = {ϵ}
Warning: Ln ̸= {vn | v ∈ L} (exercise).

Automates et Applications Regular languages M1 MPRI 21 / 102

Kleene star

Définition (Kleene star)
Let L be a language over an alphabet Σ. The Kleene star of L is the
language L∗ defined as:

L∗ =
⋃
n∈N

Ln = {v1 . . . vn | n ∈ N, vi ∈ L for 1 ≤ i ≤ n}

Exemple si L = {aa, bb, ab}, alors :

L∗ = {ϵ, aa, bb, ab, aaaa, aabb, aaab, bbaa, bbbb, bbab, . . .}

Stephen C. Kleene : Americain mathematician, student of Alonzo
Church (like Alan Turing). Pioneered the theory of recursion and
the study of computable functions.

Automates et Applications Regular languages M1 MPRI 22 / 102

Mirror language

Définition (Mirror language)
Let L be a language over Σ. We call mirror language of L and write LR

the language:
LR = {vR | v ∈ L}

Automates et Applications Regular languages M1 MPRI 23 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 24 / 102

Motivation
A language is a set of words, which can be arbitrarily complex. As
computer scientists, we are interested by languages for which we
can decide whether a word is in it or not. Noam Chomsky
(Americain linguist) established a hierarchy of formal languages:

Type-3: regular

Type-2: context-free

Type-1: context-sensitive
Type-0: recursively enumerable

It is known that inclusion is strict.
Automates et Applications Regular languages M1 MPRI 25 / 102

Rational languages

Définition (Classe of rational languages)
Let Σ be an alphabet. Let Rat ⊂ P(Σ∗) be the smallest set such that:

∅ ∈ Rat (empty language)

∀x ∈ Σ, {x} ∈ Rat (singleton languages)

si L ∈ Rat, alors L∗ ∈ Rat (stability by Kleene star)

si L1, L2 ∈ Rat, L1 ∪ L2 ∈ Rat (stability by union)

si L1, L2 ∈ Rat, L1L2 ∈ Rat (stability by concatenation)

We call Rat the class of rational languages. A language L is rational if
and only if L ∈ Rat.

Automates et Applications Regular languages M1 MPRI 26 / 102

Remarks on Rat

We build Rat as such (assume Σ = {a, b} for this example):

Rat0 = {∅, {a}, {b}}

Rat1 =

Rat0 ∪ {{a, b}, {ab}, {ϵ}, {ϵ, a, aa, aaa, . . .}, {ϵ, b, bb, bbb, . . .}}

Rat2 = Rat1 ∪ {a, ab}, {b, ab}, {ϵ, a}, . . .}

. . .

This (infinite) process has a limit Rat∞ = Rat. The existence of such
a limit is a consequence of Tarski’s fixpoint theorem theorem.

Automates et Applications Regular languages M1 MPRI 27 / 102

Tarski’s fixed point theorem

Theorem (Tarski’s fixed point)
Let (L,≤) be a complete lattice and f : L → L a monotonic function over
L. The set of fixedpoints of L also forms a complete lattice under ≤.

Automates et Applications Regular languages M1 MPRI 28 / 102

Properties of rational languages

rational languages are closed under union, intersection,
complement and mirror.

the set of prefixes, suffixes, substring and embedding of a
rational languages is rational.

Automates et Applications Regular languages M1 MPRI 29 / 102

Regular expressions

Définition (regular expression)
A regular expression (or regexp) r over an alphabet Σ is a finite
production of the following grammar:

r ::= ∅ empty set
| ϵ empty expression
| x ∀x ∈ Σ symbol
| r∗ Kleene star
| r | r alternative
| r r concatenation

Operator ∗ is more binding than concatenation, itself more binding
than the alternative. Thus, the regexp a|bc∗ is parsed as a|(b(c∗)).

Automates et Applications Regular languages M1 MPRI 30 / 102

Recognizing via a regular expression

A regexp can be used to recognized a word, inductively on the
structure of the expression:

∅ does not recognize any word

the empty word is recognized by ϵ

a is recognized by a

a word v is recognized by r1 | r2 if it is recognized by r1 or by r2
a word v is recognized by r1r2 if there exists u and w such that
v = uw and u is recognized by r1 and w is recognized by r2
a word v is recognized by r∗ if:

either v is empty
or v is recognized by r r∗

Automates et Applications Regular languages M1 MPRI 31 / 102

Exemple de reconnaissance

Consider the regexp a(b|c)∗ and the word acb. The latter is
recognized by the expression:

acb : a · ((b|c)∗) (concatenation)
a : a (symbol)
cb : (b|c)∗ (Kleene star)
c : (b|c) (alternative)
c : c (symbol)

b : (b|c)∗ (Kleene star)
b : (b|c) (alternative)
b : b (symbol)

ϵ : (b|c)∗ (Kleene star)

Automates et Applications Regular languages M1 MPRI 32 / 102

Language of a regular expression

Let r be a regular expression. We can define Lr the set of all words
recognized by r :

L∅ = ∅

Lϵ = {ϵ}

Lx = {x}, ∀x ∈ Σ

Lr1|r2 = Lr1 ∪ Lr2

Lr1r2 = Lr1Lr2

Lr∗ = (Lr)
∗

⇒ the language recognized by r is rational.

Automates et Applications Regular languages M1 MPRI 33 / 102

Equivalence

The set of rational languages is exactly the set of languages
recognizable by a regular expression. We will henceforth use the
more common term “regular language”.

Automates et Applications Regular languages M1 MPRI 34 / 102

Other regular expressions

Several regexp are useful in practice and can be encoded in our
minimal subset:

r? ≡ r | ϵ (repetition 0 or 1 time)

r+ ≡ r r∗ (repetition 1 time or more)

rn ≡ r r . . . r (n times)

Automates et Applications Regular languages M1 MPRI 35 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 36 / 102

Motivation

We have two equivalent kinds of objecst:

Rational languages: the set of words having particular
algebraic properties

Regular expressions: a syntax and semantics to define sets of
words in a compact manner

We would like to decide some problems or effectively compute the
results of some operations.

Automates et Applications Regular languages M1 MPRI 37 / 102

Common problems for languages

Membership: let w be a word, is w in L ?
⇒ possible with a regexp but inefficient

Let L, compute its complement

Given two languages, compute their union (easy), intersection,
concatenation . . .

Test whether a language recognize the empty word

Test whether a language is finite

Test whether a language is universal (is equal to Σ∗)

Test whether two languages are equal

Test if a language is a subset of another

Automates et Applications Regular languages M1 MPRI 38 / 102

Deterministic automaton

Définition (deterministic automaton)
A deterministic automaton (Deterministic Finite Automaton, DFA) is a
5-tuple (Q,Σ, δ, q0,F) where:

Q is a finite set of states

Σ is an alphabet

δ : Q × Σ → Q is a transition function

q0 ∈ Q is an initial state

F ⊆ Q is a set of accepting states

Automates et Applications Regular languages M1 MPRI 39 / 102

Run

Definition (Run)
Let A = (Q,Σ, δ, q0,F) and v ∈ Σ∗. A run (or an execution) of A for
v = x1 . . . xn is a sequence of states r0, . . . , rninQ such that:

r0 = q0 (initial state)

ri+1 = δ(ri , xi+1), ∀0 ≤ i ≤ n

if rn ∈ F , we say that the run is accepting.

We say that A stops its run in state rn.

Automates et Applications Regular languages M1 MPRI 40 / 102

DFA recognizability

Définition (DFA recognizability)
Let v un mot de Σ∗ et A = (Q,Σ, δ, q0,F) a DFA. We say that A
recognizes v sif and only if there exists an accepting run for v by A.

We say that A accepts v or recognizes v . If there is no such run, we
say that A rejects v (or does not accept).

Automates et Applications Regular languages M1 MPRI 41 / 102

Example

Consider the word abba and the DFA A:

A = ({q0, q1, q2, q⊥}, {a, b}, δ, q0, {q2})

δ(q0, a) = q1

δ(q0, b) = q⊥

δ(q1, a) = q2

δ(q1, b) = q1

δ(q2, a) = q⊥

δ(q2, b) = q⊥

δ(q⊥, a) = q⊥

δ(q⊥, b) = q⊥

The word abba is recognized A, with the run q0, q1, q1, q2

Automates et Applications Regular languages M1 MPRI 42 / 102

Graphical representation

We can represent δ graphicaly as a direct graph. The vertices are
the states and the edges are labeled with symbols of Σ:

q0 q1 q2

q⊥

a

b

a

b

a, b

a, b

Automates et Applications Regular languages M1 MPRI 43 / 102

Language of an automaton

Définition (Language of an automaton)
Let A be a DFA. The language LA is the set of all words Σ∗ reconnized
by A.

La classe of reconnizable languages is the set of all languages that
can be recognized by some automaton.

Automates et Applications Regular languages M1 MPRI 44 / 102

Complete automaton

Définition (Complete automaton)
A DFA, A = (Q,Σ, δ, q0,F) is complete if and only if δ is a total function.

Lemme (Completion)
For all automaton A = (Q,Σ, δ, q0,F), there exists a complete
automaton A′ such that LA = LA′ .

Proof : if A is not complete, let A′ = (Q ∪ {q⊥},Σ, δ′, q0,F) and:

δ′(q, x) =

{
δ(q, x) if defined
q⊥ otherwise

δ′(q⊥, x) = q⊥, ∀x ∈ Σ

A state q⊥ such that ∀x ∈ Σ, δ(q⊥, x) = q_bot is called a sink state.

Automates et Applications Regular languages M1 MPRI 45 / 102

Usefulness of imcomplete automata

Incomplete DFA have are more practical since we don’t have to
store useless transitions (i.e. transitions that don’t help recognize a
word).
If there isn’t any possible transition, the run is stuck therefore the
word is rejected.
We can always assume that we work with complete automata
(some theorems require it), but we will often draw incomplete ones
to save space.

Automates et Applications Regular languages M1 MPRI 46 / 102

Boolean operations

Let A1 and A2 be two automata. We can construct A1∧2 such that
LA1∧2 = LA1 ∩ LA2 . Similarly, we can construct A1∨2 such that
LA1∨2 = LA1 ∪ LA2 .

Automates et Applications Regular languages M1 MPRI 47 / 102

Product automaton

Let A1 = (Q1,Σ, δ1, q0,F1) and A2 = (Q2,Σ, δ2, p0,F2). Define
A1∧2 = (Q1∧2,Σ, δ1∧2, (q0, p0),F1∧2) with:

Q1∧2 = Q1 × Q2 (each state is a pair of states of Q1 and Q2)

∀(q, p) ∈ Q1∧2,∀x ∈ Σ, δ1∧2((q,p),x) = (δ1(q, x), δ2(p, x)) (we
assume that the automata are complete).

F1∧2 = {(q, p) | q ∈ F1 ∧ p ∈ F2}

The automaton A1∧2 recognizes LA1 ∩ LA2

Automates et Applications Regular languages M1 MPRI 48 / 102

Proof

Assume that v is recognized by A1∧2. By definition, there exists
an accepting run (r0, s0) . . . (rn, sn) (avec n = |v |). Consider the
sequence r0 . . . rn. By induction on n, it is an accepting run of A1

for v , and therefore v ∈ LA1 . Likewise, v ∈ LA2 therefore
LA1∧2 ⊆ LA1 ∩ LA2 .
Assume that v ∈ LA1 ∩ LA2 . Since v ∈ LA1 , there exists an
accepting Run r0 . . . rn. Likewise v ∈ LA2 , thus there exists an
accepting run s0 . . . sn. Run (r0, s0) . . . (rn, sn) of A1∧2 is accepting
:

(r0, s0) = (q0, p0)

(ri+1, si+1) = (δ(ri , xi+1), δ(si , xi+1)) by construction.
rn ∈ F1, sn ∈ F2 therefore (rn, sn) ∈ F1∧2.

Automates et Applications Regular languages M1 MPRI 49 / 102

Product automaton for union

Construction simlar to A1∧2. We just change the definition of
accepting states: A1∨2 = (Q1∨2,Σ, δ1∨2, (q0, p0),F1∨2) with:

Q1∨2 = Q1 × Q2

∀(q, p) ∈ Q1∨2,∀x ∈ Σ, δ1∨2((q, p), x) = (δ1(q, x), δ2(p, x))

F1∨2 = {(q, p) | q ∈ F1 ∨ p ∈ F2}

Indeed we only require that a word is recognized either by A1 or by
A2.

Automates et Applications Regular languages M1 MPRI 50 / 102

Intuition
The product construction can be seen as an automaton that
simulates both automata in parallel. For each symbol, the product
automaton takes a transition in each of the two source automata.
The construction is simplified by considering complete automata.
Otherwise:

For the intersection, we can stop if one of the two automaton
cannot make a transition

For the union we must continue even if we are stuck on one of
the automata.

The definition remains almost the same δ1∧2 (we have to limit
ourselves to pairs of existing states in both automata) but is
cumbersome for pour δ1∨2, since a state is either a pair or a single
state.

Automates et Applications Regular languages M1 MPRI 51 / 102

Complement automaton

Let A = (Q,Σ, δ, q0,F). The complement automataon of A, Ā is
defined as:

Ā = (Q,Σ, δ, q0,Q \ F)

We have LA = LĀ (trivial). Again, the construction considers
complete autoamta (otherwise it does not work).

An alternative version to compute the union is to use De Morgan’s
laws:

A1∨2 = A1 ∩ A2

Automates et Applications Regular languages M1 MPRI 52 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 53 / 102

Introduction

As we have seen, given a word v , a complete DFA is always know its
unique destination state, for the next letter in v .
We can generalize DFA to non deterministic-automata (NFA). For a
given state, and a given symbol, the transition function returns a
set of possible states. If one of these states end in an accepting run
the word is accepted.
Intuitively, we can see this in several ways:

The NFA “guesses” the next correct state (oracle)

The NFA tries every states in sequence until it finds one leading
to an accepting run (backtracking)

The NFA tries all possible states in parallel

Automates et Applications Regular languages M1 MPRI 54 / 102

Non-deterministic automaton (NFA)

Définition (Non deterministic automaton)
A Non-deterministic automaton (Non-deterministic Finite Automaton,
NFA) is a 5-tuple (Q,Σ, δ, I ,F) where:

Q is a finite set of states

Σ is an alphabet

δ : Q × Σ → P(Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

Automates et Applications Regular languages M1 MPRI 55 / 102

Run of a NFA

Definition (Exécution)
Let A = (Q,Σ, δ, I ,F) and v ∈ Σ∗. A run of A for v = x1 . . . xn is a
sequence of states r0, . . . , rn ∈ Q such that:

r0 ∈ I (initial state)

ri+1 ∈ δ(ri , xi+1), ∀0 ≤ i ≤ n

If rn ∈ F we say that the run is accepting.

Contrary to DFA, NFA my have several run for the same word and
even several accepting run.

Automates et Applications Regular languages M1 MPRI 56 / 102

recognizability by a NFA

Définition (Reconnaissance par un NFA)
Let v a word Σ∗ and A = (Q,Σ, δ, I ,F) a NFA. We say that A recognizes
v if and only if there exists an accepting run for v by A.

Automates et Applications Regular languages M1 MPRI 57 / 102

Example
f Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

For the word abaaa, there are two possible runs:
q0, q1, q⊥, q⊥, q⊥, q⊥

q0, q0, q1, q2, q3 which is accepting.
Remark : this automaton recognizes all words ending with three a.
When the automaton reads an a it has to “guess” whether it stays in
q0 (if there are b fruther in the word) or if it goes to q1 (for the third
a to the end).

Automates et Applications Regular languages M1 MPRI 58 / 102

Complete NFA

A NFA A = (Q,Σ, δ, I ,F) is complete if and only if:

δ is total

∀q ∈ Q, ∀x ∈ Σ, δ(q, x) ̸= ∅

As for DFA, any NFA can be completed with a sink state.

Automates et Applications Regular languages M1 MPRI 59 / 102

Determinisation

Théorème (Determinisation)
Let A = (Q,Σ, δ, I ,F) be a NFA. There exists
Adet = (Qdet,Σ, δdet, q0,Fdet), a DFA, such that LA = LAdet .

We give a constructive proof.

Automates et Applications Regular languages M1 MPRI 60 / 102

Proof

The DFA simulates “in parallel” all the possible runs of the NFA.
Each state of the DFA represents the set of states in which the NFA
can be.
Consider the function δdet : Pf (Q)× Σ → Pf (Q) defined as:

δdet(P, x) = {q | q ∈ δ(p, x) for p ∈ P}

Consider now the sequence of states:

S0 = {I}

Si+1 = Si ∪
⋃
P∈Si

⋃
x∈Σ

{δdet(P, x)}

Then, there exists l such that Sl+1 = Sl (in other words, we can
saturate Si until we reach the limit Sl).

Automates et Applications Regular languages M1 MPRI 61 / 102

Proof (2)
This limit exists since Si is strictly increasing (at each step we add
the previous set) and the set of states we can add is finite, it’s Pf (Q)

(of size2|Q|). The DFA is:

Adet = (Sl ,Σ, δdet, I , {P ∈ Sn | P ∩ F ̸= ∅})

Indeed, for each word v ∈ Σ∗ :
Si R0 . . .Rn is an accepting run Adet for v , then there exists
∃r0 ∈ R0 = I , ∃r1 ∈ R1 . . . rn ∈ Rn such that r0 . . . rn is an accepting
run of v for A.
If r0 . . . rn is one accepting run of A for v , alors
∃R0 = I ∈ Sl , . . . ,∃Rn ∈ Sl such that ∀i , ri ∈ Ri et R0 . . .Rn is an
accepting run for v of Adet.

Each direction is shown by induction on n, the lenght of the word v .
Automates et Applications Regular languages M1 MPRI 62 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

Automates et Applications Regular languages M1 MPRI 63 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

Automates et Applications Regular languages M1 MPRI 63 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a

Automates et Applications Regular languages M1 MPRI 63 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a

Automates et Applications Regular languages M1 MPRI 63 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a {q0, q1, q2, q3}
a

Automates et Applications Regular languages M1 MPRI 63 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a {q0, q1, q2, q3}
a

{q0, q⊥}

b

b

Automates et Applications Regular languages M1 MPRI 63 / 102

Example

Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a {q0, q1, q2, q3}
a

{q0, q⊥}

b

b {q0, q1, q⊥}
a

b

Automates et Applications Regular languages M1 MPRI 63 / 102

Example
Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a {q0, q1, q2, q3}
a

{q0, q⊥}

b

b {q0, q1, q⊥}
a

b

{q0, q1, q2, q⊥}

a

b

Automates et Applications Regular languages M1 MPRI 63 / 102

Example
Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a {q0, q1, q2, q3}
a

{q0, q⊥}

b

b {q0, q1, q⊥}
a

b

{q0, q1, q2, q⊥}

a

b

{
q0, q1, q2

q3, q⊥
}

a

b

Automates et Applications Regular languages M1 MPRI 63 / 102

Example
Consider: A = ({q0, q1, q2, q3, q⊥}, {a, b}, δ, {q0}, {q3})

q0 q1 q2 q3

q⊥
a, b

a a

b

a

b
a, b

a, b

{q0}

b

{q0, q1}
a {q0, q1, q2}

a {q0, q1, q2, q3}
a

{q0, q⊥}

b

b {q0, q1, q⊥}
a

b

{q0, q1, q2, q⊥}

a

b

{
q0, q1, q2

q3, q⊥
}

a

b

b
b

a

a

Automates et Applications Regular languages M1 MPRI 63 / 102

Equivalence

As we have seen, being recognizable by a DFA is equivalent to
being recognized by a NFA :

Rec(DFA) ⊆ Rec(NFA) : Trivial (a DFA is a particular case of an
NFA where each state of the transition function is a singleton)

Rec(NFA) ⊆ Rec(DFA) : By the determinization theorem.

Automates et Applications Regular languages M1 MPRI 64 / 102

Closure properties

Since DFA and NFA are equivalent, we expect that that NFA have
the same closure porprties. It is true, but one needs to be carefull.

Automates et Applications Regular languages M1 MPRI 65 / 102

Union of two NFA

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2) be two NFA. The
automaton A1∨2 = (Q1 ∪ Q2,Σ, δ1∨2, I1 ∪ I2,F1 ∪ F2) recognizes the
language LA1 ∪ LA2 , with δ1∨2 defined by:

δ1∨2(q, x) =

{
δ1(q, x) si q ∈ Q1

δ2(q, x) si q ∈ Q2

It’s an efficient computation : O(|Q1|+ |δ1|+ |Q2|+ |δ2|)

Automates et Applications Regular languages M1 MPRI 66 / 102

Intersection of two NFA

We can use the product construction for two NFA. Let
A1 = (Q1,Σ, δ1, I1,F1) et A2 = (Q2,Σ, δ2, I2,F2) be two NFA. The
product automaton A1∧2 = (Q1 × Q2,Σ, δ1∧2, I1 × I2,F1 × F2)

recognizes the language LA1 ∩ LA2 , with δ1∨2 est défini par :

δ1∧2((r , s), x) = δ1(r , x)× δ2(s, x)

Automates et Applications Regular languages M1 MPRI 67 / 102

Complement of an NFA

The straightforward technique that reverses accepting and non
accepting states does not work for NFA. Indeed, for a DFA:

If a run is accepting for v in the DFA, the same run in the
complement DFA is rejecting (and vice versa).

For NFA, if we switch accepting and non accepting states:

If a run for a word v is accepting in the NFA, this same run in
the (buggy) complement is rejecting. But maybe there are
other non-accepting run, and by definition those become
accepting, which is wrong!

⇒ the only solution is to determinize and take the complement,
which may cause an exponential blow-up in the number of states.

Automates et Applications Regular languages M1 MPRI 68 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 69 / 102

Minimal automaton
Remark that two automata (here two DFA) can recognize the same
language:

q0 q1 q2

q⊥

a

b

a

b

a, b

a, b

p0 p1

p2

p3

p4

p⊥

a

b

a

b

b

a

a, b a, b

a, b

Intuitively, the left-hand side “behaves like” ab∗a, while the
right-hand side “behaves like” a(a|b+a).

Automates et Applications Regular languages M1 MPRI 70 / 102

Myhill-Nerode theorem

Théorème (Myhill-Nerode theorem)
Let L be a language. Let w ∈ Σ∗ be a word. We define the set
NextL(w) = {t ∈ Σ∗ | wt ∈ L}. Let ≡L be the equivalence relation
defined by u ≡L v if and only if NextL(u) = NextL(v).

L is recognizable if and only if the number of equivalence classes
of ≡L is finite. Call k this number.

There exists a unique DFA with k states recognizing L, and there are
no DFA DFA with a smaller number n < k of states recognizing L.

We just give the intuition and the minimization algorithm.

Automates et Applications Regular languages M1 MPRI 71 / 102

Myhill-Nerode theorem

NextL(w) = {t ∈ Σ∗ | wt ∈ L} is the set of suffixes that allows
one to complete w such that it is in L. For instance, for the
finite language L = {aab, bab, aaa, baa}, NextL(a) = {ab, aa}.

Two words u and v are equivalent (u ≡L v) if and only if
NextL(u) = NextL(v). For our example: a ≡L b. This means that if
we consider u and v as start of words recognized by the
automaton, their suffixes can be recognized by the same part
of the automaton.

Automates et Applications Regular languages M1 MPRI 72 / 102

Moore’s Algorithm(minimization)

Input a DFA A = (Q,Σ, δ, q0,F)

Output a DFA Amin = (Qmin,Σ, δmin, q
′
0,Fmin) où |Qmin| ≤ |Q|

P = {F ,Q \ F}
repeat:

P′ := P
for all C ∈ P :

for all x ∈ Σ :

C := ∅
for all D ∈ P :

C := C ∪ {{q ∈ C | δ(q, x) ∈ D}}
P := P \ {C} ∪ C

while P ̸= P′

Automates et Applications Regular languages M1 MPRI 73 / 102

Moore’s Algorithm (minimization) (2)

Return (P,Σ, δmin, {q0}, {F}) where δmin is defined by:

δmin(C , x) = [δ(q, x)]P, en choisissant q ∈ C

[r]P is the unique set C of P containing r .

Automates et Applications Regular languages M1 MPRI 74 / 102

Intuition

The algorithm builds approximations of the equivalence classes,
that is puts in the same sets of states the state that recognize the
same suffix. At the end, each such set is a state of the minimal
automaton, all redundant states have been merged.

The algorithm starts with two rough sets : accepting (recognize ϵ)
and non accepting states (do not recognize ϵ as a suffix).
For each set C , for each symbol, we partition C into the subsets
that lead to the same set of states.

Automates et Applications Regular languages M1 MPRI 75 / 102

Exemple

We minimize:

p0 p1

p2

p3

p4

p⊥

a

b

a

b

b

a

a, b a, b

a, b

p0 p1, p2 p3, p4

p⊥

a

b

a

b

a, b

a, b

P0 {{p0, p1, p2, p⊥}, {p3, p4}} accepting vs. non-accepting

P1 {{p0, p⊥}, {p1, p2}, {p3, p4}} a distinguish p1, p2 and p0, p⊥
P2 {{p0}, {p⊥}, {p1, p2}, {p3, p4}} a distinguish p0 and p⊥

P3 no change

Automates et Applications Regular languages M1 MPRI 76 / 102

Exemple

We minimize:

p0 p1

p2

p3

p4

p⊥

a

b

a

b

b

a

a, b a, b

a, b

p0 p1, p2 p3, p4

p⊥

a

b

a

b

a, b

a, b

P0 {{p0, p1, p2, p⊥}, {p3, p4}} accepting vs. non-accepting
P1 {{p0, p⊥}, {p1, p2}, {p3, p4}} a distinguish p1, p2 and p0, p⊥

P2 {{p0}, {p⊥}, {p1, p2}, {p3, p4}} a distinguish p0 and p⊥

P3 no change

Automates et Applications Regular languages M1 MPRI 76 / 102

Exemple

We minimize:

p0 p1

p2

p3

p4

p⊥

a

b

a

b

b

a

a, b a, b

a, b

p0 p1, p2 p3, p4

p⊥

a

b

a

b

a, b

a, b

P0 {{p0, p1, p2, p⊥}, {p3, p4}} accepting vs. non-accepting
P1 {{p0, p⊥}, {p1, p2}, {p3, p4}} a distinguish p1, p2 and p0, p⊥
P2 {{p0}, {p⊥}, {p1, p2}, {p3, p4}} a distinguish p0 and p⊥

P3 no change

Automates et Applications Regular languages M1 MPRI 76 / 102

Exemple

We minimize:

p0 p1

p2

p3

p4

p⊥

a

b

a

b

b

a

a, b a, b

a, b

p0 p1, p2 p3, p4

p⊥

a

b

a

b

a, b

a, b

P0 {{p0, p1, p2, p⊥}, {p3, p4}} accepting vs. non-accepting
P1 {{p0, p⊥}, {p1, p2}, {p3, p4}} a distinguish p1, p2 and p0, p⊥
P2 {{p0}, {p⊥}, {p1, p2}, {p3, p4}} a distinguish p0 and p⊥

P3 no change

Automates et Applications Regular languages M1 MPRI 76 / 102

Exemple

We minimize:

p0 p1

p2

p3

p4

p⊥

a

b

a

b

b

a

a, b a, b

a, b

p0 p1, p2 p3, p4

p⊥

a

b

a

b

a, b

a, b

P0 {{p0, p1, p2, p⊥}, {p3, p4}} accepting vs. non-accepting
P1 {{p0, p⊥}, {p1, p2}, {p3, p4}} a distinguish p1, p2 and p0, p⊥
P2 {{p0}, {p⊥}, {p1, p2}, {p3, p4}} a distinguish p0 and p⊥

P3 no change

Automates et Applications Regular languages M1 MPRI 76 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 77 / 102

Automata with empty moves

We can generalize NFA with ϵNFA which can go from one state to
another without reading any symbol from the input.

Définition (NFA with empty moves)
An automaton with empty moves (ϵNFA) is a 5-tuple (Q,Σ, δ, I ,F)

where:

Q is a finite set of states états

Σ is an alphabet

δ : Q × Σ ∪ {ϵ} → Pf (Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

Automates et Applications Regular languages M1 MPRI 78 / 102

Example

Consider the ϵNFA below. One needs to be careful to define the
notion of run:

q0 q1 q2

a

ϵ

b

ϵ

c

From the initial state q0, the word cc is accepted. Indeed, we can go
from q0 à q1 (without consuming a symbol), then from q1 to q2, and
then loop twice on q2. We have a run q0, q1, q2, q2 (of size 4) while
the word is of size 2. We need to consider ϵ as a “symbol”.

Automates et Applications Regular languages M1 MPRI 79 / 102

Exécution (Run)

Definition (Exécution)
Let A = (Q,Σ, δ, I ,F) and v ∈ Σ∗. A run of A for v is a sequence of
states r0, . . . , rn ∈ Q such that there exists a sequence of words
v = v1 · . . . · vn, vi ∈ Σ ∪ {ϵ}, such that:

r0 ∈ I (état initial)

ri+1 ∈ δ(ri , vi+1), ∀0 ≤ i ≤ n

In our previous example, the word cc was recognized as ϵϵcc .

Automates et Applications Regular languages M1 MPRI 80 / 102

ϵ-closure

Consider an ϵNFA with a transition funciton δ. We call the ϵ-closure
of a state q the set of states E (q) as the limit of:

E0(q) = {q}

Ei (q) = Ei−1 ∪
⋃

q′∈Ei−1
δ(q′, ϵ)

Given as et of states S , we write E (S) = {E (q) | q ∈ S}
This gives all the states reachable by following only empty moves.

Automates et Applications Regular languages M1 MPRI 81 / 102

Equivalence of NFA and ϵNFA

Théorème (Removing empty moves)
For all ϵNFA, A = (Q,Σ, δ, I ,F), there exists a NFA
AN = (QN ,Σ, δN , IN ,FN) such that LA = LAN

.

Automates et Applications Regular languages M1 MPRI 82 / 102

Proof
We construct:

QN = {E (q) | q ∈ Q}, each states of AN is a set of states
reachable by empty moves.
IN = {E (q) | q ∈ I} et FN = {P | P ∈ QN ,P ∩ F ̸= ∅}.
δN(P, x) =

⋃
p∈E(P) δ(p, x)

For our example:

{q0, q1, q2} {q1, q2} {q2}

a

b

c

b

c

c

Remark : the construction can make a state q such as:
qϵ ϵ

unreachable, we have to remove them afterwards.
Automates et Applications Regular languages M1 MPRI 83 / 102

Why bother with ϵNFA ?

Why do we introduce ϵNFA if they are equivalent to NFA ?

They allow to build inductively an ϵNFA from a regular expression.

This construction was given by Ken Thompson, father of C and
Unix.

Automates et Applications Regular languages M1 MPRI 84 / 102

Why bother with ϵNFA ?

Why do we introduce ϵNFA if they are equivalent to NFA ?

They allow to build inductively an ϵNFA from a regular expression.

This construction was given by Ken Thompson, father of C and
Unix.

Automates et Applications Regular languages M1 MPRI 84 / 102

Why bother with ϵNFA ?

Why do we introduce ϵNFA if they are equivalent to NFA ?

They allow to build inductively an ϵNFA from a regular expression.

This construction was given by Ken Thompson, father of C and
Unix.

Automates et Applications Regular languages M1 MPRI 84 / 102

Thompson’s automaton

This construction takes as input a regular expression and build an
ϵNFA recognizing the same language.
Every automaton generated by the construction have a unique
initial state qin and a unique accepting state qout :

∅ (empty expression) : qin qout

ϵ (accept ϵ) :
qin qout

ϵ

a (accepts one symbol) :
qin qout

a

These are all the basic cases.

Automates et Applications Regular languages M1 MPRI 85 / 102

Thompson’s construction (2)

Let r1 and r2 be two regexp with respective automata A1 and A2 :

r1 · r2 (concatenation) A1qin1 qout1 A2qin2 qout2
ϵ

r1 | r2 (alternative) qin

A1

A2

qin1 qout1

qin2 qout2

qout

ϵ

ϵ

ϵ

ϵ

Warning, in A1 and A2 qout1 et qout2 are accepting, but they may
not be in the resulting automaton.

Automates et Applications Regular languages M1 MPRI 86 / 102

Thompson’s construction (3)

For the Kleene star, let r be a regexp and A its automaton:

qin Aq′in q′out qout
ϵ

ϵ

ϵ

ϵ

A more complex construction is given by the Glushkov-Berry-Sethi
algorithm, which builds directly a NFA from r . It was shown that
removing the empty moves from Thompson automaton gives the
Glushkov-Berry-Sethi automaton.

Automates et Applications Regular languages M1 MPRI 87 / 102

Usefulness ?

Twofold :

It shows that Reg ⊆ Rec, since for each regexp we can build an
automaton

It gives an efficient way to compute membership

What about the other direction?

Automates et Applications Regular languages M1 MPRI 88 / 102

Usefulness ?

Twofold :

It shows that Reg ⊆ Rec, since for each regexp we can build an
automaton

It gives an efficient way to compute membership

What about the other direction?

Automates et Applications Regular languages M1 MPRI 88 / 102

State reduction algorithm

There are several algorithm to transform an automaton into a
regular expression. The one we give is the algorithm of Brzozowski
and McCluskey, dubbed state reduction algorithm. It uses, as an
intermediate representation, generalized automata.

Automates et Applications Regular languages M1 MPRI 89 / 102

Generalized automaton

Définition (Generalized automaton)
A Generalized automaton (GFA) is a 5-tuple (Q,Σ, δ, qin, qout) where:

Q is a finite set of states

Σ is an alphabet

δ : Q × Reg(Σ) → Pf (Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

Reg(Σ) is the set of regular expressions over Σ. These automata are
labeled by regexp (and not symbols) and have a unique initial state
and a unique accepting state.

Automates et Applications Regular languages M1 MPRI 90 / 102

State reduction algorithm

Given an NFA, we consider it as a GFA whose transitions are labeled
by either a symbol or ϵ. If needed, we can add a single initial and
accepting states and link them using empty moves.
We apply two rules:

merging of transitions: q q′

r1

r2
⇝ q q′

r1 | r2

state reduction : 2 cases:
1 q q′ q′′

r1 r2 ⇝ q q′′
r1r2

2 q q′ q′′
r1

r

r2 ⇝ q q′′
r1r

∗r2

Automates et Applications Regular languages M1 MPRI 91 / 102

State reduction algorithm

At each step, we reduce the number of states or we reduce the
number of transitions. The algorithm terminates when the
automaton is reduced to:

qin qout
r

where r is a regular expression recognizing the same languages as
the initial NFA. Warning, the resulting regexp may be complex and
exponentially larger than the NFA. In particular, if we apply
Thompson’s construction to a regexp and state reduction
afterwards, we obtain an equivalent regexp but not the initial one
in general.

Automates et Applications Regular languages M1 MPRI 92 / 102

Usefulness ?

It shows that Rec ⊆ Reg et donc que Rec = Reg = Rat. This
equivalence is called Kleene’s Theorem. Its proof is the double
inclusion, using the constructions we have seen (or other
equivalent constructions).

Automates et Applications Regular languages M1 MPRI 93 / 102

Example

Consider the NFA:

q1

q2 q3

q4q1 q4

a

a

b

b

b
a

b

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

q1

q2 q3

q4

a

a

b

b

b
a

b

qin qout
ϵ ϵ

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

q1

q2 q3

q4

a

b

b
a

b

qin qout
ϵ ϵ

a | b

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

q1

q2

q4

a

b

qin qout
ϵ ϵ

a | b

bb

ba

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

q1 q4

b

qin qout
ϵ ϵ

a | b

a(bb)∗ba

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

q1 q4

b

qin qout
ϵ ϵa(bb)∗ba | a | b

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

q1qin qout
ϵ (a(bb)∗ba | a | b)b∗

Automates et Applications Regular languages M1 MPRI 94 / 102

Example

Consider the NFA:

qin qout
(a(bb)∗ba | a | b)b∗

Automates et Applications Regular languages M1 MPRI 94 / 102

Final problem

Given a regular language, we have algorithms to decide or
compute:

the union, intersection, complement, mirror (exercise) of a
language (using automata)

emptiness of the language (the minimal DFA is reduced to a
single, non accepting state)

universality of a language (its complement is empty)

LA ⊆ LB

⇔ LA \ LB = ∅ ⇔ LA ∩ LB = ∅

LA = LB (either double inclusion, or determinize, minimize and
compare the automata)

What is missing ?

Automates et Applications Regular languages M1 MPRI 95 / 102

Final problem

Given a regular language, we have algorithms to decide or
compute:

the union, intersection, complement, mirror (exercise) of a
language (using automata)

emptiness of the language (the minimal DFA is reduced to a
single, non accepting state)

universality of a language (its complement is empty)

LA ⊆ LB ⇔ LA \ LB = ∅ ⇔ LA ∩ LB = ∅

LA = LB (either double inclusion, or determinize, minimize and
compare the automata)

What is missing ?

Automates et Applications Regular languages M1 MPRI 95 / 102

Testing whether a language is regular ?

We won’t get an algorithm :(

Théorème
Testing whether a context-free language is regular is undecidable.

We will have to settle for something less powerfull.
We can give a criteria to prove that a language is not regular.

Automates et Applications Regular languages M1 MPRI 96 / 102

Pumping lemma

Lemme (Pumping lemma)
Let L be a regular language over an alphabet Σ. There exists p ≥ 1 such
that for all word w ∈ L such that |w | ≥ p, there exists x , y , z ∈ Σ∗ such
that:

w = xyz

y ̸= ϵ

|xy | ≤ p

∀n ≥ 0, xynz ∈ L

Automates et Applications Regular languages M1 MPRI 97 / 102

Pumping lemma (2)

What does it mean ?

For every regular language, there is a length of
word p such that, if the language recognizes words longuer than p,
then theremust be a “loop” in the automaton or a Kleene star in
the regular expression. Therefore, there is a substring of the word
(the one below the star or in the loop), which can be pumped, that
is repeated arbitrarily many times while staying in the language.

Automates et Applications Regular languages M1 MPRI 98 / 102

Pumping lemma (2)

What does it mean ?For every regular language, there is a length of
word p such that, if the language recognizes words longuer than p,
then theremust be a “loop” in the automaton or a Kleene star in
the regular expression. Therefore, there is a substring of the word
(the one below the star or in the loop), which can be pumped, that
is repeated arbitrarily many times while staying in the language.

Automates et Applications Regular languages M1 MPRI 98 / 102

Pumping lemma (3)

How do we use it ?

It’s a necessary condition for a language to be
regular, therefore:

⇒ if a language is regular, it can be “pumped”. By contrapositive,
if a language cannot be “pumped” then it is not regular.

⇍ if a language can be pumped, it is not necessarily regular.

Automates et Applications Regular languages M1 MPRI 99 / 102

Pumping lemma (3)

How do we use it ?It’s a necessary condition for a language to be
regular, therefore:

⇒ if a language is regular, it can be “pumped”. By contrapositive,
if a language cannot be “pumped” then it is not regular.

⇍ if a language can be pumped, it is not necessarily regular.

Automates et Applications Regular languages M1 MPRI 99 / 102

Pumping lemma (4)
We want to show that a language is not regular, we use a proof by
contradiction. Let us first remark that L is necessarily infinite, since
all finite languages are regular.

Assume L is regular

Therefore, there exists p ≥ 1 (the pumping size) for this
language

There exists a word w = xyz in the language (with y ̸= ϵ and
|xy | ≤ p)

Show that, for all n, xynz /∈ L

Contradiction (xynz should be in L) therefore L n is not regular

We cannot choose p nor n but we can choose w but we cannot
chose how to split it into w = xyz .

Automates et Applications Regular languages M1 MPRI 100 / 102

Pumping lemma (example)

Show that: L = {anbn | n ∈ N} is not regular. Assume it is.

there exists p ≥ 1 (which we don’t know) for which the
pumping lemma holds

we choose w = apbp. It is a word larger than p (it has size 2p).

choose any x , y , z such that ai︸︷︷︸
x

aj︸︷︷︸
y

ap−i−jbp︸ ︷︷ ︸
z

, that verifies

|xy | ≤ p and j ≥ 1.

le mot xy0z = aiap−i−j2pbp = ap−jbp is not in L (since p ≥ 1, the
word has strictly more bs than as). But it should be since all the
conditions of the pumping lemma hold. Contradiction, L is not
regular.

Automates et Applications Regular languages M1 MPRI 101 / 102

Plan

1 Introduction

2 Alphabets, words and word operations

3 Languages and their operations

4 Regular languages

5 Deterministic automata

6 Non-deterministic automata

7 Minimization

8 Advanced concepts

9 Conclusions

Automates et Applications Regular languages M1 MPRI 102 / 102

We have recapped a lot of things! What should we remember ?

in time, everything!

⇒ all these properties translate to trees and tree automata

For all other formalisms (Grammar, Pushdown automata, . . .)
some of these properties hold, others don’t. When they do
hold, often the proofs are similar.

Automates et Applications Regular languages M1 MPRI 102 / 102

	Introduction
	Alphabets, words and word operations
	Languages and their operations
	Regular languages
	Deterministic automata
	Non-deterministic automata
	Minimization
	Advanced concepts
	Conclusions

