

TD nº 2

1 Tree automata

- 1. Give a bottom-up tree automaton recognizing the language of all trees on $\mathcal{T}(\Sigma)$, with $\Sigma = \{f^2, g^2, \#\}$ for which the following holds :
 - a path with symbol g has two children f
 - the root is an g.
- 2. Give a bottom-up tree automaton which recognizes all trees over $T(\Sigma)$, avec $\Sigma = \{f^2, g^2, \#\}$ with the following shape :

3. Let $\Sigma = \{+^2, \times^2, a, b\}$, consider the language on on Σ of non ambiguous arithmetic expressions (that is, expressions which do not require parenthesis). For instance the tree :

is non ambiguous. Is this language regular? Is it top-down recognizable?

4. Let *T* be a tree language. Define leaves(*t*) as the *word* formed by taking all the symbols with arity 0 encountered during a depth first, left to right traversal of the tree. Formally, such a word can be written as the longuest sequence of symbols : $t(l_1), t(l_2), \ldots, t(l_k)$ for which the following hold : $- \forall i, |t(l_i)| = 0$

 $\forall i, j, i < j \Rightarrow l_i <_{\mathsf{lex}} l_j \text{ where } <_{\mathsf{lex}} \text{ is the lexicographic order on paths.}$ We define $\mathsf{leaves}(T) = \{\mathsf{leaves}(t) \mid t \in T\}$. Show that even in the case where T is a recognizable tree language, $\mathsf{leaves}(T)$ is not necessarily a regular word language.

- 5. Show that the set of perfect binary trees over $\Sigma = \{f^2, a\}$ is not regular. A perfect binary tree is a tree for which all leaves have the same depth (that is, all paths to leafs have the same length).
- 6. Let T be a language over $\Sigma = \{f^2, a, b\}$. Consider the congruence $f(x, y) \equiv f(y, x)$ for $x, y \in \mathcal{T}(\Sigma)$. Show that if T is regular, the set $T' = \{t' \mid \exists t \in Tt \equiv t'\}$ is regular.