Automates et Applications
M1-MPRI Orsay

TD no 4

1 Büchi automata and ω-regular languages

1. Give a Büchi automaton which accepts words of the form : $(b a)^{*}(a b)^{\omega}$ over the alphabet $\{a, b\}$
2. Give a Büchi automaton (non-deterministic) over $\Sigma=\{a, b, c\}$ that recognizes all infinite words containing a pair of letters a, b separated by 4 occurrence of c.
3. Give a sufficient condition for a non empty language L such that $\epsilon \notin L$ to be such that L^{ω} is finite.
4. Let L be an ω-regular language and A a regular language (of finite words). Consider

$$
L^{\prime}=\bigcup_{u \in A}\{w \mid u w \in L\}
$$

Is $L^{\prime} \omega$-regular?
5. Show that the singleton language $101001000100001 \ldots 0^{n} 1 \ldots$ is not Büchi recognizable

2 LTL

1. For every question below, we fix the set $A P$. Express the given condition as an LTL formula.
(a) $A P=\{$ req, ans $\}$ a request(req) is always followed by an answer at some point (ans)
(b) $A P=\{$ door, code $\}$ Every time we give the code, the door opens (immediately after)
(c) $A P=\{$ rouge, orange, vert $\}$ When the light is green, it will become orange and then red, not necessarily immediately after.
2. ATTENTION in this section w^{i} does not represent $w w w w w \ldots$ repeated i times, but rather the suffix of w starting at position i.
Show the following equivalences

- $\mathcal{F F} \phi \equiv \mathcal{F} \phi$
- $\mathcal{F} \phi \equiv \phi \vee \mathcal{X} \mathcal{F} \phi$.
- $\mathcal{X}(\phi \mathcal{U} \psi) \equiv(\mathcal{X} \phi) \mathcal{U}(\mathcal{X} \psi)$

