

TD nº 4

1 Büchi automata and ω -regular languages

- 1. Give a Büchi automaton which accepts words of the form : $(ba)^*(ab)^{\omega}$ over the alphabet $\{a, b\}$
- 2. Give a Büchi automaton (non-deterministic) over $\Sigma = \{a, b, c\}$ that recognizes all infinite words containing a pair of letters a, b separated by 4 occurrence of c.
- 3. Give a sufficient condition for a non empty language *L* such that $\epsilon \notin L$ to be such that L^{ω} is finite.
- 4. Let *L* be an ω -regular language and *A* a regular language (of finite words). Consider

$$L' = \bigcup_{u \in A} \{ w \mid uw \in L \}$$

Is $L' \omega$ -regular?

5. Show that the singleton language $101001000100001 \dots 0^n 1 \dots$ is not Büchi recognizable

2 LTL

- 1. For every question below, we fix the set *AP*. Express the given condition as an LTL formula.
 - (a) $AP = \{req, ans\}$ a request(req) is always followed by an answer at some point (ans)
 - (b) $AP = \{ \text{door}, \text{code} \}$ Every time we give the code, the door opens (immediately after)
 - (c) $AP = \{$ rouge, orange, vert $\}$ When the light is green, it will become orange and then red, not necessarily immediately after.
- 2. **ATTENTION** in this section w^i does not represent wwwww... repeated *i* times, but rather the suffix of *w* starting at position *i*.

Show the following equivalences

 $- \mathcal{FF}\phi \equiv \mathcal{F}\phi$

- $\mathcal{F}\phi \equiv \phi \lor \mathcal{X}\mathcal{F}\phi.$
- $\mathcal{X}(\phi \mathcal{U}\psi) \equiv (\mathcal{X}\phi)\mathcal{U}(\mathcal{X}\psi)$