
Concurrency Control in Groupware Systems
C.A. Ellis
S.J. Gibbs

MCC, Austin, Texas

Abstract. Groupware systems are computer-based systems
that support two or more users engaged in a common task,
and that provide an interface to a shared environment. These
systems frequently require fine-granularity sharing of data
and fast response times. This paper distinguishes real-time
groupware systems from other multi-user systems and dis-
cusses their concurrency control requirements. An algorithm
for concurrency control in real-time groupware systems is
then presented. The advantages of this algorithm are its sim-
plicity of use and its responsiveness: users can operate di-
rectly on the data without obtaining locks. The algorithm
must know some semantics of the operations. However the
algorithm’s overall structure is independent of the semantic
information, allowing the algorithm to be adapted to many
situations. An example application of the algorithm to group
text editing is given, along with a sketch of its proof of cor-
rectness in this particular case. We note that the behavior
desired in many of these systems is non-serializable.

1. Introduction
Real-time groupware systems are multi-user systems where
the actions of one user must quickly be propagated to the
other users. An example that many find easy to relate to is
the multi-player game. Here the movement of one player’s
token, perhaps a tank or spaceship, triggers updates on the
displays of all players. Other examples can be found in the
area of computer-supported cooperative work [CSCW86,
CSCW88]. For instance, in real-time computer conferencing
[Sari&j], the users, who are often at different locations, com-
municate through a software medium. This software might
allow the users to view and modify a shared graph structure
[Stef87] or edit a shared outline [Elli88a]. Our research
group has been studying, and experimenting with these types
of systems for several years. We now recognize that there
are significant challenges in implementing these systems that
typically do not arise in other applications. Some of these
challenges [Elli88b] reside in the areas of group interfaces,
access control, social protocols, and coordination of group
operations. For instance, groupware introduces new com-
plexities to the user interface: the interface must depict
group activity, and designers must weigh the need for group
focus against the potential for distraction. Concurrency con-
trol also has novel aspects within groupware as we will dem-
onstrate in this paper.

An invocation of a groupware system is informally called a
session. Sessions in which we have participated are typically

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

given that copying is by pemksmn of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific pemkion.

0 1989 ACMO-89791~317-S/89/0005/0399 $1.50

an hour or two in length but may be much shorter or much
longer. At any point in time, a session consists of a group of
users called the participants. The session provides each par-
ticipant with an interface to a shared context, for instance
participants may see synchronized views of evolving data.
The system’s response time is the time necessary for the ac-
tions of one user to be reflected by their own interface; the
notification time is the time necessary for one user’s actions to
be propagated to the remaining users’ interfaces.

Real-time groupware systems are characterized by the fol-
lowing:

* highly interactive - response times must be short.
* real-time - notification times must be comparable to
response times.

* distributed - in general, one cannot assume that the
participants are all connected to the same machine or
even to the same local area network.

* volatile - participants are free to come and go during
a session.

*ad hoc - generally the participants are not following
a pre-planned script, it is not possible to tell a priori
what information will be accessed.

*focused - during a session there is high degree of
access conflict as participants work on and modify the
same data.

*external channel - often participants are connected
by an external (to the computer system) channel such
as an audio or video link.

It is useful to distinguish groupware systems from other
multi-user systems. For example, both database manage-
ment systems and timesharing operating systems support
multiple users. However neither of these are groupware since
they provide little notification - if one user performs some
action, perhaps inserting a tuple or creating a process, other
users are not normally notified of the action and may only
learn of it by explicitly querying the system.

One example of groupware is GROVE (GROUP Outline View-
ing Editor) [Elli88a], an outline editor which we imple-
mented in the Software Technology Program at MCC. It is
intended for use by a group of people simultaneously work-
ing on a textual outline. GROVE supports multiple views of
the outline, each view is displayed in a group window (a win-
dow replicated over a set of machines). A window may be
private, shared, or public. A GROVE group window is shown
in Figure 1. Participants can modify the underlying outline
by performing standard editing operations (insert, delete,
cut, paste, etc.) in the window, they may also open and close
parts of the outline (using the small buttons on the left side)
or change the read and write permissions of outline items. In
addition to displaying views, group windows also indicate
who is using the window. The window in Figure 1 will appear
on the workstations of the three users shown along the bot-

399

addition to displaying views, group windows also indicate cations do not appear to be suitable in this context. In the
who is using the window. The window in Figure 1 will appear following we identify some of the issues related to concur-
on the workstations of the three users shown along the bot- rency control in groupware systems and then discuss the
tom border. An important characteristic of this system is that
edits performed by any participant are rather immediately
seen on the screens of all participants (real-time notifica-
tion).

drawbacks of current approaches.

view id

1. Item l is readable and writable.
1.1 Item 1.1 is also readable and writable.
*. This private item is readable and writable.
. This private item is read-only.

rtgure 1 bmuvt group wmaow

A very closely related class of groupware systems is what
might be called non-real-time groupware. Examples are edi-
tors such as CES [Grie86], Quilt [CoheBB], or Shared Books
[LewiBB]. These editors allow a group of users to work on
the same document, however each user typically works on
their own section at their own pace. As a result sessions are
less focused and are longer in duration (days or even weeks
in length); also real-time notification may not be necessary
because of the asynchronous nature of participants’ actions.
Given these distinctions, the remainder of this paper will
concentrate upon real-time groupware, although we will sim-
ply use the term “groupware systems.”

In this paper we present an algorithm for concurrency control
in groupware systems. The next section explores issues re-
lated to concurrency control in this context and describes
problems with alternative approaches. In Section 3 we pro-
vide a model for groupware systems. The algorithm is devel-
oped in Section 4 and applied to GROVE in Section 5. Dis-
cussion of its correctness is presented in Section 6.

2. Concurrency Control Problem
Concurrency control is needed within groupware systems to
help resolve conflicts between participants, and to allow
them to perform tightly coupled group activities. For exam-
ple, with a group editor such as GROVE, clearly there is a
conflict if one participant deletes a sentence while a second
inserts a word into the sentence. The various approaches to
resolving these situations, such as explicit locking or transac-
tion processing, that have been developed for database appli-

2.1 Issues

wyS1WIS. Although there has been little experience in the
evaluation of interfaces to groupware systems [GrudBB,
E]]i89] it appears that some form of a WYSIWfS (what you
see is what I see) interface [Stef87] is necessary to maintain
group focus. If each user sees a slightly different or out-of-
date version then the session’s cohesiveness is soon lost.
WYSIWIS interfaces have two implications on concurrency
control. First response times are important - the time taken
to access data, modify data, or notify users of changes must
be as short as possible. Secondly, if the concurrency control
scheme entails the use of modes where actions of one user
are not immediately seen by the others, then the effect of
these modes on the group’s dynamics must be considered
and only allowed if they are not disruptive.

Wide-area Distribution. One of the main benefits of group-
ware systems is that they allow people to work together, in
real-time, even though separated by great physical distances.
Consequently these systems may be geographically distrib-
uted. With current communications technology, transmission
times and rates for wide-area networks are significantly
worse than those found in their local area counterparts, the
possible impact on response time musr be taken into ac-
count.
Replication. Because the response time demands of group-
ware systems are so high, the data state is usually replicated
for each participant. This allows many potentially expensive
operations to be done locally. For instance, consider an edit-
ing session where one participant is in Los Angles and the

400

other Austin. Typically each participant would be working in
a windowing environment. If the object being edited is not
replicated then even simple scrolling operations require com-
munication between the two sites. The resulting degradation
in response time may be catastrophic.
Robustness. Traditionally robustness refers to recovery from
unusual circumstances, typically these are component fail-
ures - the crash of a site or a communications link. While
these are also concerns of groupware systems, there is also a
second form of robustness these systems must achieve, in
particular, robustness to user actions. For example, the addi-
tion of a new user to the set of users issuing transactions on
a database is not normally considered a major problem.
However, with groupware systems, the addition of a partici-
pant may result in what amounts to a reconfiguration of the
system. Clearly the concurrency control algorithm must
adapt to such reconfigurations and in general recover from
“unexpected” user actions (abruptly leaving the session, go-
ing away for coffee, . ..).

2.2 Other Approaches

Locking. One solution to concurrency control is simply to lock
data before it is modified. For instance, in an editor such as
GROVE, outline items could be locked whenever a user
places their cursor over an item. There are a number of tech-
niques suited to interactive environments which decrease the
probability of a lock request being refused. For example,
with “tickle locks” [Grie86], a request to a locked resource
will be granted if the current holder is inactive. Another tech-
nique is to provide participants with visual indicators of
locked resources [Stef87] and so decrease the likelihood of
requests being issued for locked objects. There are three
main problems with locking: First there is the overhead in
requesting and obtaining the lock, this may include waiting if
the data is already locked. In any case there will be a degra-
dation in response time. Secondly, there is the question of
granularity. In a text editor it is not clear just what should be
locked when the user moves the cursor to the middle of a
line and inserts a character. Should the enclosing paragraph
or sentence be locked, or just the word or character? Fine
granularity locking is less constraining to the participants but
entails greater overhead. The third problem is determining
when locks should be requested and released. Using the pre-
vious example, should the lock be requested when the cursor
is moved or when the key is struck? The system should not
burden the user with these questions but it is hard to auto-
matically embed locking into editor commands. For exam-
ple, if locks are released when the cursor is moved then a
user could move to one place to copy some text only to be
locked out from pasting it into their previous location.
Transactions. Transaction mechanisms have been used for
concurrency control in interactive multi-user systems (for
example, CES or Quilt), but, these are loosely-coupled sys-
tems and have less demanding response time requirements.
For groupware systems there are a number of problems.
First there is the complication of distributed concurrency
control algorithms based on transaction processing and the
subsequent cost to response time. Secondly, if transactions
are implemented using locks there are the problems men-
tioned above, while if some other method is used, such as
timestamps, a user’s actions may be aborted by the system.
(Only aborts explicitly requested by the user should become
visible at the user interface.) Generally, transactions are not
well suited to interactive use, for instance a user with two
transactions active in separate windows on the same object
would be presented with two different data states - it would
be better if the windows showed the same state.

There appears to be a basic philosophical difference between
databases and groupware systems. The former strive to give
each user the illusion of being the only user of the system,
while groupware systems strive to make the actions of each
user visible to the others. Thus the shielding of one user
from seeing the intermediate states of another’s transaction
is in opposition to the goals of interactive groupware sys-
tems. There has been some work on “opening up” transac-
tions [BancBS] however the emphasis of this work has been
on coordination of nested transactions rather than elimina-
tion of the constraints imposed by locking and transactions.
Single Active Participant. Some real-time computer-con-
ferencing systems are intended for situations where only one
participant at a time “has the floor” [Lant86]. Access to the
floor may be controlled by software or through an external
protocol (for example, verbal agreement by the participants).
The main problem with this approach is that it is limited to
just those situations where having a single active participant
fits the dynamics of the session, in particular, it is not suited
for sessions with much parallelism among participants. It
may overly inhibit the free and natural flow of information
among participants. Additionally, if change of floor is left to
an external protocol then participants’ errors in following the
protocol, or non-cooperation (refusal to follow the protocol),
can result in two participants believing they have the floor
(and potentially issuing conflicting operations).

Dependency-detection. One recent proposal for concurrency
control in groupware systems is the dependency-detection
model [Stef87]. Dependency detection is based on the use of
timestamps to detect conflicting operations; conflicts are re-
solved by manual intervention. The great advantage of this
method is that no synchronization is necessary, non-conflict-
ing operations are performed immediately upon receipt, so
response is very good. Mechanisms which involve the user,
in general, are appropriate and valuable in groupware appli-
cations. However, any method which requires user interven-
tion to assure data integrity is vulnerable to user error.

Reversible Execution. This is another recent proposal for con-
currency control in groupware systems. With reversible exe-
cution [Sari85], operations are executed immediately but in-
formation is kept so that they may be undone later if neces-
sary. Many optimistic concurrency control mechanisms fall
within this category [Bern87]. A global time ordering in de-
fined for the operations (this may be provided by a central
sequencer or by ordering on timestamps and site identifiers).
When it is detected that two operations have been executed
out of order, they are undone and re-executed in the correct
order. As with dependency-detection, this method is very re-
sponsive. It’s disadvantages are the need of a global ordering
of operations and the unpleasant possibility that an operation
will appear on the user’s screen and later disappear because
it is undone. There are groupware systems in which the forc-
ing of a total ordering is inappropriate. This paper will show
an example of operations on a group editor where total or-
dering produces undesirable behavior.

The model and algorithm which we present next apply to
environments where the data is replicated at all sites. Control
is distributed and locking is not used.

3. The Model
A groupware system consists of a Set of participant Systems
connected by a communications network. We are particularly
concerned with a distributed workstation environment where
the local computing facilities associated with each participant
are capable of storing a significant subset of the operational

401

data, performing operations on this data locally, and option-
ally displaying the data via different user interfaces and dif-
ferent views. We call a participant system a site. There is one
site per user. Usually a site corresponds to a machine (the
user’s workstation), however some machines may run multi-
ple Sites. We assume that any site can communicate with any
other site.

More formally we model a groupware system by a structure
of the form G = -5, O> where:

S is a set of sites,
0 is a set of parameterized operators.

Each site consists of a site process, a site object, and a unique
site identifier. The site object is a passive data object. Since
the various users will be viewing different site objects, we
want to maintain consistency among site objects as much as
possible (i.e. site objects should look the same). A site ob-
ject’s structure is application specific; examples could in-
clude a document, a hypertext node, or a CAD design object.
The set 0 consists of operators defined on site objects. For
example, a simple text processing system might have a char-
acter string as its site object at all sites, and then define 0 as
{Ol, 02) where:

01 = insert[X; P] insert character X at position P
02 = delete[P] delete the character at position P

The operations which can be applied to any site object are
particular instances of the operators. In the previous case
this would be things like o = Ot[x; 31. Each operation
changes the state of the site object, for instance o(‘abc’) is
‘abxc’.

The site process performs three kinds of activities:
1) operation generation: an operation is specified by
the site’s user. The site process encapsulates the op-
eration in an operation request which is broadcast to all
sites.

2) operation reception: an operation request is received
from some site.

3) operation execution: an operation request is exe-
cuted.

We make the following assumptions:
Al the number of sites is constant,
A2 messages are received exactly once and without

error,
A3 it is not possible for a message to be executed be-

fore it is generated.

It is possible to extend this model and our algorithm to ac-
count for a varying number of sites over time. This extension
will be discussed at the end of this section. The second as-
sumption should be satisfied by the communications proto-
cols so we take it as given.
Given the above model, we now define correctness of a
groupware system. First, following Lamport [Lamp78], we
define a partial ordering of all operations in terms of the
local generation and execution sequences.

Definition. Given operations o and p, generated by sites s
and t, then o precedes p iff:
1) s = t and the generation of o happened before the gen-
eration of p, or
2) s # t and the execution of o at t happened before the
generation of p.

Definition. The Precedence Property states that if one opera-
tion, 0, precedes another, p, then at each site the execu-
tion of o happens before the execution of p.

Definition. A groupware session is quiescent iff all generated
operations have been executed at all sites, that is, there
are no requests in transit or waiting to be executed by a
site process.

Definition. The Convergence Property states that site objects
are identical at all sites at quiescence.

Definition. A groupware system is correct iff the convergence
property and the precedence property are always satisfied.

One possible solution is to extend the partial ordering ob-
tained from precedence to a total ordering. If operations are
executed in this order at all sites then both the precedence
and convergence properties are satisfied and the system is
correct. The total ordering may be obtained by the use of a
distributed algorithm [Lamp781 or by use of a centralized
coordinator process. (Using a coordinator, a request is first
sent to the coordinator which then broadcasts the request to
all sites.) However, in addition to lack of robustness, there
are two problems with relying on a total ordering. First, re-
sponsiveness is lost since operations are not executed when
requested but after some delay. Secondly, if a user requests
an operation, their user interface should then be locked until
the request has been executed - otherwise a following re-
quest will refer to the current state of the site object but will
be performed when the site object is in a possibly different
state.
We seek a solution where the only constraint on execution
order is the precedence property. The problem is that the
precedence property does not imply the convergence prop-
erty. This can be seen by looking at non-commuting opera-
tions. For instance, take the system G = <{Sl S2,}, {delete)>
and the operation orderings shown in Figure 2.

:f-Jz ~~:
Sl Sp -sites+ Sl

t
SP

Figure 2 Non-overlapping (a) and Overlapping (b) Operations

In the non-overlapping case, 01 precedes 02 and both sites
execute the operations in the same order resulting in conver-
gence. However, when the operations “overlap” there is no
precedence among 01 and 02. The order of execution need
not be the same at each site and the system may not con-
verge. For example, if 01 = delete[3] and 02 = delete[2] then:

01 o on(‘abcd’)) = ol(‘acd’) = ‘ac’
02 o ot(‘abcd’)) = o&abd’) = ‘ad’

(Here o indicates composition of operations.)

Even more troublesome is the case where the deletes overlap
and refer to the same position. Here, since neither site sees
the other’s delete before generating its delete, we would like
each site to only delete one character and treat the second
delete as redundant. However, there is no serial ordering of
the two delete operations which produces the desired result-
in either case an extra character is deleted. This is one ex-
ample of non-serializable behavior. Much of the literature
concerning database concurrency and replicated systems de-
fines correctness in terms of serializability. This example
suggests situtations where non-serialized correctness criteria
are needed.

402

The approach we propose is that, faced with situations such
as the above, instead of executing 01 o 02 at one site and 02 O
01 at the other, we execute 01’ o 02 and 02’ o 01 where 01’
and 02’ are transformed operations. 01’ and 02’ are obtained
from 01 and 02 respectively, and calculated so that 01’ 0 02
when applied to a site object has the same effect as 02’ 0 01.
In the following we describe how operations may be trans.
formed and when this should be done.

4. The Algorithm

we Will now look at a concurrency control algorithm for
groupware systems which is based upon the notion of opera-
tion transformation. This algorithm has a number of proper-
ties which make it suitable for groupware. First, operations
are performed immediately on their originating site, thus re-
sponsiveness is good. Secondly, locks are not necessary so
all data remains accessible to group members. Finally, the
algorithm is fully distributed, and resilient to site failure (in
the sense that the remaining sites can continue without inter-
ruption) .

Intuitively, the algorithm works as follows. When an opera-
tion is generated at a site, the site process executes the op-
eration, generates a priority for the operation, and sends in-
formation including the operation and its priority to all other
sites. When an operation is received at a site (site 0, auxil-
iary information is examined to see if the sending site exe-
cuted operations which have not yet been executed at site i
(i.e., a “future operation”). If so, the operation is queued; if
not, the operation is executed. If site i has executed opera-
tions which have not yet been executed at the sending site
(i.e., a “past operation”), then the priority of the operation is
checked and the operation may be transformed before it is
executed. In the remainder of this section, we describe this
algorithm more precisely. The priority is based upon the site
identifiers, and is application dependent. Therefore it will be
explained in section 6 in the context of our group editor ap-
plication.

4.1 Transformation Matrix

Tron@-motion Matrix. The transformation matrix is the key
to resolving conflicting operations. Given a groupware sys-
tem G = &, O>, then G’s transformation matrix, T, is an m X
m matrix, where m is the cardinality of the set 0. Each com-
ponent of T is a function which transforms operations into
other operations. Given two operations or and Oj, with Priori-
ties pi and pi, and which are instances of operators 0, and

0,) let:

aen T is such that following is satisfied:

0) 0 Oi 6 O(! 0 Oj

This represents a necessary, but not sufficient condition.
Specification of a general, sufficient condition is an elusive
endeavor. We consider this specification further in the next
section in conjunction with our group editor example.

4.2 Data Structures

Stare Vectors. Let N be the number of sites in the system (We
are assuming that IV is constant). Each site has a unique
identifier, the site ID (for example its network address). For
simplicity assume that the sites are identified by the integers
1 . . . N. The state vector of site j, is a N component Vector

where the i’th component indicates how many operations
from site i have been executed by j. Given two state vectors,
Si and Sj, we say that:

1) Si = Sj if each component of Si is equal to the
corresponding component in Sj,

2) Si < Sj if each component of Si is less than or
equal to the corresponding component in
Sj and at least one component of Sr is less
than the corresponding component in 9
(Si < Sj provided Sr < 9 or Si = 3).

3) Si > Sj if at least one component of Si is greater
than the corresponding component in sb

Requests. Requests are tuples of the form 4, s, o, p7 where i
is the originating site’s identifier, s the originating site’s state
vector, o is an operation, and p is the priority associated with
0.

A request’s state vector is used to enforce the precedence
property. For instance, in both cases shown in Figure 3, site
S2 can determine from rp’s state vector that according to the
dORT algorithm, it must await the arrival of rl before exe-
cuting r2’s operation.

pq pf+J time

si 32 so Sl SP ’

Figure 3 Precedence Detection

Request Queue. Requests waiting to be executed by a site
process are kept in the site’s request queue. A request, <j, s,
o. p7, in Qi, the request queue for site i, indicates that o has
been requested by site j while in state s. An entry is added to
the request queue when: 1) the site process receives a re-
quest from the network, or 2) the site process receives a re-
quest from site’s user. Entries are removed from the request
queue when the site process determines that the requested
operation may be executed. (Note, although we use the term
“queue,” entries need not be removed in first-in-first-out
order.)

Request Log. Each site process maintains a log of requests
executed at its site. A request, <j, s, o. ~7, in Lie the log for
site i, indicates that site i while in state s, executed operation
o (requested by site J). The log is ordered by insertion so it is
possible to find the first entry, the most recent entry, and to
step through in insertion order.

4.3 The Distributed Operational Transformation
((IOPT) Algorithm

We now give a specification of what we call the distributed
operational transformation (abbreviated as dOIT) algorithm.
The following is the algorithm as executed by the i’th site
process.

Initialization:
Qi+emPty
Lt + empty
Si + CO, 0, a*.(O>

403

Generate Operations:
receive operation o from the user interface
calculate the priority, p, of CJ
Qi + Qi + 4, pi, 0, p>

broadcast 4, si, o, ps to all other sites

Receive Operations:
receive <j, 9, Oj, Pi> from the network
Qi t Qi + 4, 9, Ojt Pj>

Execute Operations:
for each <j, 9, ob Pi> E Qi where Sj 2 Sj begin

Qi + Qi - <j, SjB Oj Pi>
if Sj < Si

<k, Sk, ok, pk> + most recent entry in Li

where 4 I sj (or B if none)
d0 while 4, Jic, ok, &> # 0 and Oj # 0

if the k’th component of Sj

is s the k’th component of $
let u be the index of 01 (Oj is an instance of 0,)
let v be the h&X of ok (ok is an instance of 0,)

Oi + Tuv(“j* Ok, Pjs Pk)
fi
<k, a, ok, pk> + next entry in Lj (or 0 if none)

od
fi
perform operation Oj on i’s site object
Li C Li + <j, Sj, Oj, Pj>
si c Si with j’th component incremented by 1

end
The initialization section simply sets the site’s log and re-
quest queue to empty and initializes the site’s state vector.
The second section receives a local operation (from the site’s
user), forms a request which is added to the request queue
Qi, and broadcasts the request to the other sites. The third
section adds requests from the network to the request queue.

The bulk of the algorithm deals with operation execution.
The request queue is examined for requests, rj = <j, 9, 0)

Pi>, which may be executed. Whether rj can be executed is
determined by comparing 9 to the site’s state vector si; there
are three possibilities:

Case I: 9 > Si

The request cannot be executed at this time (site j
has executed operations which have not yet been
executed by site i) and so is left on the queue.

Case II: Sj = Sj

When the two states are equal Oj is executed imme-
diately without transformation.

Case III: Sj C Si

In this case the request can also be executed. How-
ever, since rj refers to a state “older” than site i’s
current state, Oj must first be transformed. Site i’s

log, Li, is examined for requests which were not
accounted for by site j (i.e., requests which i has
executed but which were not executed on j prior to
the generation of rj). Each such logged request is
then used to transform Oj.

The second and third case both lead to the execution of Oj.

When this occurs the operation is applied to the site object,
added to the log, and the state vector is incremented.

4.4 Quiescence

As mentioned at the beginning of this section we have made
a number of assumptions (fixed number of sites, no failures)
that could in practice limit the usefulness of this algorithm.
Furthermore, as it stands, the algorithm has a continuously
growing data structure (the log) which must be scanned when
calculating a request’s priority and when transforming opera-
tions. These problems can be solved by regularly quiescing
the system. Quiescence should be enforced periodically (e.g.,
once per minute) and when the system falls quiet for an ex-
tended period of time (e.g., ten seconds). Detection of quies-
cence is equivalent to the well known distributed consensus
problem; algorithms for this problem may also detect site
failures (dependent upon the characteristics of the underly-
ing processing and message systems). When the system is
quiescent the log can be reset (set to null) and participants
can enter and leave the session. Furthermore the session ob-
ject can be check-pointed by each site.

5. An Example
We now consider the four transformation matrix entries for
the insert and delete operations. This transform is applied in
cases where the sending site is different from the receiving
site. We are thus assured that i is not equal to j; therefore (as
we shall see in the next section) the priority pi does not
equal Pi, If we have two operations Oi = insert[Xi; Pi] and Oj
= insert[X$ Pj] originating from sites i and j then T11 is de-
fined as:

Tll(Oi, Oj, pi, Pi) = 0; where
if(Pi < Pj)

0; = insert[Xi; Pi]
else if(Pi > Pj)

0; = insert[Xj; Pj t l]
else I’ Pi = Pj “I

if(Xi = Xj)
0; = 0

else
n(Pi > Pj)

0; = insert[Xi; Pj + l]
else I* pi < Pj ‘i

0; = insert[Xj; Pi]
fl

fi
fi

There are two interesting cases in the definition of T11. First,
when the arguments of both operations are equal, 0; is set to
null. The reason is that since i #j (T is never applied to pairs
of operations from the same site) it must be that two differ-
ent sites have requested the same operation before seeing
each others’ request, hence it is possible to ignore one re-
quest. The second interesting case is when Pi = Pj (i.e., the
positions are equal), such conflicts are resolved by using the
priority order associated with each request. Priority is used
for tie-breaking when similar operations are initiated concur-
rently. All nodes must order these in the same way. One
would think that a priority consisting Of the unique Site ID
would be sufficient, but we will see in the next section that it
is not. The priority of an operation used in T is a composite
of its predecessor’s priority and its originating site ID.

404

The remaining entries of T are quite simple, we list them
here for completeness:

‘M(delete[Pi], delete[Pj], pi, pj) = 0; where
if(Pi < Pj)

0; i delete[Pi]
else if (Pi > Pj)

0; = delete[Pi - l]
else

0; = 0
fi

Ttn(insert[Xi; Pi], delete[Pj], pi, pi) = 0; where
if(Pi < Pj)

0; = inSert[Xi; Pi]
else

0; = inSert[Xj; Pi - l]
fi

T2t(delete[Pi], insert[Xj; Pi], pi, pi) = 0; where
if(Pi < Pj)

0; = del&[Pi]
else

0; = delete[Pi + l]
fi

6. Discussion of Correctness

Lets consider the above examples where the operations are
GROVE editor operations being applied to textual outlines.
The session object for GROVE is a tree of outline items
where each item contains text. Rather than specify T in full
for all of GROVE’s operators, we will restrict consideration
to the simplification where the session object is a character
string, and the two operators are 01 = insert[X; P], and 02 =
delete[P] as previously defined.

Lets examine the workings of our algorithm for the session
shown in Figure 4 which has three sites and multiple overlap
ping operations. We first do this using the site number as the
priority. Suppose that initially the site object is the null string
at all sites and that site 1 initiates operation insert[x;l]; site
2 initiates insert[y;l]; and site 3, insert[z;l]. At site 3, the z
is first appended to the site object, then the insert x opera-
tion arrives. Although its priority is lower, it is appended in
front of the z (due to temporal precedence). Finally the in-
sert y operation arrives and its priority is compared to both
of the previous two operations. Since its priority (2) is lower

insert 2
insert y

time

sites -c 3 1 2

Figure 4 Mixed Priority Example

than that of site 3, it is changed by the transform T to in-
Sett[y;2] and is inserted after the x and before the z. The
final string is xyz.

At site 2, it first prefixes y to its session object, and then
prefixes z from site 3. When the insert x operation arrives
from site 1, its priority is compared to that of the previously
executed insert y operation, and this causes the incoming
operation to be changed to insert[x;2]. Note that due to tem-
poral precedence, the operation’s priority is not compared to
the insert z from site 3. The final string at this site is zxy
which is inconsistent with the xyz at node 3.
In Figure 4, the x generated by the operation instigated by
site 1 must occur to the left of the z instigated by site 3
because the participant at site 1 saw the insertion of the z,
and then explicitly requested an operation which would place
an x in the position in front of (to the left of) the z. Transfor-
mations and other insert operations could cause other char-
acters to be inserted between the x and the z, but to satisfy
our correcmess criteria, they should not cause the x to occur
after (to the right of) the z in the final string.
Temporal precedence suggests a problem with one of the
transforms in the session depicted by Figure 4. At site 2, the
position parameter of the insert x operation is incremented
before it is executed. The intent is to move the x past the y
which has higher precedence, but the actual effect is to move
the x past the z which violates the temporal precedence con-
straint. At this point we might try changing the transform
rule so that if the priority of x is less than the priority of y,
then we put x to the left of y (rather than to the right as we
proposed above.) Although this patch works in this case, it
fails in other rather similar cases; the problem is deeper than
this and requires a different type of solution.
The fundamental difficulty with this example is the dilemma
that our rules require x to be placed before y and y to be
placed before z and z to be placed before x. This dilemma
arises because node 2 has a precedence that separates a
predecessor priority (3) from its successor’s priority (1). Our
suggested solution is to define the priority of an operation as
a list composed of its largest predecessor’s priority, concate-
nated with its own site ID, so that an unrelated operation’s
priority can never separate them. Note that this priority cal-
culation only needs to be applied to operations with the same
position parameter. In this example, the operation insert x
would have a priority of (3,l) which is a list containing its
site ID preceded by its predecessor’s ID. The priority of (3,l)
as well as its predecessor (3) is defined to be larger than the
priority (2), so this operation will have a very similar priority
to its predecessor. We next state the generalization of this
which works for an arbitrary directed acyclic graph (dag) of
operations, and sketch the outline of its proof.

Priority Calculation: The priority of an operation Oi is calcu-
lated at the originating site at the time of execution, and is
included when the operation is sent to all other sites. If there
are operations in the local log whose original position (before
transformation) is equal to the operation being initiated, then
the highest of these priorities is chosen and the local site ID
is appended to it to form the priority of Oi. If there are no
such operations in the local log, then the priority is simply
the local site ID.

Priority Comparison: Two priorities are compared element by
element, from beginning of the list to the first element in
which they differ. Which ever is larger at the element where
the lists differ has the higher priority. If one list is a sublist
of the other, then one operation is a predecessor of the other.

405

We choose the longer list to have higher priority so that the
successor will be placed to the left of the predecessor in the
session object.

Proof Outline: The details of the full proof are beyond the
scope of this paper, so we only sketch the main ideas here.
Each operation arrives with its state vector and its priority.
An invariant which is useful within our proof is the position
counter. Each inserted character may be shifted to the left or
right during the course of its session, and the net amount of
this shift at a particular site is the position counter for that
character. Note that this shifting may be explicit by way of
transformations applied to the operation when it is being
executed, or implicit when a later executed operation inserts
or deletes another character at the same or an earlier posi-
tion in the string.

The proof that the proposed algorithm using the priority list
scheme is correct proceeds by showing that (1) the same
value will be attained for the position counter of an arbitrary
character no matter what ordering of operations is used (Con-
sistency), and (2) if Oi occurs before Oj at the same insertion
position, then the position counter of Oi will be greater than
the position counter of Oj (temporal precedence).

The operations performed in a session could arrive at a pas-
sive site (i.e. a site which initiates no operations) in any or-
der. Any arrival ordering of these operations can be obtained
from any other ordering by a sequence of transpositions of
adjacent operations. Therefore the proof of correctness can
proceed by showing that the correctness properties are main-
tained during any transposition.

We will not examine all cases, but consider the critical case
in which two overlapping insert operatioris at the same posi-
tion, Oi = insert[xi; P] and Oj = insert[xj; P], are transposed.
The following discussion argues that the values of the posi-
tion counters for these inserted characters (denoted by q
and Cj), and those of other operations, is not altered by the
transposition.

Since these operations overlap, we know that neither is a
temporal precedent to the other. Assume without loss of gen-
erality that the priorities are pi c Pi. Whenever Oi is executed
before Oj, the log is searched and Ci is altered from the in-
itial value of P to some new value Pi; later when Oj is exe-
cuted, Xj is inserted before Xi causing Xi to be implicitly
shifted to the right. Thus in this case, the value of Cj after Oi
and Oj complete is Pi+l. If we now transpose, and if Oj is
executed before Oi, then Oi encounters the same log items,
but it also encounters Oj in the log. At this encounter, Ci is
incremented, so that its final value is Pi+1 in this case also.

NOW consider the operation Oj. First suppose Oj is executed
before Oi. Let Cj have some value Pj after the execution of Oj.
Then when the log is examined during the processing of Oi,

since Oj'S priority is higher than Oi, Cj is not incremented. In
the case where Oj is executed after Oi, it sees Oi in the log, but
priority considerations leave Cj unincremented. So the value
of Cj is unchanged by the transposition. Obviously, the trans-
position has no effect upon the counters of other operations
in the session, so our argument is complete.

In the case of temporal precedence between the operations
being transposed, queuing will necessarily occur so that the
order of actual execution is not changed. To verify the tem-

poral precedence property, one must argue from the defini-
tions of the priority list and the priority calculation to infer
that if Oi occurs temporally before Oj, then the position
counter of Oi will always be greater than the position counter
Of Oj (Ci > Cj).

We have not discussed the case involving insertions at differ-
ent positions. The position counter of a character is affected
by insertion of a character at a smaller valued position (ear-
lier in the string), but not by insertion at a larger valued
position. There is no need to use priority numbers in this
case. We have also not discussed cases involving deletion.
These cases are easier because deletions are frequently com-
mutative. If Oi and Oj are deletions, then Oi followed by Oj is
frequently the same as Oj followed by Oi.

7. Conclusions and Future Developments

This paper has introduced the notion of groupware, and pre-
sented a novel algorithm for concurrency control within
groupware systems. Groupware reflects a change in empha-
sis from using the computer to solve problems to using the
computer to facilitate human interaction. For these systems
to be accepted requires fine-granularity sharing of data,
rapid response time, and rapid notification time. Therefore,
the algorithm presented does not use locking, performs non-
serializable sets of operations, and works in a workstation
environment with replicated data and distributed control.

This algorithm was presented in the context of GROVE, a
group editor which we have implemented within the Software
Technology Program at MCC. It also seems applicable to
other groupware such as hypertext systems. Notice that in
these systems, users frequently apply associative access tech-
niques rather than accessing objects by name. Thus, within a
text editing application, users browse and point at the items
they want to update; the individual characters are not given
separate immutable names or unique addresses.

Future work includes generalizing the characterization of our
transform matrix, and extending our proof technique to en-
compass hypertext and other groupware. We will also con-
tinue to incorporate these ideas within groupware systems
which we are constructing, and will be constructing in the
future. We have been developing and applying the notion of
a team automaton to model and prove various properties of
groupware systems. We hope that this will be useful in our
correctness proof extensions. In conclusion, we believe that
the new emphasis on groupware suggests a number of inter-
esting and challenging frontiers. Perhaps this paper can help
to stimulate work at these frontiers.

Acknowledgements

Thanks to Gail Rein, the other member of the groupware
team, who put in much effort to help implement GROVE and
its user interface. Thanks also to Ira Forman, whose advice
and comments were very useful in our consistency and cor-
rectness work. We are pleased to acknowledge MCC and our
managers within the Software Technology Program at MCC
for creating a stimulating environment within which this
work could be done.

406

References

[Banc85] Bancilhon, G., Kim, W., and Korth, H.F. A Model
of CAD Transactions, Proc. Intl. Conv. on Very Large Data
Bases, pp. 25-33, 1985.

[Bern871 Bernstein, P., Goodman, N., and Hadzilacos, V.
Concurrency Control and Recovery in Database Systems, Ad-
dison-Wesley, 1987.

[Cohe88] Cohen, M., Fish, R., Kraut, R., and Leland, M.
Quilt: A Collaborative Tool for Cooperative Writing,
Proc. ACM SIGOIS ConJ, pp. 30-37, 1988.

[CSCW86] Proceedings of the Conference on Computer-Sup-
ported Cooperative Work (Austin, Tex., Dec. 3-S). ACM,
New York, 1986.

[CSCWSS] Proceedings of the Conjerence on Computer-Sup-
ported Cooperative Work (Portland, Or., Sept. 23-25).
ACM, New York, 1988.

[Elli88a] Ellis, CA., Gibbs, S.J., and Rein, G. Design and
Use of a Group Editor, Rep. STP-263-88, MCC Software
Technology Program, Austin, Tex., 1988.

[Elli88b] Ellis, C.A., Gibbs, S.J., and Rein, G. Groupware,
Rep. SIP-414-88, MCC Software Technology Program,
Austin, Tex., 1988.

[Elli89] Ellis, C.A., Rein, G.L., and Jarvenpaa, S.L. Nick
Experimentation: Some Selected Results, Hawaii Int.
Conf. on System Sciences, 1989.

[Grie86] Grief, I., Seliger, R., and Weihl, W. Atomic Data
Abstractions in a Distributed Collaborative Editing Sys-
tem, Proceedings of the 13th Annual Symposium on Princi-
ples of Programming Languages, pp. 160-172, 1986.

[Grud88] Grudin, J. Why CSCW Applications Fail: Prob-
lems in the Design and Evaluation of Organizational In-
terfaces, Proc. CSCW88, 1988.

[Lamp781 Lamport, L. Time, Clocks, and the Ordering of
Events in a Distributed System, CACM 21(7), pp.
558-565, 1987.

[Lant86] Lantz, K.A. An Experiment in Integrated Multime-
dia Conferencing, Proc. Conf. on Computer-Supported CO-
operative Work, pp. 267-275, 1986.

[Lewis81 Lewis, B. and Hodges, J. Shared Books: Collabora-
tive Publication Management for an Office Information
System, Proc. ACM SIGOIS Conf., pp. 197-204, 1988.

[Sari851 Sarin, S. and Grief, I. Computer-Based Real-Time
Conferences, Computer, 18(10), pp. 33-45, 1985.

[Stef87] Stefik, M., Foster, G., Bobrow, D.G., Kahn, K.,
Lanning, S., and Suchman, L. Beyond the Chalkboard:
Computer Support for Collaboration and Problem Solving
in Meetings, CACM 30(l), pp. 32-47, 1987.

407

