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Evolution of Computer Science

1970s Specifications Languages & thm proving

1990s Programming by Examples Pattern recognition & ML

2010s Interactive Learning and Optimization

Motivations

I no explicit specification

I open world P(x) changes

I under-specified goal
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Summary

I Machine Learning needs logics, data, optimization....

I Machine Learning needs feedback: the human in the loop.

I Co-evolution of the human in the loop and the learner.
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If the computer could read the user’s mind
Shannon’s Mind Reading Machine
http://cs.williams.edu/ bailey/applets/MindReader/index.html

The 20Q game 220 ≈ 106 > #words ≈ 105

“…prepare to be
eerily amused.”
Lonnie Brown

“The Ledger”, Florida,

games played online
87,135,942

Think of something and 20Q will read your mind by asking a
few simple questions. The object you think of should be
something that most people would know about, but not a
proper noun or a specific person, place, or thing.
Click the ? in the upper right corner for help.

Q1.  Is it classified as Animal, Vegetable or Mineral?
Animal, Vegetable, Mineral, Concept, Unknown

Suggestions

If you would like some suggestions of what to think about, 20Q recommends
the following:

Some things 20Q has chosen at random . . .
      jacks (child's game), talcum powder, anmitsu (bean paste with honey), a hot tub, an
apricot.

?

20Q/5.00y, WebOddity/1.18m     © 1988-2007, 20Q.net Inc., all rights reserved

20Q.net Inc. http://www.20q.net/
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Overview

Interactive Learning and Optimization in Search

Reinforcement Learning

Programming by Feedback
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Interactive learning and optimization

Optimizing the coffee taste Herdy et al., 96
Black box optimization:

F : Ω→ IR Find arg max F

The user in the loop replaces F

Optimizing visual rendering Brochu et al., 07

Optimal recommendation sets Viappiani & Boutilier, 10

Information retrieval Shivaswamy & Joachims, 12
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Interactive optimization

Features

I Search space X ⊂ IRd
(recipe x : 33% arabica, 25% robusta, etc)

I hardly available features; unknown objective
I Expert emits preferences: x ≺ x ′.

Iterative scheme

1. At step t, Alg. generates candidates x
(1)
t , x

(2)
t

2. Expert emits preferences x
(1)
t � x

(2)
t

3. t → t + 1

Issues

I Asking as few questions as possible 6= active ranking
I Modelling the expert’s preference

surrogate optimization objective
I Enforce the exploration vs exploitation trade-off
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Optimal Bayesian Recommendation Sets

Boutilier Viappiani 2010

Notations

I Objects in a finite domain Y ⊂ {0, 1 . . .}d

I Generalized additive independent model U(y) = 〈w , y〉
I Belief P(w , θ)

Algorithm
For t = 1 . . .T do
∗ Propose a set y1 . . . yk (Selection criterion, see next)
∗ Observe preferred ȳ
∗ Update θ
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Selection criterion
Expected utility of solution y

EU(y , θ) =

∫
W
〈w , y〉dP(w , θ)

Maximum expected utility

EU∗(θ) = maxyEU(y , θ)

Selection Criterion: return solution with maximum
I Expected utility
I Maximum expected posterior utility given y∗ the best solution

so far

EPU(y , θ) = Pr(y > y∗; θ)EU∗(θ|y > y∗)
+ Pr(y < y∗; θ)EU∗(θ|y < y∗)

I Maximum expected utility of selection

EUS(y , θ) = Pr(y > y∗; θ)EU(y , θ|y > y∗)
+ Pr(y < y∗; θ)EU(y∗, θ|y < y∗)
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Optimal Bayesian Recommendation Sets, 2

Comments

I Max. expected utility = greedy choice

I Max expected posterior utility: greedy with 1-step look-ahead
(maximizes the expected utility of the solution found after the
user will have expressed her preference). But computing
EPU(y) requires solving two optimization problems.

I Max expected utility of selection: limited loss of performance
compared to max EPU; much less computationally expensive.
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Co-active Learning
Shiwasvamy Joachims 2012

Context
Refining a search engine. Given query x , propose ordered list y .

Notations
I User utility U(y |x)
I Search space of linear models U(y |x) = 〈w , φ(x , y)〉

Algorithm
For t = 1 . . .T
∗ Given xt , Propose yt = argmaxy{〈wt , φ(xt , y)}
∗ Get feedback ȳt from user (swapping items in y)
∗ Update utility model:

wt+1 = wt + φ(xt , ȳt)− φ(xt , yt)

Difference wrt multi-class perceptron
I Feedback: ȳt is a rearrangement of yt (not true label)
I Criterion: regret (not misclassification)

R =
1

T

T∑
t=1

U(y∗t |xt)− U(yt |xt)
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Interactive Intent Modelling

The vocabulary issue in human-machine interaction
Furnas et al. 87

I Single access term chosen by a single designer will provide
very poor access:

I Humans are likely to use different vocabularies to encode and
decode their intended meaning.
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Two translation tasks

...not equally difficult

A From mother tongue to foreign language: one has to know
vocabulary and grammar

B From foreign language to mother tongue: desambiguation
from context, by guessing, etc

Search

I Writing a query: An A-task

I Assessing relevance: A B-task
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Interactive Intent Modelling, 2

A human-in-loop approach Ruotsalo et al. 15

I Show candidate documents

I Ask user’s preferences

I Focus the query
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Overview

Interactive Learning and Optimization in Search

Reinforcement Learning

Programming by Feedback
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Reinforcement Learning

Generalities

I An agent, spatially and temporally situated

I Stochastic and uncertain environment

I Goal: select an action in each time step,

I ... in order maximize expected cumulative reward over a time
horizon

What is learned ?
A policy = strategy = { state 7→ action }
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Reinforcement Learning, formal background

Notations

I State space S
I Action space A
I Transition p(s, a, s ′) 7→ [0, 1]

I Reward r(s)

I Discount 0 < γ < 1

Goal: a policy π mapping states onto actions

π : S 7→ A

s.t.

Maximize E [π|s0] = Expected discounted cumulative reward
= r(s0) +

∑
t γ

t+1 p(st , a = π(st), st+1)r(st+1)
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Reinforcement learning

Tasks (model-based RL)

I Learn value function

I Learn transition model

I Explore

Algorithmic & Learning issues

I Representation of the state/action space

I Approximation of the value function

I Scaling w.r.t. state-action space dimension

I Exploration / Exploitation

Expert’s duty: design the reward function, s.t.

I optimum corresponds to desired behavior

I tractable (approximate) optimization.
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Designing the reward function

Sparse

I only reward on the treasure: a Needle in the Haystack
optimization problem

Informed

I Significant expertise (in the problem domain, in RL) required
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Using expert demonstrations

to train a classifier s → π(s)

... yields brittle policies

Inverse Reinforcement Learning Russell Ng 00, Abbeel Ng 04

Infer the reward function explaining the expert behavior
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Sidestepping numerical rewards

Medical prescription Furnkranz et al., 2012

Avoid quantifying the cost of a fatal event: comparing the effects
of actions.

s, a, π ≺ s, a′, π

Co-Active Learning Shivaswamy Joachims, 15

The user responds by (slightly) improving the machine output.
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Relaxing Expertise Requirements in RL

Expert

I Associates a reward to each state RL

I Demonstrates a (nearly) optimal behavior Inverse RL

I Compares and revises agent demonstrations Co-Active L

I Compares demonstrations Preference RL, PF

Ex-
per-
tise
↘

Agent

I Computes optimal policy based on rewards RL

I Imitates verbatim expert’s demonstration IRL

I Imitates and modifies IRL

I Learns the expert’s utility IRL, CAL

I Learns, and selects demonstrations CAL, PRL, PF

I Accounts for the expert’s mistakes PF

Au-
ton-
omy
↗
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Motivating application: Swarm Robotics

Swarm-bot (2001-2005) Swarm Foraging, UWE

Symbrion IP, 2008-2013; http://symbrion.org/

Inverse RL not applicable: target individual behavior unknown.
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Programming by feedback

Akrour et al. 14

Loop

1. Computer presents the expert with a pair of behaviors y1, y2

2. Expert emits preferences y1 � y2

3. Computer learns expert’s utility function 〈w , y〉
4. Computer searches for behaviors with best utility

Key issues

I Asks few preference queries
Not active preference learning: Sequential model-based optimization

I Accounts for human noise
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Human noise

Human beings often are

I irrational
I inconsistent

I they make errors
I they adapt themselves
I they are kind...

Preferences often

I do no pre-exist

I are constructed on the fly

D. Kahneman, Thinking, fast and slow, 2011
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Formal setting

X Search space, solution space controllers, IRD

Y Evaluation space, behavior space trajectories, IRd

Φ : X 7→ Y

Utility function

U∗ Y 7→ IR U∗(y) = 〈w∗, y〉 behavior space

Requisites

I Evaluation space: simple to learn from few queries

I Search space: sufficiently expressive
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Programming by Feedback

Ingredients

I Learning the expert’s utility
to avoid asking too many preference queries

I Modelling the expert’s competence
to accommodate expert inconsistencies

I Selecting the next best behaviors to be demonstrated:
I Which optimization criterion
I How to optimize it

algorithmic details at the end
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Modelling the expert’s competence: Noise model
Given two solutions y and y′, for w∗ the true utility

Preference margin z = 〈w∗, y− y′〉

The probability of error is
Prob of error

1/2

 delta−delta

Preference margin Z

I 0 if the absolute margin is > threshold δ

I piecewise linear for −δ < z < δ.

Where δ is uniform in [0,M] and M is the expert’s inconsistence /
incompetence

the lower, the most consistent the expert.
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Experimental validation

I Sensitivity to expert competence
Simulated expert, grid world

I Other benchmarks details at the end
I Continuous case, no generative model

The cartpole

I Continuous case, generative model
The bicycle

I Training in-situ
The Nao robot
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The learner and the (simulated) human in the loop
Grid world: discrete case, no generative model
25 states, 5 actions, horizon 300, 50% transition motionless

The true w∗
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The learner and the (simulated) human in the loop, 2
Findings

I The learner estimate MA of the expert’s inconsistency (ME )
does influence the number of mistakes done by the expert.

I No psychological effects though: this is a simulated expert.

I In the short run, a learner trusting a (mildly) incompetent
expert does better than a learner distrusting a (more)
competent expert.

Interpretation

I The higher MA, the smoother the learned preference model,
the more often the learner presents the expert with pairs of
solutions with low margin;

I The lower the margin, the higher the mistake probability

I A cumulative (dis)advantage phenomenon

For low MA, the computer learns faster, submits more relevant demonstrations

to the expert, thus priming a virtuous educational process.
31 / 45



Partial conclusion

Feasibility of Programming by Feedback for simple tasks

An old research agenda

One could carry through the organization of an
intelligent machine with only two interfering inputs,
one for pleasure or reward, and the other for pain or
punishment.

CS + learning from the human in the loop

I No need to debug if you can just say: No !
and the computer reacts (appropriately).

I I had a dream: a world where I don’t need to read the manual.
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Learning and Optimization with the Human in the Loop

Knowledge-constrained Computation, memory-constrained
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Programming by feedback

Akrour et al. 14

Algorithm

1. Learning the expert’s utility function given the preference
archive

2. Finding the best pair of demonstrations (y, y′) (expected
posterior utility under the noise model)

3. Achieving optimization in demonstration space (e.g. trajectory
space)

4. Achieving optimization in solution space (e.g. neural net)
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Learning the expert’s utility function

Data Ut = {y0, y1, . . . ; (yi1 � yi2), i = 1 . . . t}
I trajectories yi
I preferences yi1 � yi2

Learning: find θt posterior on W W = linear fns on Y

Proposition: Given Ut ,

θt(w) ∝
∏

i=1,t P(yi1 � yi2 | w)

=
∏

i=1,t

(
1
2 + wi

2M

(
1 + log M

|wi |

))
with wi = 〈w, yi1 − yi2〉, capped to [−M,M].

Ut(y) = IEw∼θt [〈w, y〉]
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Best demonstration pair (y , y ′)
after Viappiani Boutilier, 10

EUS: Expected utility of selection (greedy)

EUS(y, y′) = IEθt [〈w, y − y ′〉 > 0] . Uw∼θt ,y>y ′(y)
+ IEθt [〈w, y − y ′〉 < 0] . Uw∼θt ,y<y ′(y′)

EPU: Expected posterior utility (lookahead)

EPU(y, y′) = IEθt [〈w, y − y ′〉 > 0] . maxy“Uw∼θt ,y>y ′(y′′)
+ IEθt [〈w, y − y ′〉 < 0] . maxy“Uw∼θt ,y<y ′(y′′)

= IEθt [〈w, y − y ′〉 > 0] . Uw∼θt ,y>y ′(y∗)
+ IEθt [〈w, y − y ′〉 < 0] . Uw∼θt ,y<y ′(y′∗)

Therefore
argmax EPU(y, y′) ≤ argmax EUS(y, y′)
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Optimization in demonstration space

NL: noiseless N: noisy

Proposition

EUSNL(y, y′)− L ≤ EUSN(y, y′) ≤ EUSNL(y, y′)

Proposition

max EUSNL
t (y, y′)− L ≤ max EPUN

t (y, y′) ≤ max EUSNL
t (y, y′) + L

Limited loss incurred (L ∼ M
20 )

40 / 45



Optimization in solution space

1. Find best y, y′ → Find best y
to be compared to best behavior so far y∗t

The game of hot and cold

2. Expectation of behavior utility → utility of expected behavior
Given the mapping Φ: search 7→ demonstration space,

IEΦ[EUSNL(Φ(x), y∗t )] ≥ EUSNL(IEΦ[Φ(x)], y∗t )

3. Iterative solution optimization

I Draw w0 ∼ θt and let x1 = argmax {〈w0, IEΦ[Φ(x)]〉}
I Iteratively, find xi+1 = argmax {〈IEθi [w], IEΦ[Φ(x)]〉}, with θi

posterior to IEΦ[Φ(xi )] > y∗t .

Proposition. The sequence monotonically converges toward a
local optimum of EUSNL
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Experimental validation of Programming by Feedback
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Continuous Case, no Generative Model

The cartpole
State space IR2, 3 actions
Dem. space IR9, dem. length 3,000
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Two interactions required on average to solve the cartpole problem.
No sensitivity to noise.
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Continuous Case, with Generative Model

The bicycle
Solution space IR210 (NN weight vector)
State space IR4, action space IR2, dem. length ≤ 30, 000.

True utility
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Optimization component: CMA-ES Hansen et al., 2001

15 interactions required on average to solve the problem for low
noise.
versus 20 queries, with discrete action in state of the art.
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Training in-situ

The Nao
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