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Abstract. Meta-heuristics usually lack any kind of performance guar-
antee and therefore one cannot be certain whether the resulting solutions
are (near) optimum solutions or not without relying on additional algo-
rithms for providing lower bounds (in case of minimization).

In this paper, we present a highly effective hybrid evolutionary local
search algorithm based on the iterated Lin-Kernighan heuristic combined
with a lower bound heuristic utilizing 1-trees. Since both upper and
lower bounds are improved over time, the gap between the two bounds
is minimized by means of effective heuristics. In experiments, we show
that the proposed approach is capable of finding short tours with a gap of
0.8% or less for TSP instances up to 10 million cities. Hence, to the best
of our knowledge, we present the first evolutionary algorithm and meta-
heuristic in general that delivers provably good solutions and is highly
scalable with the problem size. We show that our approach outperforms
all existing heuristics for very large TSP instances.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the best-known combinato-
rial optimization problems. Simply stated, the problem is to find the shortest
round trip through a set of cities where each city has to be visited exactly once.
Unfortunately, the TSP is known to be NP-hard.Meta-heuristics usually do not
provide a performance guarantee such as approximation algorithms. Hence, for
finding provably good solutions, one has to resort to exact algorithms like Branch
& Cut, or use an algorithm for computing a lower bound (in case of a minimiza-
tion problem) additionally to the meta-heuristic.

In this paper, we present a heuristic approach that simultaneously improves
lower and upper bounds for a TSP instance to provide a gap for the best solution
found. The gap determines the maximum deviation from the optimum solution
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and therefore provides a quality measure for the obtained TSP tour. The ap-
proach differs from exact algorithms like Branch & Cut [1] in that no efficient
linear programming (LP) solver is required and it differs from approximation al-
gorithms such as PTAS [2] in that no general performance guarantee is provided.
Instead, the quality is proved for each instance and a particular run: a final gap
between lower and upper bound of 1% means that the solution found is at most
one percent above the optimum (in practice the real gap is much lower).

We show in experiments that our approach (a) delivers solutions known to
be only about 1% above the optimum on average, (b) scales linearly for random
Euclidean instances and is therefore even applicable to instances with 10 million
cities, and (c) outperforms all known TSP heuristics for very large instances.

The paper is organized as follows: Section 2 discusses state-of-the-art meta-
heuristics for the TSP. In Section 3, our new highly effective approach is pre-
sented. Results from several experiments are discussed in Section 4. The paper
is concluded in Section 5.

2 Effective Approaches for the TSP

The TSP has served as a test-bed for new heuristic approaches including evo-
lutionary algorithms (EA). Consequently, many approaches, both evolutionary
and non-evolutionary, have been proposed. Here, we focus on those approaches
which are highly effective and scalable. TSP instances up to a size of 1,000 can
be considered as trivial for most algorithms. In fact, these small problems can
usually be solved exactly by Branch & Cut [3] in a few seconds. Therefore, these
instances are no longer of interest for heuristics research on the TSP. For in-
stances up to approx. 30,000 cities, very effective heuristics have been proposed
most of which are based on the powerful Lin-Kernighan (LK) heuristic [4], a vari-
able k-opt local search. An example is Helsgaun’s LK implementation (LKH) [5].

Only few evolutionary algorithms can compete with LKH. One of the best
evolutionary approaches is the EA of Nagata using EAX crossover [6] and 2-opt
local search. This algorithm finds (near) optimal tours up to a size of 33,000
cities, although with a high runtime. Recently, Nguyen et al.[7] have proposed
a hybrid evolutionary algorithm which utilizes a variant of the MPX crossover
operator [8] and a Lin-Kernighan local search variant with 5-opt moves. Results
are reported for instances up to 85,900 cities. The authors claim that their algo-
rithm is more effective than LKH. Moreover, the authors describe an approach
for solving the World TSP (approx. 2 million cities) by solving and merging sub-
problems. But results for other instances in the range from 100,000 to 10 million
cities are not reported.

For instances larger than 100,000 cities, only few heuristics have been proposed.
For these instances, the DIMACS TSP implementation challenge [9] lists several
approaches of which the best are based on the LK heuristic: The multi-level algo-
rithm of Walshaw [10] first reduces the size of a TSP instance stepwise and then
applies the (chained) LK heuristic to the smaller problems. The results are inferior
to the results obtained by directly applied chained LK or iterated LK heuristics.
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These heuristics are based on the principle of iterated local search [11], an evolu-
tionary heuristic incorporating local search. The idea is to stepwise improve the
current best solution by mutating it and subsequently applying local search. The
first iterated local search was the iterated Lin-Kernighan (ILK) heuristic by John-
son [12]. Other variants have been proposed such as the chained Lin-Kernighan
heuristic [13,14]. These ILK heuristics have been applied to instances with up to
10 million cities. The only algorithm within the DIMACS challenge not using LK
as a subroutine and still being highly effective for large instances is the dynamic
programming approach of Balas and Simonetti [15].

Except for the LKH heuristic, none of the mentioned algorithms provides a
lower bound on the optimum solution. To the best of our knowledge, the only
evolutionary algorithm computing lower bounds is the one proposed in [16].
However, the approach deals with instances below 2,400 cities only.

3 A Scalable Evolutionary Algorithm for the TSP

In the following, we present an ILK variant for the TSP that can be applied to
instances with millions of cities.

3.1 The General Evolutionary Framework

The evolutionary framework we use in our algorithm is not specific to the TSP.
The concept of iterated local search has been applied to other combinatorial
problems with great success [11]. The framework is rather simple: First, a so-
lution to the problem is generated using some sort of randomized construction
heuristic. Then, a local search is applied to obtain a local optimum. Afterwards,
the best local optimum obtained so far is mutated repeatedly by some problem–
specific mutation operator, and a local search procedure is applied subsequently.
If the newly obtained solution is better than the previous one, it is accepted as
the new best solution. In this way, one can obtain successively better solutions.
The reason why this approach is so effective for the TSP is that the fitness land-
scape of the TSP is highly correlated: The smaller the distance to the optimum,
the better the fitness (the smaller the tour length in case of the TSP). Therefore,
iterated local search allows to ’jump’ from one local optimum to a better local
optimum until the global optimum is reached. Relatively small mutations are
necessary to jump to a new local optimum since local optima are close to each
other [17,18].

Our local search is based on the LK heuristic, hence our iterated local search
is called iterated LK. The general outline of our iterated LK is shown in Fig. 1. In
contrast to other approaches, our ILK incorporates a lower bound computation.
This computation is interleaved with the optimization algorithm as can be seen
in the figure: every 400 iterations of the ILK, the lower bound is improved until
there appears to be no more improvement possible (the lower bound computation
has converged). The lower bound computation possibly modifies the candidate
edge set, which is used by the local search to look for improving moves (edge
exchanges).
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3.2 Implementation Details of the ILK

To find initial solutions (Init() in the pseudo code), we use the Quick-Boruvka
heuristic [9,14], and the initial candidate set (FindInitialCandidateSet(Instance) in
the pseudo code) is based on a subgraph containing the two nearest neighbors
for each quadrant of a city [14]. This candidate set has the property of being
connected. The candidate set is computed using a k-d-tree data structure [19]. A
small candidate set is essential for the scalability of the approach. Having eight
neighbors on average appeared to be reasonable.

Due to the complexity of state-of-the-art implementations of ILK, it is not
possible to describe all the aspects here in fully detail. A forthcoming technical
report will cover all these aspects.

Mutation Operator. The mutation operator used in the algorithm is non-
sequencial four exchange [4,20] using a random walk on the candidate set to
find edges to be included in the tour. This operator has been proven to be very
effective in conjunction with Lin-Kernighan local search [14]. Hence, in each
mutation as few as four edges are exchanged: Edges (t1, t2), (t3, t4), (t5, t6), and
(t7, t8) are replaced by edges (t1, t4), (t2, t3), (t5, t8), and (t6, t7). The random
walk omn the candidate edge set assures that edges with a relatively small length
instead of arbitrarily long edges are included. We experimented with several
other mutation schemes. This one appeared to be the best. We found that a
reasonable number of steps for the random walk is 150 independently of the
problem size. So, we used this value in our algorithm.

Local Search Operator. As mentioned before, we use a variant of the original
Lin-Kernighan heuristic for the local search. Compared to the original LK, we
use 3-opt moves as submoves instead of 2-opt moves at all levels: edges (t1, t2),

function ILK−PM(Instance : TspInstance, MaxIter : Integer) : TspTour;
begin

C := FindInitialCandidateSet(Instance);
Tour := Init ();
Tour := LocalSearch(C, Tour);
C := FindInitialLowerBound(C, TourLength(Tour));
for iter := 1 to MaxIter do begin

Tbest := Tour;
Tour := Mutate(Tour);
Tour := LocalSearch(Tour);
if TourLength(Tour) < TourLength(Tbest) then Tbest := Tour;
if ( iter % 400) = 0 then C := UpdateLowerBound(C, TourLength(Tbest));

end
return Tbest;

end

Fig. 1. The Evolutionary Local Search Algorithm
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(t3, t4), and (t5, t6) are replaced by edges (t2, t3), (t4, t5), and (t6, t1) in a sub
move. The next sub move will start by replacing the last new edge (t6, t1). We
do not use backtracking which simplifies the implementation drastically without
affecting the performance. In this aspect our implementation is similar to LKH.
As in other LK implentations we make use of Bentley’s don’t look bits concept
[21]. Moreover, we use two-level trees to represent tours [22].

3.3 The Lower Bound Computation

Held and Karp [23,24] proposed a method based on Lagrangian relaxiation to
compute lower bounds for the TSP. It is based on computing 1-trees, i.e. min-
imum spanning trees with one additional edge (the second shortest edge of a
leaf in the tree). The approach is to find a transformation given by a vector
π = (π1, . . . , πN ) that maximizes the lower bound w

w(π) = L(Tπ) − 2
N∑

i=1

πi, (1)

where N is the problem size, Tπ is a minimum 1-tree on the transformed graph
G′ for which the cost of traveling between city i and j is c′ij = cij + πi + πj ,

function UpdateLowerBound(C : CandidateSet; upper : REAL) :
TspTour;

begin
if (FirstTime) then begin

InitPiValues(Pi);
best lower : = Calculate1Tree(Pi);

end
FirstTime := false;
t := (upper − best lower) / norm;
for i := 1 to 200 do begin

updatePi(Pi, t);
lower : = Calculate1Tree(Pi);
if (lower > best lower) then begin

best lower := lower;
Best Pi := Pi;
t := t ∗ 4.0;

end
t := t ∗ 0.75;

end
best lower = Calculate1Tree(Best Pi);
return best lower ;

end

Fig. 2. The Incremental Lower Bound Improvement
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and L(Tπ) is the cost of the tree with respect to G′. Compared to other lower
bounds this bound does not require to compute a linear program. In order to
find the best π vector, a subgradient optimization can be applied. Within the
subgradient optimization, π is updated as follows:

πi = πi + t(k) (0.7(d(k)
i − 2) + 0.3(d(k−1)

i − 2)), (2)

where d
(k)
i denotes the degree of city i in the minimum 1-tree at step k. For t(k) →

0, for k → ∞, and
∑

t(k) = ∞, w(π) will converge to the maximum of w(π).
However, in practice convergence can be very slow and since computing min-

imum 1-trees is expensive for very large instances, we use a simplified scheme
of adjusting t(k) as shown in Fig. 2 and we repeat the subgradient optimization
several times. In the figure, norm denotes

∑
i(d

(k)
i − 2)2.

Since computing the minimum 1-tree for very large instances is time con-
suming, we calculate the minimum 1-tree in the candidate set. The final 1-tree
calculation of each call to UpdateLowerBound() is computed after the candidate
set was recomputed on the transformed instance using the best π vector. The
ILK will use the recomputed candidate set in its subsequent iterations.

4 Experimental Evaluation

To assess the performance of our algorithm we performed several runs on a set
of publicly available benchmark instances. We used all seven Euclidean TSPLIB
instances of size >10,000, three national TSP instances of size >10,000, three
VLSI instances of size >100,000 from http://www.tsp.gatech.edu/, and finally
seven random Euklidean instances form the DIMACS TSP challenge in the range
between 10 thousand and 10 million. We report average values of 32 runs for
each instance. The algorithms were coded in C++ (under Linux with gcc) and
running times are reported for an Intel Core Quad 6600 processor. For each run
only one CPU core was used. Results are reported in Table 1. For each instance,
the name (containing the size of the instance), the average final tour length,
the standard deviation of the tour length (sdev), the percentage excess over the
best–known solution (or in case of the E*.0 instances over the Held-Karp lower
bound), the gap of the computed lower and upper bound, and the running time
in seconds are provided. The termination criterion was 0.1N iterations (N is the
problem size). The last two columns contain the average percentage excess and
the running time for the alogrithm without lower bound computation.

The results demonstrate that the algorithm is capable of finding provably
good solutions in very short time: For the TSPLIB instances, the gap lies be-
tween 0.64% and 1.51% by spending at most 40 seconds of CPU time. For the
national instances, the gap is about 1.0% with a maximum of 122 seconds. The
VLSI instances are significantly greater and the running time increases up to
1,192 seconds. The average gap is about 1.5%. Finally, for the random Euclidean
instances the gap is below 0.83% independently of the size of the instance. The
running time increases from 13 seconds (10 thousand cities) to 32,789 seconds
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Table 1. Results of our ILK (ILK-PM-.1N) for DIMACS TSP Challenge Instances

With Lower Bound Without LB
Instance Tour length sdev Excess Gap sec Excess sec

rl11849 926071.6 583.5 0.302% 1.51% 9 0.382% 4
usa13509 20011164.1 6114.4 0.142% 0.91% 24 0.156% 18
brd14051 470051.6 230.9 0.148% 0.92% 20 0.140% 12
d15112 1574915.0 175.8 0.123% 0.67% 24 0.123% 16
d18512 646089.9 89.5 0.138% 0.64% 22 0.138% 13
pla33810 66456993.5 43691.9 0.618% 1.44% 20 0.693% 6
pla85900 143254481.1 85239.3 0.612% 1.24% 40 0.634% 13
sw24978 857594.8 257.0 0.234% 1.13% 33 0.262% 16
bm33708 961536.8 209.0 0.234% 0.98% 54 0.253% 17
ch71009 4573501.2 547.5 0.153% 0.86% 122 0.163% 70
sra104815 252310.2 47.7 0.377% 1.11% 152 0.443% 50
ara238025 581381.4 157.8 0.435% 1.32% 495 0.511% 121
lra498378 2183574.5 1389.0 0.705% 1.99% 722 0.886% 244
lrb744710 1619145.0 538.5 0.435% 1.36% 1192 0.541% 321
E10k.0 71969032.4 20938.0 0.850% 0.86% 13 0.853% 10
E31k.0 127469229.7 16091.7 0.786% 0.80% 50 0.792% 34
E100k.0 226146457.7 15767.1 0.809% 0.82% 184 0.819% 123
E316k.0 401954702.2 15174.6 0.801% 0.82% 665 0.808% 428
E1M.0 714351765.1 18622.6 0.797% 0.81% 2677 0.804% 1449
E3M.0 1269419125.3 14147.1 0.748% 0.81% 11547 0.755% 5228
E10M.0 2256845968.6 12030.8 0.752% 0.81% 32789 0.760% 17867

(10 million cities). Without the lower bound computation and the update of the
candidate set the running time is considerably lower for the larger instances.
Moreover, the average final tour quality is in all cases but one lower with can-
didate set update deactivated. The results are up to 0.18% better for the algo-
rithm with lower bound computation. However, this appears to be dependent
on the problem instance. For the uniform random instances, the gain is only
about 0.01%. The runtime increases almost linearly with the problem size for
our ILK as Fig. 3 demonstrates. In order to compare with other state-of-the-
art approaches, Table 2 shows a comparison with the eleven best performing
algorithms (out of 90) listed on the DIMACS TSP challenge web page. The
summary was produced with the statistics code from the challenge. Thus the
running time reported in the table is normalized to a DEC Alpha processor with
500 MHz in order to allow a comparison of the different approaches. The quality
is given as the percentage excess over the Held-Karp (HK) bound. As shown
in the table, our algorithm provides a significantly better tour quality than the
other approaches. And it does this in a fraction of time of the second best ap-
proach which is also an ILK implementation. Note that none of the competitors
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Fig. 3. Scaling behaviour of three ILK variants

computes a lower bound. For the 10 million city instance E10M.0, the quality
of our approach is 0.75% over the Held-Karp bound compared to the best al-
gorithm of the DIMACS challenge which is 1.63% over the Held-Karp bound!

Table 2. Comparison of DIMACS TSP Challenge Results on E1M.0. ILK-PM-.1N
denotes our ILK with 1 million iterations and ILK-PM-.1N denotes our ILK with 1,2
million iterations.

% HK Seconds Implementation Reference

0.787 17544.0 ILK-PM-.12N this paper
0.792 77161.6 ILK-NYYY-N ([25])
0.797 16062.0 ILK-PM-.1N this paper
0.804 8694.0 ILK-PM-.1N without LB this paper
0.841 6334.0 ILK-NYYY-Ng ([25])
0.879 42242.5 MLCLK-N [10]
0.888 3480.2 ILK-NYYY-.5Ng ([25])
0.903 19182.7 BSDP-6 [15]
0.903 19503.1 BSDP-8 [15]
0.903 21358.3 BSDP-10 [15]
0.903 19108.1 CLK-ABCC-N.Sparc [13]
0.905 19192.3 CLK-ACR-N [14]
0.910 16008.0 CLK-ABCC-N.MIPS [13]
0.945 20907.6 MLCLK-.5N [10]
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This is due to the fact that the best algorithms for the smaller instances do
not scale as well as our approach: Fig. 3 shows the normalized runtime of our
approach (ILK-PM-.1 with and without lower bound computation), the ILK of
Nguyen et al. (for which no reference exists except for the DIMACS challenge
web page) denoted ILK-NYYY-N, and the runtime of chained LK of Applegate
et al. denoted CLK-ACR-N [14] depending on the problem size. While the run-
time of our approach without lower bound computation grows linearly with the
problem size, the runtime of the others clearly grows faster and and yields in the
non-applicability of these algorithms to very large problem instances (>1 million)
whereas our approach is still very successful even if the lower bound computation
is activated.

5 Conclusions

We presented a new Iterated Lin-Kernighan heuristic based on the powerful
concept of iterated local search. We have shown in experiments that our ap-
proach scales well with the problem size and is therefore applicable to very
large TSP instances with 10 million cities. Besides the scalability, the approach
provides provably good solutions since it computes a lower bound interleaved
with the optimization. Therefore, the obtained results are known to be not more
than about 1% above the optimum and in case of the very large random Eu-
clidean instances not more than 0.81% above the Held-Karp Lower bound even
for the largest, 10 million cities instances. Compared to other evolutionary and
non-evolutionary approaches for very large instances above 1 million cities, our
approach obtains better tour quality in even shorter time. In particular, all al-
gorithms from the DIMACS TSP implementation challenge are shown to be
inferior to our approach. To the best of our knowledge the proposed approach is
the only one that is both scalable to millions of cities and provides provably good
solutions.

There are some issues for future research. Currently, we are working on a
distributed algorithm for large instances based on the ILK presented here. Both
the use of a population and the use of recombination are subject of our stud-
ies. Finally, we believe that our lower bound computation can be further
improved.
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