
Pervasive Parallelism in Highly-Trustable
Interactive Theorem Proving Systems

Bruno Barras3, Hugo Herbelin2, Lourdes del Carmen González Huesca2,
Yann Régis-Gianas2, Enrico Tassi3, Makarius Wenzel1, and Burkhart Wolff1

1 Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
CNRS, Orsay, F-91405, France

2 INRIA, Univ. Paris Diderot, Paris, France
3 INRIA, Laboratoire d’Informatique de l’Ecole Polytechnique

1 Background

Interactive theorem proving is a technology of fundamental importance for math-
ematics and computer-science. It is based on expressive logical foundations and
implemented in a highly trustable way. Applications include huge mathematical
proofs and semi-automated verifications of complex software systems. Interac-
tive development of larger and larger proofs increases the demand for computing
power, which means explicit parallelism on current multicore hardware [6].

The architecture of contemporary interactive provers such as Coq [13, §4],
Isabelle [13, §6] or the HOL family [13, §1] goes back to the influential LCF
system [4] from 1979, which has pioneered key principles like correctness by
construction for primitive inferences and definitions, free programmability in
userspace via ML, and toplevel command interaction. Both Coq and Isabelle
have elaborated the prover architecture over the years, driven by the demands
of sophisticated proof procedures, derived specification principles, large libraries
of formalized mathematics etc. Despite this success, the operational model of
interactive proof checking was limited by sequential ML evaluation and the se-
quential read-eval-print loop, as inherited from LCF.

2 Project Aims

The project intends to overcome the sequential model both for Coq and Isabelle,
to make the resources of multi-core hardware available for even larger proof de-
velopments. Beyond traditional processing of proof scripts as sequence of proof
commands, and batch-loading of theory modules, there is a vast space of possi-
bilities and challenges for pervasive parallelism. Reforming the traditional LCF
architecture affects many layers of each prover system, see figure 1.

Parallelization of the different layers is required on the level of the execu-
tion environments (SML, OCaml), which need to include some form of multi-
threading or multi-processing supported by multi-core architectures. Isabelle can
build on parallel Poly/ML by David Matthews [5] and earlier efforts to support

Read-Eval-Print Loop

Inference Kernel

ML / LISP

TTY / Scripts

Parallel Inference Kernel

Parallel ML

Parallel Transactions

Asynchronous Agents

Evaluation Strategies

Front-end Technology

Prover Architecture

User Interaction

Persistent History

Formal Content

Concurrent Changes

Document Model

Fig. 1. Reformed LCF-architecture for parallel proof-document processing

parallel proof checking [8]. For Coq, some alternatives with separate OCaml pro-
cesses need to be investigated, because early support for parallel threads in Caml
[3] was later discontinued.

Further reforms carry over to the inference kernel, which has to be ex-
tended by means to decompose proof checking tasks into independent parts that
can be evaluated in parallel. The tactic code of proof procedures or derived
specification packages needs to be reconsidered for explicit parallelism, while
the inherent structure of the proof command language can be exploited for im-
plicit parallelism. The latter is particularly appealing: the prover acts like system
software and schedules proofs in parallel without user (or programmer) interven-
tion. Some of these aspects need to be addressed for Coq and Isabelle in slightly
different ways, to accommodate different approaches in either system tradition.

Our approach is document-centric: the user edits a document containing text,
code, definitions, and proofs to be checked incrementally. This means that check-
ing is split into parallel subtasks reporting their results asynchronously. The
document model and its protocols need to support this natively, as part of
the primary access to the prover process. Finally, a system front-end is required
to make all these features accessible to users, both novices and experts. Instead
of a conventional proof-script editor, the project aims to provide a full-scale
Prover-IDE following the paradigm of “continuous build — continuous check”.

These substantial extensions of the operational aspects of interactive theorem
proving shall retain the trustability of LCF-style proving at the very core. The
latter has to be demonstrated by formal analysis of some key aspects of the
prover architecture.

2

The theoretic foundation of the document model is directed by a fine-grained
analysis of the impact of changes made by the user on the formal text. This anal-
ysis not only helps the parallelization of the verification of the document but also
the reuse of already checked parts of the document that are almost unimpacted
by the user edits. To give a formal account on this notion of proof reuse and
to implement this mechanism without compromising the system trustability, we
must assign a precise static semantics to the changes. One foundational part of
the project will consist of studying what kind of logical framework is adapted
to the specification and verification of proof reuses. By the end of the project,
we expect to get a language of semantically-aware and mechanically-verifiable
annotations for the document model.

3 Current Research and First Results

Project results are not just paper publications, but actual implementations that
are expected to be integrated into Coq and Isabelle, respectively. Thus users of
these proof assistants will benefit directly from the project results.

3.1 A state transaction machine for Coq

Parallelizing a sequential piece of purely functional code is a relatively easy
task. On the contrary parallelizing an already existing piece of imperative code
is known to be extremely hard. Unfortunately Coq stores much of its data in
global imperative data structures that can be accessed and modified by almost
any component of the system

For example some tactics, while building the proof, may generate support
lemmas on the fly and add them to the global environment. The kernel, that
will verify the entire proof once completed, needs to find these lemmas in order
to validate the proof. Hence distributing the work of building and checking the
proof among different partners is far from being trivial, given that the lack of
proper multithreading in OCaml forces these partners to live in different address
spaces.

In the prototype under implementation [7] all side effects have been elimi-
nated or tracked and made explicit in a state-transaction data structure. This
graph models a collection of states and the transactions needed to perform in
order to obtain a particular state given another one. Looking at this graph one
can deduce the minimum set of transactions needed to reach the state the user is
interested in, and postpone unnecessary tasks. While this is already sufficient to
increase the reactivity of the system, the execution of the tasks is still sequential.

Running postponed tasks in concurrent processes is under implementation,
but we are confident that the complete tracking of side effects done so far will
make this work possible.

3

3.2 Logical framework for semantic-aware annotations

During the POPLmark challenge, Coq has been recognized as a metalanguage
of choice to formalize the metatheory of formal languages. Hence, it can se-
mantically represent the very specific relations between the entities of a proof
development. Using Coq as a logical framework (for itself and for other theorem
provers) is ambituous and requires: (i) to represent partial (meta)programs; (ii)
to design a programming artefact to automatically track dependencies between
computations; (iii) to reflect the metatheory of several logics; (iv) to implement
a generic incremental proof-checker. The subgoal (i) has been achieved thanks
to a new technique of a posteriori simulation of effectful computations based on
an extension of monads to simulable monads [2]. The goal (ii) is investigated
through a generalization of adaptative functional programming [1].

3.3 Parallel Isabelle and Prover IDE

The first stage of multithreaded Isabelle, based on parallel Poly/ML by David
Matthews, already happened during 2006–2009 and was reported in [8,9]. In the
project so far, the main focus has been improved scalalibity and more uniformity
of parallel batch-mode wrt. asynchronous interaction. Cumulative refinements
have lead to saturation of 8 CPU cores (and a bit more): see [12] for an overview
of the many aspects of the prover architecture that need to be reconsidered here.

The Isabelle2011-1 release at the start of the project included the first offi-
cially “stable” release of the Isabelle/jEdit Prover IDE [9], whose degree of par-
allelism was significantly improved in the two subsequent releases Isabelle2012
(May 2012) and Isabelle2013 (February 2013). The general impact of parallelism
on interaction is further discussed in [11].

Ongoing work investigates further sub-structural parallelism of proof ele-
ments, and improved real-time reactivity of the implementation. Here the prover
architecture and the IDE front-end are refined hand-in-hand, as the key com-
ponents that work with the common document model. The combination of
parallel evaluation by the prover with asynchronous and erratic interactions
by the user is particularly challenging. We also need to re-integrate tools like
Isabelle/Sledgehammer into the document model as asynchronous agents that
do not block editing and propose results from automated reasoning systems
spontaneously.

3.4 Prover IDE for Coq

Once that the Coq prover architecture has become sufficiently powerful during
the course of the project, we shall investigate how the Isabelle/PIDE front-
end and Coq as an alternative back-end can be integrated to make a practically
usable system. Some experiments to bridge OCaml and Scala in the same spirit as
for Isabelle have been conducted successfully [10]. An alternative (parallel) path
of development is to re-use emerging Prover IDE support in Coq to improve its
existing CoqIde front-end, to become more stateless and timeless and overcome
the inherently sequential TTY loop at last.

4

4 Project Partners

The project involves three sites in the greater Paris area:

– The LRI ForTesSE team at UPSud (coordinator: B. Wolff), including mem-
bers from the Cedric team (CNAM),

– the INRIA Pi.r2 team at PPS / UParis-Diderot (site leader: H. Herbelin),
including members from the INRIA Gallium team, and

– the INRIA Marelle-TypiCal team at LIX / Ecole Polytechnique (site leader:
B. Barras)

Research is supported by under grant Paral-ITP (ANR-11-INSE-001) with
formal start in November 2011 and duration of 40 months total. Further infor-
mation is available from the project website http://paral-itp.lri.fr/.

References

1. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM
Trans. Program. Lang. Syst. 28(6) (November 2006)

2. Claret, G., Gonzalez Huesca, L.D.C., Regis-Gianas, Y., Ziliani, B.: Lightweight
proof by reflection by a posteriori simulation of effectful computations. In Blazy,
S., Paulin-Mohring, C., Pichardie, D., eds.: Interactive Theorem Proving (ITP
2013). Volume ???? of LNCS., Springer (2013)

3. Doligez, D., Leroy, X.: A concurrent, generational garbage collector for a mul-
tithreaded implementation of ML. In: 20th ACM Symposium on Principles of
Programming Languages (POPL), ACM press (1993)

4. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanized
Logic of Computation. Volume 78 of LNCS. Springer (1979)

5. Matthews, D., Wenzel, M.: Efficient parallel programming in Poly/ML and
Isabelle/ML. In: ACM SIGPLAN Workshop on Declarative Aspects of Multicore
Programming (DAMP 2010). (2010)

6. Sutter, H.: The free lunch is over — a fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (2005)

7. Tassi, E., Barras, B.: Designing a state transaction machine for Coq. In: The Coq
Workshop 2012 (co-located with ITP 2012). (2012)

8. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In Dos Reis, G., Théry,
L., eds.: ACM SIGSAM Workshop on Programming Languages for Mechanized
Mathematics Systems (PLMMS 2009), ACM Digital Library (2009)

9. Wenzel, M.: Isabelle/jEdit — a Prover IDE within the PIDE framework. In
Jeuring, J., et al., eds.: Intelligent Computer Mathematics — 11th International
Conference (CICM/MKM 2012). Volume 7362 of LNCS., Springer (2012)

10. Wenzel, M.: PIDE as front-end technology for Coq. ArXiv (April 2013) http:
//arxiv.org/abs/1304.6626.

11. Wenzel, M.: READ-EVAL-PRINT in parallel and asynchronous proof-checking.
In: User Interfaces for Theorem Provers (UITP 2012). EPTCS (2013)

12. Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In
Blazy, S., Paulin-Mohring, C., Pichardie, D., eds.: Interactive Theorem Proving
(ITP 2013). Volume ???? of LNCS., Springer (2013)

13. Wiedijk, F., ed.: The Seventeen Provers of the World. Volume 3600 of LNAI.
Springer (2006)

5

http://paral-itp.lri.fr/
http://arxiv.org/abs/1304.6626
http://arxiv.org/abs/1304.6626

	Pervasive Parallelism in Highly-Trustable Interactive Theorem Proving Systems

