
Technical Report

Towards a Formal Analysis of a Mix
Network

Burkhart Wolff∗

Oliver Berthold‡

Sebastian Clauß‡

Hannes Federrath‡

Stefan Köpsell‡

Andreas Pfitzmann‡

21st January 2002

∗Institut für Informatik
Albert–Ludwigs–Universität Freiburg

Georges-Köhler-Allee 52
D-79110 Freiburg, Germany
Tel: +49 (0)761 203-8240
Fax: +49 (0)761 203-8242

{wolff}@informatik.uni-freiburg.de

http://www.informatik.uni-freiburg.de/~{wolff}

‡Institut für Systemarchitektur
Fakultät Informatik

Technische Universität Dresden
D-01062 Dresden, Germany

{ob2,sc2,hf2,sk13,pfitza}@inf.tu-dresden.de

Abstract

We present a formal model of Chaum’s Mix concept and apply known analysis
techniques to a new type of security property, namely anonymity, in a network com-
posed of senders, receivers and Mix stations. The network and its components are
formalized as CSP processes, and combined with a (passive) attacker. Based on the
model-checker FDR, formal analyses of networks and their security properties are
performed. The approach serves as a feasibility study for the analysis of anonymity
and unobservability with a particular analysis technique. Moreover, it will result in
the implementation of a particular analysis-testbed for the investigation of other se-
curity properties such as unobservability or more advanced protocols that might pave
the way to secure Mix implementations with dynamically controlled dummy traffic.

mailto:wolff@informatik.uni-freiburg.de
mailto:ob2@inf.tu-dresden.de
mailto:sc2@inf.tu-dresden.de
mailto:hf2@inf.tu-dresden.de
mailto:sk13@inf.tu-dresden.de
mailto:pfitza@inf.tu-dresden.de

Contents

Contents

1 Introduction 3

2 Mix Schemes and Mix Networks 4
2.1 A more Formal Definition of Anonymity, Unobservability and Unlinkability 5
2.2 Basic Mix Operations and Models . 6
2.3 Mix Chains . 8
2.4 Structure of a Mix Message . 9

3 Formal Security Analysis with CSP 9
3.1 Tools for CSP . 10
3.2 Lowe’s Approach to Protocol-Analysis . 10

4 A CSP Model for Mix Networks and its Attacker 11
4.1 Global Constants . 12
4.2 Basic Functions . 13
4.3 Basic Data Types and Operations . 13
4.4 Crypt- and Decrypt Primitives . 14
4.5 Abstracting the Set of Messages MSG . 14
4.6 The Components of the Mix Network:

Channels, MIXes, SENDer, RECeiver . 16
4.7 The Mix Network . 19
4.8 A Simple Instantiation of the Generic Passive Attacker 19
4.9 An Improved Instantiation of the Generic Passive Attacker 20

5 Analysis 21
5.1 Consistency Analysis of MIXes, SENDer and RECeiver 22
5.2 Consistency Analysis of the Network . 22
5.3 Analysis of attacks against Anonymity . 22

6 Conclusion and Future Work 23
6.1 Discussion . 23
6.2 Future Work . 23

References 24

2

1 Introduction

Using Internet services means leaving digital traces. On the one hand, anonymity and
unobservability on the Internet is an illusion, on the other hand, most people agree that
there is a substantial need for anonymous communication as a fundamental building
block of the information society. The availability of anonymous communication is con-
sidered a constitutional right in many countries, for example in voting or counselling
procedures.

We destinguish unobservability and anonymity in secure systems. Systems that pro-
vide unobservability ensure that no third party, not even the underlying network, is able
to recognize, if there is communication at all — and as a consequence, it cannot find
out who communicates with whom. However, the communicating parties may know
and usually authenticate each other. As an example, one might consider paying users
browsing a patent data base. In contrast, systems that provide anonymity ensure that
sender or receiver (or both) can communicate without revealing their identity to each
other. As example, one might consider users browsing the World Wide Web. We will
describe anonymity and unobservability in detail in Section 2.1.

Both anonymity and unobservability can be achieved by using a Mix network.
A single Mix is a message forwarding server, which hides the relation between the

incoming and outgoing messages. This is done by collecting a number of messages,
applying some cryptographic operations and reorder them before forwarding them on
their way.

Mixe, their networks and their security properties have rised interest in security
research communities; various constructions and their properties have been investigated.
An overview is given in Section 2.

Because of the complexity of Mixes and their protocols, we see a need to use formal
methods to analyse anonymity and similar security properties. There are two funda-
mentally different approaches: the possibilistic and the probabilistic one. A possibilistic
framework enables to express, which runs of a system are possible. For confidentiality,
for example, this means, that the framework is able to express whether there are any
alternate runs which have the same behaviour on all interfaces the attacker has access
to, but are different in the events which shall be kept a secret from the attacker. A
probabilistic framework enables to weight runs with their probabilities. For confiden-
tiality, for example, this means that it is possible to express the entropy remaining for
the attacker, i.e. his/her missing information with respect to the events, which shall be
kept secret. More formally, this means that within the set of all possible runs, which
exhibit the same behaviour on all interfaces the attacker has access to, the framework
allows to describe the probabilities of different runs. These frameworks will be applied
to anonymity providing systems in Section 2.

In this paper we analyse the security of an anonymity providing system using the
possibilistic famework.

Experience has shown that the design of protocols for systems assuring security
properties is prone to sometimes spectacular errors. For instance, the story of some
authentication protocols [17, 2] shows, that they revealed severe design errors that had

3

2 Mix Schemes and Mix Networks

not been discovered in decades, although they had been intensively investigated by
hand. Here, a higher degree of trust into these system components could be achieved
by applying tool-supported analysis techniques developed in the field of Formal Methods
having their roots in mathematical logics and program semantics theory.

Meanwhile a number of analysis techniques are established (at least for authentication
protocols): The common ground of these approaches is to explore all possible runs
(sequence of possible computations and communications within a system) and to check
if they all fulfil a given security property. Typically, the set of runs is infinite; moreover,
this set may interfere with the actions of an intelligent attacker that may attempt a
breach of the security goals the system attempts to enforce [5, 7, 9, 10, 14, 15, 16].

In principle, three approaches to analyse the set of runs can be distinguished:

1. Automata theoretic approaches. The underlying idea is to view the set of runs as
regular language that is generated by a finite automaton. The existence of an attack
against system security is then reduced to finding a path in the finite automaton to
a state representing a security breach. Among the automata-theoretic approaches,
there are also process-algebras that allow for compact, abstract but nevertheless
problem oriented specifications that were compiled to automatas automatically.

2. Heuristic search approaches. Here, the state-transitions are modelled and con-
structed explicitly; the heuristic search of critical states is made feasible by a
controlled generation of the (possibly infinite) state space [1].

3. Theorem proving approaches. Here, either specialized logics such as belief logics [2]
or modal logics model axiomatically the growth of knowledge of system agents
about each other, or the set of possible runs is characterized inductively, allowing
to prove via induction that no attack may exist [19].

Besides the theorem prover approach, which has been successfully applied on systems
such as Isabelle [18] or PVS, automata theoretic approaches are most popular at present
and had been implemented using systems such as SMV, SPIN etc. The process-algebraic
variant of the automata theoretic approach has been implemented most successfully on
FDR [12, 21, 23, 24]. It is the ultimate goal of this paper to transfer the analysis
techniques developed for FDR to the problem of anonymity and to check the feasibility
of the approach for this problem domain.

As main contribution of this paper, we present a formal model of a Mix network
suited for a machine based analysis. It can be used to find known and possibly new
attacks. Standard models and standard formal notions may improve the understanding
of informal ones. Moreover, they pave the way for the formal analysis of Mix implemen-
tations. Further, we have a proof of concept of an adoption of existing protocol analysis
techniques to security properties such as anonymity and unobservability.

2 Mix Schemes and Mix Networks

In this section, we first define anonymity, unobservability and unlinkability and describe
their differences from each other. Then we introduce a Mix as elementary building block

4

2.1 A more Formal Definition of Anonymity, Unobservability and Unlinkability

for providing anonymity of sender or receiver. We describe different schemes for a single
Mix, and we explain possibilities of chaining Mixes together. At the end of this section,
we show how unobservability can be achieved using Mixes.

2.1 A more Formal Definition of Anonymity, Unobservability and
Unlinkability

Anonymity of a subject is the state of being not identifiable within a set of subjects, the
anonymity set [20]. In the case of a Mix system, a sender of a message can be anonymous
within a set of possible senders, and a receiver of a message can be anonymous within a
set of possible receivers.

Anonymity is the stronger, the larger the respective anonymity set is and the more
evenly distributed the sending or receiving, respectively, of the subjects within that set
is.

Unobservability means that no third party is able to decide, whether a message
was transmitted (sent or received) within the system, or not. Unobservability implies
anonymity against third parties.

Unlinkability of two or more items (e.g. subjects, messages, events, actions, ...)
means that within a run of a system, these items are no more and no less related than
they are related concerning the a-priori knowledge. This means that the probability
of those items being related stays the same before (a-priori knowledge) and after the
run within the system (a-posteriori knowledge of the attacker). E.g. two messages are
unlinkable if the probability that they are sent by the same sender and/or received by
the same recipient is the same as those imposed by the a-priori knowledge.

We can describe anonymity in terms of unlinkability between messages and senders/receivers.
Relationship anonymity means that it is untraceable who communicates with whom. In
other words, sender and receiver are unlinkable.

In this paper we exemplify our approach with relationship anonymity; this can be
easily adapted to sender or receiver anonymity. As already mentioned, we will remain
in a possibilistic framework.

Regarding the possibilistic framework, a relationship anonymity system provides 2-
anonymity, if there are at least two alternate runs, which have the same behaviour on
all interfaces the attacker has access to, but have different senders or receivers.

Let r be the count of runs, which are indistinguishable by an attacker, and have
different sender/receiver pairs. We can generalize the above definition to n-anonymity,
if n = r.1

In the probabilistic framework, the probabilities of different runs can be taken into
account. In the case of Mix networks, it can be described, which sender has sent a
message with which probability.

1Andreas, is that right ?!?!

5

2 Mix Schemes and Mix Networks

2.2 Basic Mix Operations and Models

A Mix is a special kind of router. It forwards messages but hides the relation of incom-
ing and outgoing messages in a large set of messages. It changes their order and the
appearance of all messages before forwarding them to their recipients or to another Mix.

The basic functions, which a Mix performs to hide the relation between incoming
and outgoing messages, are shown in Figure 1. These functions are:

1. Collecting messages (from a sufficiently large set of senders). This ensures that
the basic anonymity set of a message is large enough.

2. Rejecting so-called replays of messages. This action prevents from a special active
attack used to track single messages through a Mix.

3. Cryptographic recoding of messages. This ensures, that messages cannot be tracked
by their appearance.

4. Reordering of messages. This protects from tracking messages by the order in
which they arrived at the Mix.

Changing the appearance is done by means of cryptography. Inside the Mix, messages
are transformed (encrypted or decrypted) and thereby change their appearance, so that
an attacker can not draw any conclusions about the relation between incoming and
outgoing messages, based on comparing their appearance. This step is common for all
models of Mixes. The address to which the Mix should forward the message is known
to the Mix, because either it is part of the encrypted message body or it is implicitly
known, because there is only one subsequent Mix.

One difference of current models is their way of reordering messages. In the first Mix
model, described by David Chaum in [3], it is done by collecting a batch of messages.
The size of that batch is a publicly known property of that certain Mix. The incoming
messages are decoded and reordered to form an outgoing batch of messages. This kind
of Mix is called a Batch Mix. While a random ordering would suffice, Chaum proposes
lexicographical ordering in order to eliminate a hidden channel through which the Mix
could leak information and poses an easy way to verify that part of the Mix’s work.

A Pool Mix keeps a number of messages in its memory. As soon as the next message
arrives, it is decoded and added to the pool. A message is randomly chosen from the
pool and transmitted. The pool’s size is, like the batch size in the previous model, a
public attribute of that Mix. The most notable problem with Pool Mixes is the lack
of upper boundaries for the time a message needs to pass through. This indeterminism
makes it difficult to verify that Pool Mixes operate correctly. For more information on
Pool Mixes see [4].

Another model is the Stop-and-Go Mix [11]. This type of Mix will not wait for a
special number of messages to process them, but will delay each message by a certain
amount of time. This amount of time is selected by the sender. This model, as well as
the Pool Mix model, reduces the burst like stress on the network and other resources
that Batch Mixes produce. But unlike Pool Mixes it maintains determinism, and by this

6

2.2 Basic Mix Operations and Models

Figure 1 A Mix with its basic functions

Reject replays

Collect messages from
a sufficiently large set
of senders

Recode messages

Reorder messages

Input messages

Output messages

Mix

Buffer all
incoming
messages

7

2 Mix Schemes and Mix Networks

a way of verifying part of the Mix’s work. It comes with a major drawback, though.
To work effectively there have to be enough messages present in the Mix at every time.
Otherwise the anonymity set gets too small. In the extreme case the Mix could run empty
and whenever a message enters and leaves the Mix without a new one entering it in the
meantime, the relation of incoming and outgoing message is obvious. Since the delays
are chosen by the users independent from each other, this situation can possibly occur.
In order to keep this scenario unlikely, delays have to be relatively long in comparison
to the average time between message arrivals in each Mix.

2.3 Mix Chains

A single trustworthy Mix can provide untraceability of messages even if all network
connections are observed by an attacker. But if a Mix leaks its information to an attacker
(no matter if it happened intentionally or due to an error) there is no protection at all.
For this reason a user should use more than one Mix. By sending a message through
a chain of Mixes a user can increase the chance that his message passes at least one
trustworthy Mix.

Figure 2 Example of a Mix network

Mix

Mix

Mix

Mix

Mix

MixSender Recipient

Recipient

Recipient

Sender

Selected path for a single
message

In general there are two possibilities of chaining Mixes together. In a Mix network
the user can select an individual path through the network for each message. This is
illustrated in Figure 2. Every Mix can send messages to all other Mixes (the arrows in
Figure 2 show some message transmissions). The thick arrows highlight the path, which
one sender has selected for his message.

8

2.4 Structure of a Mix Message

Another concept of chaining Mixes together is called Mix Cascade. A Mix Cascade
is a static chain of Mixes. The user can only choose between different Mix Cascades.
An example of a Mix Cascade is shown in Figure 3.

Figure 3 Example of a Mix Cascade consisting of four Mixes

Mix

Sender

Recipient

Mix Mix MixSender

Sender

Recipient

Recipient

2.4 Structure of a Mix Message

A message to be sent through a Mix consists of a message body and a recipient address2,
to which the Mix sends the message after processing it. The message must be encrypted
for the Mix.

When a sender prepares a message to be sent through a chain of more than one Mix,
the message and the receiver’s address have to be encrypted multiple times. First they
have to be encrypted for the last Mix. The result is encrypted for the last but one Mix
along with the last Mixes address and so on.

An easy way to imagine this is a Russian Matrushka doll. The message is in the
centre, and layers upon layers of encryption are built around it.

Every Mix along a chain only knows the previous and next station3 of a message.
Therefore an attacker has to undermine all Mixes in that chain to completely track a
message.

3 Formal Security Analysis with CSP

The process algebra CSP (Concurrent Sequential Processes; originally developed by [8])
is a formal specification formalism that makes it possible to view a system as a com-
position of components (processes) that interact via synchronous events. Processes can
be described by parameterised recursive equations over process operators; events can be

2In case of a Mix Cascade the recipient address can be omitted for all but the last Mix of a cascade,
because in that case the order of the Mixes is static.

3These stations include sender and recipient.

9

3 Formal Security Analysis with CSP

structured and computed similar to data-types as in functional programming languages.
We assume that the reader is rudimentarily familiar with CSP; we refer to [22] for more
details.

Since it is quite natural to view security components as concurrent systems, and
since security properties are properties on all runs of them, CSP has attracted many
researchers for its use in formal protocol analysis; the work of Lowe [12], Roscoe et
al. [21, 23] and Schneider [24] are only some of the examples.

3.1 Tools for CSP

There are essentially two tools to formally reason over CSP — one based on the model-
checker FDR [13], one based on a conservative embedding of CSP into higher-order
logic [25] as implemented in the theorem-prover Isabelle. The former approach offers
automatic refinement proofs for finite models, the latter interactive proofs for infinite or
declaratively specified models.

FDR converts specifications in an extension of CSP called CSPM into (cleverly com-
pressed and represented) regular automata. On this basis, FDR decides the refinement
relations between a specification S and an implementation I. Two refinement relations
are of importance in our context: S vT I (I refines S in the trace model, i.e. I is more
special in the sense that all runs in I must be possible in S) and S vF I (S refines I in
the failures model, i.e. I is more deterministic in the sense that all runs in I must be pos-
sible in S and they must lead to states, where I can less often refuse to engage in events
than S). A deadlock in the failures model is represented by a trace leading to a state
where all possible events are refused. Thus, it is possible to express deadlock-freeness
of P by asking if a P refines in the failure model the process that non-deterministically
chooses arbitrarily one of the possible events (see [22] for more details). FDR allows to
state deadlock-freeness of processes easily.

HOL-CSP has as basis not only a functional programming language, but also higher-
order logic (HOL). As such, HOL-CSP is in principle more expressive than CSPM . How-
ever, the main tool of reasoning over processes is interactive fixpoint-induction (which
works also for proving deadlock-freeness), which requires substantially more effort.

Since it is our goal to investigate Mix networks along the more classical lines of
analysis techniques, and since an analysis in HOL-CSP would profit from intermediate
results of a FDR-based analysis, we chose to use FDR for the current state of our work.

3.2 Lowe’s Approach to Protocol-Analysis

In Garwin Lowe’s [12] seminal paper for protocol analysis based on CSP and FDR, all
agents of a system and the attacker are represented as processes. The attacker may
be passive (only listening) or active (listening and emiting messages according to the
network protocol). When the attacker reaches a success state — i.e. a desired security
property is violated — he sends a success event. Both passive and active attackers can
be formalized generically in CSPM :

channel Success
channel C : . . . −− gene ra l communication channel

10

ATTACK(succ e s s , i n c l , S) =
i f suc c e s s (S)
then Success → SKIP
else C?x?y?z → ATTACK(succ e s s , i n c l , i n c l (x , y , z , S))

ATTACKA(succ e s s , i n c l , synth , i n c l 2 , S) =
i f suc c e s s (S)
then Success → SKIP
else C?x?y?z → ATTACKA(succ e s s , i n c l , synth , i n c l 2 , i n c l (x , y , z , S))

u(x , y , z) : synth (S) •
C! x ! y ! z → ATTACKA(succ e s s , i n c l , synth , i n c l 2 , i n c l 2 (x , y , z , S))

The generic passive attacker depends on a success predicate success, an operation incl
allowing to abstract and insert a received message into its state S. The active attacker
can additionally synthesize a message via synth and emit it, via incl2 this message can
be stored into the attacker state and marked as generated by the attacker.

Based on these generic attackers, a wide range of attacker models can be formalized.
The question: “Does the desired security property hold in my system?” can be formalized
in the form of a refinement as follows:

RUN = C?x?y?z → RUN

a s s e r t RUN [T= (SYSTEM [| { | C | } |]
ATTACK (succ e s s , i n c l , i n i t a t t a c k s t a t e))

If the combined system reaches a success state of the attacker (i.e. the security property
does not hold), then the Success-event may occur in some trace. In such a case, the
combined system is not a refinement of RUN, and FDR will generate a counter-example
(i.e. an attack) for the claimed refinement. Note, however, that in this construction
the deadlocking process STOP would trivially fulfil any security property; hence, it is
necessary to check for each combined system its deadlock-freeness. Deadlock-analysis
is hence a prerequisite, a kind of sanity check for any protocol analysis of a system in
Lowe’s setting.

4 A CSP Model for Mix Networks and its Attacker

In this core chapter, we will attempt to find a model for Batch Mixes suitable for an
analysis following the FDR approach. This means a deadlock free version, possibly close
to an abstract implementation of Mixes, possibly robust under denial-of-service attacks
and analysable for a non-trivial Mix network. As we will see, this turns out to be a
highly non-trivial task.

Since model-checking yields a yes-or-no decision, it makes no sense to present our
final version (with all its limitations). Rather, we consider the techniques that lead to
this version as important in order to extend or modify the existing approach. Thus,
throughout this section, we will present a sequence of versions of modelling approaches.
Local deadlock- unfeasibility- or security problems lead to revisions of these models
yielding incrementally our (currently) final version.

11

4 A CSP Model for Mix Networks and its Attacker

4.1 Global Constants

We start our model description with a collection of global constants, that control the
size of our finite Mix model and its attacker. For an analysis based on model-checking,
playing with these constants is crucial: Making the model too small prevents from finding
interesting attacks, making the model too large makes its check with a tool infeasible.
While CSPM offers a small functional language for computing data that is communicated
between the processes and thus a fairly abstract means to describe some aspects of the
model, attempts to find abstractions of the data to be computed will turn out vital for
a successful use of model-checking in our problem domain.

From the informal description of MIX-stations in the introductory parts of the pa-
per, it is straight-forward to identify some of the global parameters of our model: the
number of users userno (both sender and receiver in the network), the number mixno of
MIX-stations, the size of the buffer bufsize inside a MIX, the number of basic messages
(i.e. the elementary “raw” messages sent from user to user and not encryptions, encryp-
tions of encryptions over them, etc). Moreover, an important measure that controls the
size of our model is the “message complexity” msgcxty that will be discussed later in
more detail. For the moment, it suffices to know that it restricts the nesting depth of
encryptions and therefore the length of a message path.

The following lines in CSPM declare and define these constants for a suitable minimal
setting:

userno = 2 −− how many use r s
mixno = 2 −− how many MIX−s t a t i o n s
msgno = 1 −− number of d i f f e r e n t messages

msgcxty = mixno −− complexity (ne s t ing depth) of messages

bu f s i z e = userno −− s i z e of the bu f f e r in each MIX

It turns out that the number of elementary messages can be restricted to just one
without loss of generality in an analysis we are heading for: since the attacker’s goal is
just to achieve a suitably restricted communication relation, it does not matter what has
been communicated after all.

Based on these basic constants, we will build suitable “types” in order to characterize
the essential entities users, mixes and their union agents abstractly:

u s e r i d s = {1 . . userno}
mixids = {1 . . mixno}

datatype i d s = user . u s e r i d s
| mix . mixids

u s e r s = {user . i | i ∈ u s e r i d s }
mixes = {mix . i | i ∈ mixids}
agents = union (use r s , mixes)

The definition of the function paths that associates to each user a list of numbers
representing MIX-stations follows below. This function can either be defined individu-
ally, i.e. different for each user (“Mix network”) or globally, i.e. identical for each user
and message (“Mix Cascade”).

{−
paths (user .1) = {<2,1>,<1,2>}
paths (user .2) = {<1,2>,<1,1>}

12

4.2 Basic Functions

paths (user .3) = {<1,2>,<2,2>}
paths (i) = paths (user . 2) −− c a t c h a l l f o r userno > 3 .

−}

paths () = {<1. .mixno>}

In our sample code, the version for individual paths is commented out; the set of
path-lists in our example is assumed to be random.

Note that with respect to the choice of the concrete paths-function, we assume the
following requirement for the paths-function to hold:

∀u ∈ user, p ∈ paths(u) • {i|i in p} ⊆ mixids (1)
∀u ∈ user, p ∈ paths(u) • length(p) <= msgcxty (2)

This requirement reflects the fact that the message complexity constant msgcxty
limits — as already mentioned — the nesting depth of encryptions of messages. Since
in a Mix network, each Mix removes one encryption envelope and thus decreases the
nesting depth by one, msgcxty inherently limits the length of possible paths.

4.2 Basic Functions

Besides the CSPM functions (see FDR-Manual), we use in our specification the usual
functions front, map, filter, rev etc. known from functional programming.

f r on t (<x>) = <>
f r on t (<x>ˆ<y>ˆR) = <x>ˆf r on t (<y>ˆR)

map(f) (S) = < f (x) | x ∈ S>

f i l t e r (p) (S) = < x | p(x) , x ∈ S >

rev (<>) = <>
rev(<x>ˆR) = rev (R) ˆ <x>

4.3 Basic Data Types and Operations

Now we are ready to define the core data structures relevant for our analysis problem:
We introduce keys of agents as either public or private and introduce with publicKeys
the set of all public keys of all agents in the system. A message msg is then either a
elementary “raw” message (see above), or an address of an agent (used in packages sent
to Mixes that extract the message in order to resend it), or an encryption of a message
msg with a public key of an agent, or a data package composed of two messages msg,
or just a dummy.

datatype keys= pub l i c . agents
| pr i va t e . agents

publ icKeys = { pub l i c . i | i ∈ agents}

msgs = {1 . .msgno}

datatype msg = Msg . msgs
| Addr . agents
| K. publ icKeys . msg
| Join . msg . msg
| Dummy

13

4 A CSP Model for Mix Networks and its Attacker

On messages, we define some auxiliary functions wrap and unwrap:

wrap (x , y) = Join . (Addr . (x)) . y
unwrap (Join . (Addr . (x)) . y) = (x , y)

that obey the following properties:

∀x ∈ agents, y ∈ msg • unwrap(wrap(x)) = x (3)
∀x ∈ agents • wrap(unwrap(x)) = x if∃a, b • Join.(Addr.(a)).b) = x (4)

For convenience, the slightly unconventional dot-notation used in CSPM for the applica-
tion of constructors will be omitted in the sequel. Hence, we will write Join(Addr(x), y)
instead of Join.(Addr.(x)).x.

4.4 Crypt- and Decrypt Primitives

Our analysis will be based on the “perfect cryptography”-assumption, i.e. we will only
allow any agent to decrypt a message if he owns the private key. Thus, crypt- and
decrypt functions can be modelled abstractly as constructors/destructors with suitable
algebraic properties:

{− a : agents , m : msg −}
crypt (a ,m) = K. (pub l i c . (a)) .m

{− crypted message , p r i va t e keys −}
decrypt (K. (pub l i c . (mix . i)) .m, p r i va t e . (mix . j)) = i f i≡j then {m} else {}
decrypt (K. (pub l i c . (user . i)) .m, p r i va t e . (user . j)) = i f i≡j then {m} else {}
decrypt (,) = {}

cryptpath (<>,m) = m
cryptpath(<a>ˆS ,m)= wrap (mix . a , crypt (mix . a , cryptpath (S ,m)))

s t r i p (i ,{}) = {}
s t r i p (i ,{ (a ,m)}) = i f i ≡ a

then s t r i p (i ,{ unwrap (x) | x ∈ decrypt (m, p r i va t e . i)})
else ({ (a ,m)})

Note that the crypt/decrypt function pair fulfils the characterizing properties of “perfect
cryptography”:

decrypt(crypt(a,m), private(a)) = m

Further, we introduced the function prefix that erases a prefix of package encodings with
addresses to agent i. This necessity of this function will become apparent later: it will
turn out to be necessary to suppress disastrous internal communication in MIX-stations
and their spawned off SENDBUFFERS - see MIX1 in section 4.6.

4.5 Abstracting the Set of Messages MSG

The size of the set of messages is a crucial factor for the size of the whole model. In a
later section, we will discuss exact complexity measures that will reveal this dependency
in more detail. Here, however, we will introduce several approaches to define the message
set MSG. Within the sequel of attempts to define MSG, we will develop stronger and
stronger abstractions of the model — making the model-checking based verification more
feasible, by introducing more and more critical underlying assumptions.

14

4.5 Abstracting the Set of Messages MSG

A first straight-forward approach to define MSG is by enumerating the set along its
inductive structure, up to a certain term-complexity msgcxty defined in Section 4.1.

msgs upto0 (0) = union (union ({Msg . i | i ∈ msgs } ,{Dummy}) ,
{Addr . i | i ∈ agents })

msgs upto0 (x) = union (union (union ({Msg . i | i ∈ msgs } ,{Dummy}) ,
{Addr . i | i ∈ agents }) ,

union ({K. k .m | k ∈ publ icKeys , m ∈ msgs upto0 (x−1)},
{Join . a . b | a ∈ msgs upto0 (x−1),

b ∈ msgs upto0 (x−1)}))

MSG0 = union ({Dummy} , msgs upto0 (msgcxty))

Based on MSG0, the analysis of the most simplest checks of the network will be un-
feasible: the set contains already 4627 elements (for the setting of global constants as
described in Section 4.1). This means that the automaton constructed out of the CSPM

specification will have at least a degree of 4627 !!!
A first simplified version restricts MSG0 to the elements actually used in the pro-

tocols of the network. Hence, we apply an invariant that will be hidden in the sender-
receiver communication relations in the network components. This abstraction is not
completely for free — it means that we restrict ourselves to “protocol- conform” mes-
sages — as if “junk-messages” will never lead to a successful attack against unobserv-
ability, which remains in fact to show. A non-protocol conform message is for example
K(public(mix(1)))(Join(Addr(user(1),K(public(user(2))(Msg(1)))))): when it is re-
ceived by mix(1), it will be resent to user(1) who will not be able to do anything with
it since it is encrypted with the public key of user(2). In our model, agents will simply
ignore junk messages. These ideas lead to the following definition of MSG1:

msgs upto1 (0) = {wrap (u ,K. (pub l i c . u) . (Msg .m)) | m ∈ msgs ,
u ∈ use r s }

msgs upto1 (x) = union (msgs upto1 (x−1),
{wrap (u ,K. (pub l i c . u) .m) | u ∈ mixes ,

m ∈ msgs upto1 (x−1)})

ADRMSG1 = msgs upto1 (msgcxty)
MSG1 = union ({Dummy} ,

{y | (x , y) ∈ {unwrap (z) | z ∈ ADRMSG1}})

The cardinality of this set is now just 15, which makes the analysis of many of the simpler
analysis goals perfectly feasible.

For the more complex proof goals, it turns out that even this set is too large. Due
to the fact, that only messages were used that were sent along the user defined paths,
a number of messages is superfluous and can be suppressed. Assume, for example,
paths() = < 1..mixno > and mixno = 2, then we can suppress from the MSG1-set
constructed as below the elements 3,5,7,8,9, 11, 13, and 14:

MSG1 = {Dummy, (1)
K(pub l i c (user 2)) (Msg 1) , (2)

− K(pub l i c (mix 1)) (Join (Addr (user 1) (K(pub l i c (user 1) (Msg 1))))) , (3)
K(pub l i c (mix 2)) (Join (Addr (user 1) (K(pub l i c (user 1) (Msg 1))))) , (4)

− K(pub l i c (mix 2)) (Join (Addr (mix 2))
(K(pub l i c (mix 2))

(Join (Addr (user 1))
(K(pub l i c (user 1)) (Msg 1))))) , (5)

K(pub l i c (mix 1)) (Join (Addr (mix 2))
(K(pub l i c (mix 2))

(Join (Addr (user 1))
(K(pub l i c (user 1)) (Msg 1))))) , (6)

− K(pub l i c (mix 2)) (Join (Addr (mix 1))
(K(pub l i c (mix 1))

(Join (Addr (user 1))

15

4 A CSP Model for Mix Networks and its Attacker

(K(pub l i c (user 1)) (Msg 1))))) , (7)
− K(pub l i c (mix 1)) (Join (Addr (mix 1))

(K(pub l i c (mix 1))
(Join (Addr (user 1))

(K(pub l i c (user 1)) (Msg 1))))) , (8)
− K(pub l i c (mix 1)) (Join (Addr (user 2)) (K(pub l i c (user 2) (Msg 1)))) , (9)

K(pub l i c (mix 2)) (Join (Addr (user 2)) (K(pub l i c (user 2) (Msg 1)))) , (10)
− K(pub l i c (mix 2)) (Join (Addr (mix 2))

(K(pub l i c (mix 2))
(Join (Addr (user 2))

(K(pub l i c (user 2)) (Msg 1))))) , (11)
K(pub l i c (mix 1)) (Join (Addr (mix 2))

(K(pub l i c (mix 2))
(Join (Addr (user 2))

(K(pub l i c (user 2)) (Msg 1))))) , (12)
− K(pub l i c (mix 2)) (Join (Addr (mix 1))

(K(pub l i c (mix 1))
(Join (Addr (user 2))

(K(pub l i c (user 2)) (Msg 1))))) , (13)
− K(pub l i c (mix 1)) (Join (Addr (mix 1))

(K(pub l i c (mix 1))
(Join (Addr (user 2))

(K(pub l i c (user 2)) (Msg1))))) , (14)
K(pub l i c (user 1)) (Msg 1) (15)}

This reduces the size of the message set by another factor 2.
Exploiting the idea, that only a limited set of paths is used in a model, we construct

just the messages that can be constructed along the paths as follows:

MSG2 = union ({Dummy} ,
{snd (unwrap (cryptpath (p , wrap (u , K. (pub l i c . u) . (Msg .m))))) |

u1 ∈ use r s , u ∈ use r s , pp ∈ paths (u1) ,
p ∈ s u f f i x e s (pp) , m ∈ msgs })

MSG = MSG2

The last line indicates that we will use this last version of the MSG-set throughout
our analysis. The abstraction steps applied in this section turned out to be vital for the
analysis as a whole.

4.6 The Components of the Mix Network:
Channels, MIXes, SENDer, RECeiver

We are now in the position to define the general communication channel C that is used
for all communications between agents in the network; it represents “the internet” so to
speak.

channel C : agents .MSG. agents

Based in this channel, we introduced our first model of a MIX:

MIX0(i) (S) = i f card (S) >= bu f s i z e
then SENDBUFFER(i) (S) ; MIX0(i) ({})
else C?x?m! i →

MIX0(i) (union (S ,
{unwrap (x) | x ∈ decrypt (m,

p r i va t e (i))})
)

A MIX in CSP is a recursive process parameterised by a MIX-id i and a current state
S that is a set of pairs containing the received messages in an “unwrapped” form, i.e.
the topmost encryption envelope has been “ripped off” by decrypting it with the private
key of the MIX. The resulting message package is decomposed into its future target
address and the message content (both elements are put together in a pair). If the state

16

4.6 The Components of the Mix Network: Channels, MIXes, SENDer, RECeiver

contains more elements than the global constant bufsize, the state is transferred to
a subprocess SENDBUFFER to be described later; in this model, the MIX restarts
sequentially its normal activity when SENDBUFFER terminates; thus, the MIX is
a purely sequential version. If the state S does not contain enough elements, the MIX
listens to the global channel C to all communications addressed to him; if message is sent
to him, it is processed and inserted into the state. Note, that multiply sent messages
were ignored in this model since the state is a set of pairs. Note, moreover, that this
sequential version of a MIX — albeit deadlock-free in itself — is deadlock prone in an
environment, that does not admit the MIX to send. Such a situation occurs during a
denial-of-service attack.

In order to avoid such problems, we try a MIX version that spawns off concurrently
SENDBUFFER and immediately returns to listening for new messages.

MIX1(i) (S) = i f card (S) >= bu f s i z e
then SENDBUFFER(i) (S) [|SYNCS(agents ,{ i }) |] MIX1(i) ({})
else C?x?m! i →

MIX1(i) (union (S ,
{unwrap (x) | x ∈ decrypt (m,

p r i va t e . i)})
)

Unfortunately, this concurrent version produces a deadlock under a sort of denial-
of-service attacks. FDR produces a counterexample that results in the creation of two
spawned off son processes SENDBUFFER that attempt to communicate with their father
MIX while not agreeing in their communicating event (see 5.1;
goal assert MIX1(mix.1)({}) :[deadlock free [F]])

A fix for the internal communication problem is a filter that eliminates messages that
a Mix will have to send to himself: this filter — implemented by the strip function —
erases such self-references when processing them for the internal state.

MIX2(i) (S) = i f card (S) >= bu f s i z e
then SENDBUFFER(i) (S) | | | MIX2(i) ({})
else C?x?m! i →

MIX2(i) (union (S ,
s t r i p (i ,

{unwrap (x) | x∈decrypt (m,
p r i va t e . i)}))

)

This concurrent version is what it should be safe against denial-of-service and deadlock-
free. Unfortunately, the state space is already infinite: a denial-of-service attack results
in an unbounded spawn of SENDBUFFER’s. Although any of these processes is finite
and as a finite local state (S and its subsets, hence 2card(MSG) ∗ card(agents)), the state
space of the unbounded spawn is infinite, i.e. a finite, denial-of-service-safe, deadlock-free
MIX does not exist.

Proof : A denial-of-service-attack consists of an arbitrarily long sequence of commu-
nications addressed to a particular MIX. This leads to the unbounded interleave:

SENDBUFFER(i) (S1) | | | . . . | | | SENDBUFFER(i) (Sn) | | |MIX2(i) ({})

that serves as store can reproduce a permutation of the sequence after the attack. Thus,
the state space of the store must be infinite, although all local stores Si are finite.
However, a formal proof of deadlock-freeness could be done with HOL-CSP, on the basis
of proof-rules such as

17

4 A CSP Model for Mix Networks and its Attacker

[| deadlock−f r e e (P) ; deadlock−f r e e (Q) |] ⇒ deadlock−f r e e (P | | | Q)

Thus, it is a problem of FDR, not of CSP.
Therefore we return to a sequential design of Mixes (at least in our analysis) Here

comes again a sequential variant, that suppresses sendings to oneself. This avoids again
the internal deadlock problem. As a consequence, the network must be handled as a
critical section, where the right for sending may have only one system component at a
time.

channel grab , f r e e : agents

SYNC = grab ?x → f r e e ! x → SYNC

−−WRITE(i : agents ,m:MSG, j : agents)
WRITE(i ,m, j) = grab . i → C. i .m. j → f r e e . i → SKIP

All components of the system will be syncronized with the process SY NC that
admits for one agent to grab the resource “access to C channel” and waits until the
agent signalizes via event free that he releases the resource. Writing on the C channel
will only be performed via the WRITE-process primitive. A final version of our MIX
using channel synchronization looks as follows:

MIX4(i) (S) = i f card (S) >= bu f s i z e
then SENDBUFFER1(i) (S) ; MIX4(i) ({})
else C?x?m! i →

MIX4(i) (union (S ,
s t r i p (i ,

{unwrap (x) | x∈decrypt (m,
p r i va t e . i)}))

)

The un-synchronized and the synchronized versions of SENDBUFFER reads as fol-
lows:

SENDBUFFER(i) (S) = i f empty (S) then SKIP
else u (a ,m) : S • C! i !m! a

→ SENDBUFFER(i) (d i f f (S ,{ (a ,m)}))

SENDBUFFER1(i) (S) = grab ! i → SENDBUFFER(i) (S) ; f r e e ! i → SKIP

Senders are processes parametrised by user-ids. A SEND-process picks an arbitrary
message, an arbitrary target user, an arbitrary path of its preconceived path-set, wraps
the message along the path and sends the wrapped message to the first Mix of the path.
All these decisions are represented by internal choices in CSP, and require the network
to behave deadlock-free for all these choices. In the following, we present the standard
version producing this behaviour and a synchronized one:

SEND1(i) = u m : msgs •
u u : u s e r s •

u p : paths (i) •
l et mess = wrap (u , K. (pub l i c . u) . (Msg .m))

(a ,ms) = unwrap (cryptpath (p , mess))
with in C! i !ms ! a → SEND1(i)

SEND3(i) = u m : msgs •
u u : u s e r s •

u p : paths (i) •
l et mess = wrap (u , K. (pub l i c . u) . (Msg .m))

(a ,ms) = unwrap (cryptpath (p , mess))
with in WRITE(i ,ms , a) ; SEND3(i)

REC(i) = C?x?m! i → REC

The last line contains the receiver that simply reads everything addressed to him.

18

4.7 The Mix Network

4.7 The Mix Network

In this subsection, we describe synchronization sets, and build a network with sender
synchronization. The network will then be built as a sequence of parallel synchronization
operations P [|S|]Q, where P and Q are forced to “communicate” (i.e. engage in one
event in parallel) whenever events occur in S; otherwise, they may evolve in arbitrarily
interleaved ways.

First, we introduce a shortcut for a set of communication events build over to subsets
of agents S and T :

SYNCS(S ,T) = {C. i .m. j | i ∈ S , j ∈ T, m ∈ MSG}

Here, we just present the variant of the network already containing sender synchro-
nization. The core is a synchronization operator on all the MIX’es, that must go in
parallel whenever one MIX sends a C-event to another; all the MIX’es start with an
initially empty buffer.

GEN NET1(SEND,MIX,REC)
= ((| | | i : u s e r s • SEND(i))

[|SYNCS(use r s , mixes) |]

(([|SYNCS(mixes , mixes) |] i : mixes • MIX(i) ({}))

[|SYNCS(mixes , u s e r s) |]

(| | | i : u s e r s • REC(i))
))
[| { | grab , f r e e | } |]
SYNC

NET1 = GEN NET1(SEND3,MIX4 ,REC)

This core is combined with the row of senders on the one hand and the set of receivers on
the other. All components in the system are then put in parallel with a semaphore repre-
sented by the SYNC-process that grants the exclusive right to send to some component
as long as it does not release this right.

Theorem: This network is well-formed, i.e. deadlock-free.
Proof : See Section 5.1.

4.8 A Simple Instantiation of the Generic Passive Attacker

We are now ready to define the attacker that attempts to breach the security property
the MIX-network is designed for, namely unobservability.

As a warm-up, we present a very simple attacker model that just stores the fact, that
user(i) has sent something and user(j) received something. Initially, no one has sent or
received a message. The attacker is successful if some user has received a message (T not
empty), but there are fewer senders than required as minimal anonymity set. Required
anonymity quality is a global constant introduced in the next section.

i n i t a t t a c k s t a t e 1 = ({} ,{})

i n c l 1 (user . i , , , S) = l et (A,B) = S within (union ({ user . i } ,A) ,B)
i n c l 1 (, , user . i , S) = l et (A,B) = S within (A, union ({ user . i } ,B))
i n c l 1 (, , , S) = S

19

4 A CSP Model for Mix Networks and its Attacker

succe s s1 ((S ,T)) = (T6={}) and (card (S) < anonymity)

Finding an attack based on this attacker model in our network is an easy game for FDR;
since we have so far no control over the diversity of the senders and no dummy traffic
in our model, FDR just constructs a scenario where user(1) sends as the only sender
several times a message to user(2).

4.9 An Improved Instantiation of the Generic Passive Attacker

The previous attacker does not actually use knowledge over communication connections.
In this section, we introduce a refined version of the attacker that “knows” about bufsize
and the sequential nature of the Mixes, and tries to keep track over possible communi-
cation relations (A communicated with B) within the network. The attacker exploits
that

• received messages were retransmitted during the next shifts,

• and retransmitted messages had been received during the previous shift.

The general idea of our attacker is: The attacker keeps a “truncated log” and con-
structs a backchain-relation from this. During the attack, the “truncated log” serves as
a fifo-queue (implemented as list in reverse order).

The attacker exploits the fact that if a Mix sends something, it is in the sender mode
(not valid in the non-sequential variant) which corresponds to a section of send-actions
of this Mix in the trace. The length of this section is known to be bufsize. Skipping
the send-section, the previous receive-section can be constructed. Any received message
in this receive-section leads to an own backchain-relation, that is composed with the
backchain of the previous operation.

Due to truncation, it is possible that receive-mode-sections in the trace are incom-
plete, in this case we assume the least information the attacker may use, i.e. the full set
of participants in the net.

For the necessary finitization of the data-model, we introduce the global constant
anonymity controlling the “size of the anonymity set” in the sense of Section 2. With
search depth we characterize the “memory” of the attacker — i.e. the length of its
internal “truncated log” that he uses to actually construct the backchain- relation:

anonymity = 2

search depth = 3

We will use the following auxilliary functions on truncated logs in order to define our
attacker. skip erases all prefixing communication packages (triples of sender, message
and receiver) that were not addressed to some agent m. search send constructs the set of
possible senders that contributed to a full buffer of a Mix. In principle, backchain builds
the transitive closure of the direct communication relation computed by search send. In
all cases, whenever there is not enough information due to the truncation of the log, the
algorithm assumes the worst case in order to produce in any case a backchain-relation

20

that contains the communication relation, i.e. the abstraction due to finitization is in
any case safe.
−− sk ip (m: mixes ,<(j : agent ,m:MSG, i : agent)>ˆR)
sk ip (m, <>) = <> −− no r e c e i v i n g occurrence found due to t runcat ion
sk ip (m,<(j , , i)>ˆR) = i f m ≡ i

then <(j ,m, i)>ˆR −− f i r s t r e c e i v i n g
−− occurrence found

else sk ip (m,R)

−−s ea rch send (m: mixes , R)
search send (m, R) =

l et cs (0 ,) = {}
cs (, <>) = {}
cs (x ,<(user . j , , i)>ˆR) = i f i ≡ m

then union ({ user . j } , c s (x−1, R))
else cs (x ,R)

cs (x ,<(mix . j , , i)>ˆR) = i f i ≡ m
then union ({mix . j } , c s (x−1, R))
else cs (x ,R)

with in cs (bu f s i z e ,R)

−−backchain (a : agent ,<>)
backchain (a,<>) = use r s
backchain (a ,<(user . j ,m, i)>ˆR) = i f a ≡ i −− something was sent to t a rg e t a

then { user . j }
else backchain (a ,R)

backchain (a ,<(mix . j ,m, i)>ˆR) = i f a ≡ i −− something was sent to t a rg e t a
then (l et S = search send (mix . j , sk ip (mix . j , R))

−− s n i f f . . .
with in (i f card (S) < bu f s i z e

−− we have only p a r t i a l
−− in fo rmat ion
then use r s −− assume the worst
else (union (

{ user . x | user . x ∈ S} ,
Union ({ backchain (mix . x ,R)

| mix . x ∈ S})
)) −− backchain to the

−− pr ede c e s s o r s
)

)
else backchain (a ,R)

Based on this machinery, it is now straight-forward to build the instance of our
generic passive attacker. The inclusion operation incl just prepends a new communi-
cation package and truncates the log. The predicate success is defined by having less
elements in the backchain set (i.e. the set of agents in backchain-relation to some agent
a) than anonymity. The initial state is a truncated log filled with dummy elements of
length search depth.

i n c l (x , y , z , S)= <(x ,Dummy, y)>ˆ(f r on t (S))
suc c e s s (<(mix . j , , user . i)>ˆR) = card (backchain (mix . j ,R)) < anonymity
suc c e s s () = f a l s e

i n i t a t t a c k s t a t e = < (mix . 1 ,Dummy, mix . 1) | x ∈ <1 . . s earch depth> >

Analysing our network with this attacker brings FDR to its limits. On a large
compute server, the analysis terminates and constructs a similar attack as the simple at-
tacker, but the complex attacker clearly needs further improvement and further suitable
abstractions.

5 Analysis

As mentioned in Section 3.2, the proof of a security property comes in two parts: First,
the consistency of the system to be analysed must be assured. This boils down to a
proof of deadlock freeness. Second, the system together with the attacker (incorporating

21

5 Analysis

the attacker model) must refine the universal process that contains all communication
sequences not containing success.

5.1 Consistency Analysis of MIXes, SENDer and RECeiver

Here, we list the proof goals concerning constistency of our analysis. FDR displays them
in an own window allowing the user to click on them — this activates the internal proof
procedure, and may or may not terminate (easily).

a s s e r t MIX0(mix . 1) ({ }) : [deadlock f r e e [F]]
a s s e r t MIX1(mix . 1) ({ }) : [deadlock f r e e [F]]
a s s e r t MIX2(mix . 1) ({ }) : [deadlock f r e e [F]]
a s s e r t MIX3(mix . 1) ({ }) : [deadlock f r e e [F]]
a s s e r t MIX4(mix . 1) ({ }) : [deadlock f r e e [F]]

a s s e r t SENDBUFFER (mix . 1) ({ }) : [deadlock f r e e [F]]
a s s e r t SENDBUFFER1(mix . 1) ({ }) : [deadlock f r e e [F]]

a s s e r t SEND1(user . 1) : [deadlock f r e e [F]]
a s s e r t SEND2(user . 1) : [deadlock f r e e [F]]
a s s e r t SEND3(user . 1) : [deadlock f r e e [F]]

a s s e r t REC(user . 1) : [deadlock f r e e [F]]

MIX0 is immediately deadlock free, while MIX1 produces a counter example (see previ-
ous discussion) and MIX2 does not terminate since the model is not finite. The resulting
revisions MIX3 and MIX4 of MIX0 are again deadlock free.

All other processes are trivially proved deadlock free.

5.2 Consistency Analysis of the Network

The whole network (in the version presented in this paper) is also deadlock free.

a s s e r t NET1 : [deadlock f r e e [F]]

The analysis takes several minutes on a Pentium III under 800 Mhz.

5.3 Analysis of attacks against Anonymity

We turn now to the core of the analysis, the proof that the attacker is not successful. In
our case — the senders are just interleaved, no control of sender distribution is included
in our model so far — FDR constructs counter examples representing possible attacks.
Note that the synchronization events grab and free must be hidden in all synchronized
versions of Mix networks.

a s s e r t RUN [T=(NET1 [| { | C | } |]
ATTACK (succ e s s , i n c l , i n i t a t t a c k s t a t e)) \ { | grab , f r e e | }

a s s e r t RUN [T=(NET1 [| { | C | } |]
ATTACK (succe s s1 , i n c l 1 , i n i t a t t a c k s t a t e 1)) \ { | grab , f r e e | }

These goals lead to counter examples such as:

C(user 1) (K(pub l i c (mix 1))
(Join (Addr (mix 2))

(K(pub l i c (mix 2))
(Join (Addr (user 1) (K(pub l i c (user 1) (Msg 1))))))))

(mix 1)
C(user 1) (K(pub l i c (mix 1))

(Join (Addr (mix 2))

22

(K(pub l i c (mix 2))
(Join (Addr (user 2) (K(pub l i c (user 2) (Msg 1))))))))

(mix 1)
C(mix 1) (K(pub l i c (mix 2)) (Join (Addr (user 1) (K(pub l i c (user 1) (Msg 1)))))) (mix 2)
C(mix 1) (K(pub l i c (mix 2)) (Join (Addr (user 2) (K(pub l i c (user 2) (Msg 1)))))) (mix 2)
C(mix 2) (K(pub l i c (user 1) (Msg 1))) (user 1)
Success

In this counter example, only one sender sends to one receiver into the network —
and there can not be relationship anonymity for this reason.

6 Conclusion and Future Work

6.1 Discussion

The main result of our work is a formal model of a Mix network suitable for a machine
based analysis. It can be used to find known and possibly new attacks. Standard models
and standard formal notions may improve the understanding of informal ones. Moreover,
they pave the way for the formal analysis of Mix implementations. Further, we have
a proof of concept of an adoption of existing protocol analysis techniques to security
properties such as anonymity and unobservability. We see our work as a step to turn the
analysis of this type of security properties into a routine task, similarly to the analysis
of authentification protocols.

In comparison to standard analysis in the field authentification, anonymity and un-
observability are particularly difficult to analyse by model-checking techniques, and the
necessary simplifications and abstractions seem to be more distant to real-world as-
sumptions. This is a consequence of the fact that anonymity and unobservability are
inherently understood in terms of “large numbers”, e.g. large anonymity sets, large
buffers of Mixes and large memories on the side of the attacker — this leads to large
state spaces to be handled and to be abstracted.

The situation will be even worse for a probabilistic analysis — for this type of prob-
lem, we predict that purely model-checking based approaches attempting to simulate
Markow automata will not be feasible; therefore formal probabilistic analysis will re-
quire theorem proving environments with theories and proof support for probabilism
and Markow automata.

We believe that anonymity and unobservability analysis — based on model- checking
— must be based on relatively concrete attacker models (i.e. non-deterministic “algo-
rithms”).

6.2 Future Work

We would like to distinguish two type of extensions: more or less direct improvements
of our approach and more general achievements for the field of formal analysis of Mixes
as a whole. The following list of items belongs to the former class:

• adaption of our analysis to receiver anonymity,

• application to unobservability by introducing dummy traffic,

23

References

• simplified versions of more powerful,“intelligent” attackers,

• including assumptions on the diversity,

• using active attackers for constructing replay-attacks etc.,

• the analysis of an existing Mix protocol like Onion Routing [6]

• finding Mix models that are closely connected to (abstract) real implementations.

In the latter class, we like to name the following issues:

• finding a systematization of attackers or something like a “most general attacker”
against anonymity (probably not model-checkable),

• alternative, theorem-proving based approaches for the analysis of Mixes, and

• extensions of our possibilistic framework towards a probabilistic one.

References

[1] D. Basin. Lazy infinite-state analysis of security protocols. In Secure Networking
— CQRE [Secure] ’99, LNCS 1740, pages 30–42. Springer, Berlin, 1999.

[2] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions in Computer Systems, 8(1):18–36, 1990.

[3] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–88, 1981.

[4] L. Cottrel. Mixmaster & remailer attacks. URL:
http://www.obscura.com/ loki/remailer-essay.html, 1995.

[5] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29:198–208, 1983.

[6] D. Goldschlag, M. Reed, and P. Syverson. Onion routing for anonymous and private
internet connections. Communications of the ACM, 42(2):39–41, 1999.

[7] N. Heintze, J. Tygar, J. M. Wing, and H.-C. Wong. Model checking electronic
commerce protocols. In Proceedings of the USENIX 1996 Workshop on Electronic
Commerce. 1996.

[8] C. A. Hoare. Communicating sequential processes. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[9] R. Kemmerer. Using formal methods to analyze encryption protocols. IEEE Journal
of Selected Areas in Communication, 7(2):448–457, 1989.

24

[10] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol
analysis. Journal of Cryptology, 7(2):79–130, 1994.

[11] D. Kesdogan. Vertrauenswürdige Kommunikation in offenen Umgebungen. PhD
thesis, RWTH Aachen, Mathematisch-Naturwissenschaftliche Fakultät, 1999.

[12] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocols using
FDR. In T. Margaria and B. Steffen, editors, Proceedings of TACAS’96, LNCS
1055, pages 147–166. Springer, Berlin, 1996.

[13] F. S. E. Ltd. Failures-divergence refinement – FDR2 user manual. Available at the
URL http://www.formal.demon.co.uk/FDR2.html.

[14] W. Marrero, E. Clarke, and S. Jha. Model checking for security protocols. In Pro-
ceedings of the DIMACS Workshop on Design and Verification of Security Protocols.
1997.

[15] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-
ming, 19, 1994.

[16] J. K. Millen, S. Clark, and S. Freedman. The Interrogator: Protocol security anal-
ysis. IEEE Transactions on Software Engineering, 13(2):274–288, 1987.

[17] R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[18] L. C. Paulson. Isabelle: a generic theorem prover. LNCS 828. Springer, Berlin,
1994.

[19] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal
of Computer Security, 6:85–128, 1998.

[20] A. Pfitzmann and M. Köhntopp. Anonymity, unobservabil-
ity, and pseudonymity - a proposal for terminology. URL:
http://www.koehntopp.de/marit/pub/anon/Anon Terminology.pdf, 2001.

[21] A. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In
Proceedings of 1995 IEEE Computer Security Foundations Workshop. IEEE Com-
puter Society Press, 1995.

[22] A. Roscoe. Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs,
NJ, 1998.

[23] A. Roscoe and M. Goldsmith. The perfect spy for model-checking crypto-protocols.
In Proceedings of DIMACS workshop on the design and formal verification of cryp-
tographic protocols. 1997.

[24] S. Schneider. Verifying authentication protocols in CSP. IEEE Transactions on
Software Engineering, 24(9):741–758, 1998.

25

References

[25] H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.
In J. Fitzgerald, C. Jones, and P. Lucas, editors, Proceedings of FME ’97, LNCS
1313, pages 318–337. Springer, Berlin, 1997.

26

	Contents
	1 Introduction
	2 Mix Schemes and Mix Networks
	2.1 A more Formal Definition of Anonymity, Unobservability and Unlinkability
	2.2 Basic Mix Operations and Models
	2.3 Mix Chains
	2.4 Structure of a Mix Message

	3 Formal Security Analysis with CSP
	3.1 Tools for CSP
	3.2 Lowe's Approach to Protocol-Analysis

	4 A CSP Model for Mix Networks and its Attacker
	4.1 Global Constants
	4.2 Basic Functions
	4.3 Basic Data Types and Operations
	4.4 Crypt- and Decrypt Primitives
	4.5 Abstracting the Set of Messages MSG
	4.6 The Components of the Mix Network: Channels, MIXes, SENDer, RECeiver
	4.7 The Mix Network
	4.8 A Simple Instantiation of the Generic Passive Attacker
	4.9 An Improved Instantiation of the Generic Passive Attacker

	5 Analysis
	5.1 Consistency Analysis of MIXes, SENDer and RECeiver
	5.2 Consistency Analysis of the Network
	5.3 Analysis of attacks against Anonymity

	6 Conclusion and Future Work
	6.1 Discussion
	6.2 Future Work

	References

