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Theoretical Background

In Principle, an “Automated Theorem Prover” ATP
IS a system that automatically attempts to find a proof
for a statement like

[' o ¢

Where I are the set/list of assumptions
and O is the logic in which the statement should hold (PL,EL, FOL,HOL,...)
and ¢ is a formula (proposition) that should hold.

An answer can of an ATP can be: yes, | don't know (timeout), or a
counterexample. We are particularly interested in these.



Recall GLA : Foundations: Proof Systems

3 An Inference System (or Logical Calculus) allows to infer formulas
from a set of elementary facts (axioms) and inferred facts by rules:

A ... A,

An—l—l

}

2 “from the assumptions A; to A,, you can infer the conclusion 4, . ;.

A rule with n=0 is an elementary fact. Variables occurring in the
formulas A4, can be arbitrarily substituted.

2 Assumptions and conclusions are terms in a logic containing variables
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Recall GLA : Foundations: Proof Systems

2 An Inference System for the equality operator
(or "Equational Logic") looks like this:

r=Yy T=Y Y=2

rT=z Y= T =2z
r=1y P(x)
P(y)

2 where the first rule "reflexivity” is an elementary fact.
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Recall GLA : Foundations: Proof Systems

The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

H1+2 e
3] T — 2 y»5*T]
{xm1+2,
yPa,
1+2=2+1 24+1=3 73} T*D=H%xT HxT=272
1+2=23

T*H =2

1+42=a a=3
1+2=3
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Recall GLA : Foundations: Proof Systems

2 A Formal Proof (or : Derivation)
is a tree with rule instances as nodes

f(a,b) =a f(a,b) =a [f(f(a,b),b) =c

a = f(a,b) f(a,b) =c
a=c 9(a) = g(a)
g(a) = g(c)

4 The non-elementary facts at the leaves are the global
assumptions (here f{a,b) = a and f(f(a,b),b) = c).
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Recall GLA : Foundations: Proof Systems

d As a short-cut, we also write for a derivation:
(Ay, ... A Ay

3 ...or generally speaking: from global assumptions A4 to

I'Fg o

2 This is what theorems are: derivable facts from

a theorem (in theory E) ¢:

assumptions in a certain logical system ...
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Recall Foundations: Proof Systems

2 Recall: Some basic notions for statement: I" |7
oY

4 A formula y is valid if it evaluates to true for all substitutions of the variables by

values

2 A logic (or inference system) O is decidable iff there is an algorithm that
can infer for any formulay and any set of assumptions I that it is valid

(provided the algorithm is given sufficient ressources).

2 Fact: Propositional logic (PL) is decidable, first-order logic (FOL = PL + quantifiers)
is undecidable
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Recall Foundations: Proof Systems

21 Recall: Some basic notions for statement: r — C, w

1 A statement is satisfiable (sat) if for all variables in 1" et 1\ there existsa

value that lets the statement evaluate to true

2 For some forms of PL formulas, decidability and satisfiability are

[' e 3 x. P(x)

can be represented by the fresh uninterpreted function (skolem) symbol c

interlinked:
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The Z3 Theorem Prover

/3 1s an automated theorem prover developed by MicroSoft, but
distributed for non-commercial use for free.

Documentation and even the sources can be found here:
https://microsoft.github.io/z3guide/docs/

Z3 belongs to a class of ATP’s called SMT
(satisfyability modulo theories), but that’s not important

It supports a number of fragments of PL plus EL.

It has a command line-interface and an input format for I and @



The Z3 Theorem Prover

Main Reference: https://github.com/Z3Prover/z3

Programming Manual :
https.//z3prover.qgithub.io/papers/programmingz3.html

To start with, it is useful to consider the Introduction and the
Documentation, in particular see “Basic Commands” in https://
microsoft.github.io/z3guide/docs/logic/basiccommands

The manual also offers “playgrounds” where one can directly experiment

It has a command-line interface (described in the SMTLIB2 Format)
and a counter-example generator (generating “models™)


https://github.com/Z3Prover/z3
https://z3prover.github.io/papers/programmingz3.html
https://microsoft.github.io/z3guide/docs/logic/basiccommands
https://microsoft.github.io/z3guide/docs/logic/basiccommands
https://microsoft.github.io/z3guide/docs/logic/basiccommands

The Z3 Theorem Prover

 The manual also offers “playgrounds” where one
can directly experiment via editing the window:

1 (declare-const p Bool)

2 (declare—-const q Bool)

3 (declare-const r Bool)

4 (define—fun conjecture () Bool

5 (=> (and (== p q) (=>q r))
6 (>pr)))

7 (assert (not conjecture))

8

(check-sat)




Planning with z3

o /3 takes as input simple-sorted formulas that may contain symbols with

pre-defined meanings defined by a theory.

e The architecture includes:

{ C++ Python N } 4 Tactics
* Various frontends, > {P } [ uuuuuuuuuuuu
. The ASCIl exchange format SMTLIB2 " L -
I N S
» Preprocessing and =l =3
Special Tactics [ Optimizatir } < [ N T }
- /




Planning with z3

e /3 takes as input simple-sorted formulas that may contain symbols with pre-defined
meanings defined by a theory.

* A theory may contain a global theory context
* such as QF_LIA (quantifier-free linear integer arithmetic), EULA , AUFLIA, Lists, By, ...

¢ ESC)rtEB, sorts:

Nat$ = nat
Num$ = num

* uninterpreted functions

s ey (declare-sort Nat$ 0) functi :
Eif](j (j€3f1r1|t|()r155 (declare-sort Num$ 0) gﬁﬁgiiﬂﬁum.One
(declare-sort Num_num_fun$ 0) suc$é = Suc
(declare-sort Num_bool_fun$ 0) less$ = (<)
. (declare-fun x$ () Int) onesa = 1
e assertions for the (declare-fun rl$ () Nat$) olus$ = (+)
I() i()EiI (:()r1tea)(t (declare-fun r2$ () Nat$)
(declare-fun r3$ () Nat$)
g (declare-fun rd$ () Nat$) (assert (! (forall ((?vO Int)) (= (* 1 ?v0) ?vO)) :n
(declare-fun t1$ () Nat$) (assert (! (forall ((?vO0 Nat$)) (= (times$ (numeral$

e and finally an analysis goal,
checking satisfiability or (check-sat)
model-construction (get-model)



Planning with z3

e /3 takes as input simple-sorted formulas that may contain symbols with
pre-defined meanings defined by a theory.

o /3 allows universal quantification in assumptions I', but no existential

quantifications. However, Z3 supports uninterpreted functions and the
reduction to a satisfiability problem (in fact, this is the preferred format)

/3 allows to generate models (examples resp. counter-examples) for its
uninterpreted function symbols ...



