
Some Elements on
Communicating with an SMT

Burkhart Wolff 
 

Projet Genie Logiciel (Room Planner) 2023

• In Principle, an “Automated Theorem Prover” ATP  
is a system that automatically attempts to find a proof  
for a statement like  
 
 Γ ⊢Θ φ

• Where Γ are the set/list of assumptions

• and Θ is the logic in which the statement should hold (PL,EL, FOL,HOL,…)

• and φ is a formula (proposition) that should hold.

• An answer can of an ATP can be: yes, I don’t know (timeout), or a
counterexample. We are particularly interested in these.

Theoretical Background

9/8/20 B. Wolff - Projet GL

Recall GLA : Foundations: Proof Systems

❑ An Inference System (or Logical Calculus) allows to infer formulas
from a set of elementary facts (axioms) and inferred facts by rules:

❑ “from the assumptions A1 to An, you can infer the conclusion An+1.”

A rule with n=0 is an elementary fact. Variables occurring in the
formulas An can be arbitrarily substituted.

❑ Assumptions and conclusions are terms in a logic containing variables

9/8/20 B. Wolff - Projet GL

❑ An Inference System for the equality operator
(or “Equational Logic”) looks like this:

Recall GLA : Foundations: Proof Systems

❑ where the first rule “reflexivity” is an elementary fact.

9/8/20 B. Wolff - Projet GL

 The variables in an inference rule can be replaced by a
substitution. The substituted inference rule is called an
instance (of this rule).

Recall GLA : Foundations: Proof Systems

{x↦1+2,
 y↦2+1,
 z↦3}

{x↦1+2,
 y↦a,
 z↦3}

{x↦τ*5,
 y↦5*τ}

9/8/20 B. Wolff - Projet GL

Recall GLA : Foundations: Proof Systems

❑ A Formal Proof (or : Derivation)
is a tree with rule instances as nodes

❑ The non-elementary facts at the leaves are the global
assumptions (here f(a,b) = a and f(f(a,b),b) = c).

9/8/20 B. Wolff - Projet GL

❑ As a short-cut, we also write for a derivation:

❑ ... or generally speaking: from global assumptions A to
a theorem (in theory E) ϕ:

❑ This is what theorems are: derivable facts from
assumptions in a certain logical system ...

Recall GLA : Foundations: Proof Systems

9/8/20 B. Wolff - Projet GL

❑ Recall: Some basic notions for statement:

❑ A formula ψ is valid if it evaluates to true for all substitutions of the variables by
values

❑ A logic (or inference system) Θ is decidable iff there is an algorithm that
can infer for any formula ψ and any set of assumptions Γ that it is valid
(provided the algorithm is given sufficient ressources).

❑ Fact: Propositional logic (PL) is decidable, first-order logic (FOL = PL + quantifiers)
is undecidable

Γ ⊢Θ ψ

Recall Foundations: Proof Systems

9/8/20 B. Wolff - Projet GL

❑ Recall: Some basic notions for statement:

❑ A statement is satisfiable (sat) if for all variables in Γ et ψ there exists a
value that lets the statement evaluate to true

❑ For some forms of PL formulas, decidability and satisfiability are
interlinked:

can be represented by the fresh uninterpreted function (skolem) symbol c

Recall Foundations: Proof Systems

Γ ⊢Θ ψ

Γ ⊢Θ ∃ x. P(x)

{const c; Γ; P(c)} sat

• Z3 is an automated theorem prover developed by MicroSoft, but
distributed for non-commercial use for free.

• Documentation and even the sources can be found here: 
https://microsoft.github.io/z3guide/docs/

• Z3 belongs to a class of ATP’s called SMT 
(satisfyability modulo theories), but that’s not important

• It supports a number of fragments of PL plus EL.

• It has a command line-interface and an input format for Γ and φ

The Z3 Theorem Prover

• Main Reference: https://github.com/Z3Prover/z3

• Programming Manual :  
https://z3prover.github.io/papers/programmingz3.html

• To start with, it is useful to consider the Introduction and the
Documentation, in particular see “Basic Commands” in https://
microsoft.github.io/z3guide/docs/logic/basiccommands

• The manual also offers “playgrounds” where one can directly experiment

• It has a command-line interface (described in the SMTLIB2 Format) 
and a counter-example generator (generating “models”)

The Z3 Theorem Prover

https://github.com/Z3Prover/z3
https://z3prover.github.io/papers/programmingz3.html
https://microsoft.github.io/z3guide/docs/logic/basiccommands
https://microsoft.github.io/z3guide/docs/logic/basiccommands
https://microsoft.github.io/z3guide/docs/logic/basiccommands

• The manual also offers “playgrounds” where one  
can directly experiment via editing the window:  
 
 
 
 
 
 
 
 
 

The Z3 Theorem Prover

• Z3 takes as input simple-sorted formulas that may contain symbols with
pre-defined meanings defined by a theory.

• The architecture includes:

• Various frontends,

• The ASCII exchange format SMTLIB2

• Preprocessing and 
Special Tactics

Planning with z3

• Z3 takes as input simple-sorted formulas that may contain symbols with pre-defined
meanings defined by a theory.

• A theory may contain a global theory context

• such as QF_LIA (quantifier-free linear integer arithmetic), EULA , AUFLIA, Lists, Bv, …

• sorts,

• uninterpreted functions 
and definitions

• assertions for the  
logical context

• and finally an analysis goal, 
checking satisfiability or  
model-construction

Planning with z3

• Z3 takes as input simple-sorted formulas that may contain symbols with
pre-defined meanings defined by a theory.

• Z3 allows universal quantification in assumptions Γ, but no existential
quantifications. However, Z3 supports uninterpreted functions and the 
reduction to a satisfiability problem (in fact, this is the preferred format)

• Z3 allows to generate models (examples resp. counter-examples) for its
uninterpreted function symbols …

Planning with z3

