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• In Principle, an “Automated Theorem Prover” ATP  
is a system that automatically attempts to find a proof  
for a statement like  
 
                                        Γ ⊢Θ φ 

• Where Γ are the set/list of assumptions


• and Θ is the logic in which the statement should hold (PL,EL, FOL,HOL,…) 

• and φ is a formula (proposition) that should hold. 

• An answer can of an ATP can be: yes, I don’t know (timeout), or a 
counterexample. We are particularly interested in these.

Theoretical Background
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Recall GLA : Foundations: Proof Systems

❑ An Inference System (or Logical Calculus) allows to infer formulas  
from a set of elementary facts (axioms) and inferred facts by rules: 
 
 
 
 

❑ “from the assumptions A1 to An, you can infer the conclusion An+1.”  

A rule with n=0 is an elementary fact. Variables occurring in the 
formulas  An can be arbitrarily substituted. 

❑ Assumptions and conclusions are terms in a logic containing variables
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❑ An Inference System for the equality operator  
(or “Equational Logic”)   looks like this: 
 
 
 
 
 
 
 
 
 
 

Recall GLA : Foundations: Proof Systems

❑ where the first rule “reflexivity” is an elementary fact.
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   The variables in an inference rule can be replaced by a  
substitution. The substituted inference rule is called an 
instance (of this rule).

Recall GLA : Foundations: Proof Systems

{x↦1+2,  
  y↦2+1, 
  z↦3}

{x↦1+2,  
  y↦a, 
  z↦3}

{x↦τ*5,  
  y↦5*τ}
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Recall GLA : Foundations: Proof Systems

❑ A Formal Proof (or : Derivation) 
is a tree with rule instances as nodes 
 
 
 
 
 

❑ The non-elementary facts at the leaves are the global 
assumptions (here f(a,b) = a and f(f(a,b),b) = c).
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❑ As a short-cut, we also write for a derivation: 
 
 
  
   

❑ ... or  generally speaking: from global assumptions A to  
a theorem (in theory E) ϕ: 
 
 

❑ This is what theorems are: derivable facts from 
assumptions in a certain logical system ...

Recall GLA : Foundations: Proof Systems
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❑ Recall: Some basic notions for statement: 

❑ A formula ψ is valid if it evaluates to true for all substitutions of the variables by 
values

❑ A logic (or inference system) Θ is decidable iff there is an algorithm that  
can infer for any formula ψ  and any  set of assumptions Γ that it is valid  
(provided the algorithm is given sufficient ressources). 

❑ Fact: Propositional logic (PL) is decidable, first-order logic (FOL = PL + quantifiers)  
is undecidable 

Γ ⊢Θ ψ

Recall Foundations: Proof Systems
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❑ Recall: Some basic notions for statement: 

❑ A statement is satisfiable (sat) if for all variables in  Γ et ψ there exists a 
value that lets the statement evaluate to true

❑ For some forms of PL formulas, decidability and satisfiability are 
interlinked: 
 
 

can be represented by the fresh uninterpreted function (skolem) symbol c 

Recall Foundations: Proof Systems

Γ ⊢Θ ψ

Γ ⊢Θ ∃ x. P(x)

{const c; Γ; P(c)} sat



• Z3 is an automated theorem prover developed by MicroSoft, but 
distributed for non-commercial use for free.


• Documentation and even the sources can be found here: 
https://microsoft.github.io/z3guide/docs/


• Z3 belongs to a class of ATP’s called SMT 
(satisfyability modulo theories), but that’s not important


• It supports a number of fragments of PL plus EL.


• It has a command line-interface and an input format for Γ and φ

The Z3 Theorem Prover



• Main Reference: https://github.com/Z3Prover/z3


• Programming Manual :  
https://z3prover.github.io/papers/programmingz3.html


• To start with, it is useful to consider the Introduction and the 
Documentation, in particular see “Basic Commands” in https://
microsoft.github.io/z3guide/docs/logic/basiccommands 


• The manual also offers “playgrounds” where one can directly  experiment


• It has a command-line interface (described in the SMTLIB2 Format) 
and a counter-example generator (generating “models”)

The Z3 Theorem Prover

https://github.com/Z3Prover/z3
https://z3prover.github.io/papers/programmingz3.html
https://microsoft.github.io/z3guide/docs/logic/basiccommands
https://microsoft.github.io/z3guide/docs/logic/basiccommands
https://microsoft.github.io/z3guide/docs/logic/basiccommands


• The manual also offers “playgrounds” where one  
can directly experiment via editing the window:  
 
 
 
 
 
 
 
 
 

The Z3 Theorem Prover



• Z3 takes as input simple-sorted formulas that may contain symbols with 
pre-defined meanings defined by a theory. 


• The architecture includes:


• Various frontends,


• The ASCII exchange format SMTLIB2


• Preprocessing and 
Special Tactics

Planning with z3



• Z3 takes as input simple-sorted formulas that may contain symbols with pre-defined 
meanings defined by a theory. 


• A theory may contain a global theory context 


• such as QF_LIA (quantifier-free linear integer arithmetic),  EULA , AUFLIA, Lists, Bv, …


• sorts, 


• uninterpreted  functions 
and definitions


• assertions for the  
logical context


• and finally an analysis goal, 
checking satisfiability or  
model-construction

Planning with z3



• Z3 takes as input simple-sorted formulas that may contain symbols with 
pre-defined meanings defined by a theory. 


• Z3 allows universal quantification  in assumptions Γ, but no existential 
quantifications.  However, Z3 supports uninterpreted functions and the 
reduction to a satisfiability problem (in fact, this is the preferred format)


• Z3 allows to generate models (examples resp. counter-examples) for its 
uninterpreted function symbols …

Planning with z3


