## Some Thoughts on Planning Problems

Projet Genie Logiciel (Room Planner) 2023

Burkhart Wolff

- A "Planning" consists of an assignment between:
  - Ressources R (Rooms, Processors, ...)
  - Time-Slots T ("Schedules")
  - Task-units (TU)
- ... satisfying constraints:
  - Ressources must match to a Resource-Requirements
  - Task-units may have temporal constraints  $(tu_1 before tu_5, tu_7 + "3 days" before tu_8)$
  - Task-units may have exclusivity constraints (the same processor/organizer can not be at the same time in different tasks ...)

### Planning in General

• UML - wise, this boils down to this:



### Planning in General

| R | TIME            |                 |     |                 |
|---|-----------------|-----------------|-----|-----------------|
| Е | tu <sub>2</sub> |                 |     |                 |
| S |                 | tu <sub>4</sub> |     | tu <sub>9</sub> |
| S | tu1             |                 | tu7 | tu <sub>8</sub> |
| 0 |                 |                 |     |                 |

```
p : Planning = { (tu_2, r_1, t_1),
                                          (tu<sub>1</sub>, r<sub>3</sub>, t<sub>1</sub>),
                                          (tu<sub>4</sub>, r<sub>2</sub>, t<sub>2</sub>),
                                           (tu<sub>7</sub>, r<sub>3</sub>, t<sub>3</sub>),
                                           (tu<sub>8</sub>, r<sub>3</sub>, t<sub>4</sub>),
                                         (tu<sub>9</sub>, r<sub>2</sub>, t<sub>4</sub>)
```

slot Schedules

# Planning in General

• Temporal Constraints on Tasks: e.g.

```
\begin{array}{l}tu_1 < tu_7 \ \land \ tu_7 < tu_8 \ \land \ tu_7 < tu_9 \\ \land \ tu_2 < tu_4\end{array}
```

or sth. like:

tu<sub>1</sub>, tu<sub>7</sub> in different weeks, i.e.

 $tu_1 + "4 work-days" < tu_7$ 

• Ressource requirement ("needs"):

tu<sub>7</sub> needs 50,  $r_3$  offers 60; tu<sub>9</sub> needs 25,  $r_2$  offers 25, tu<sub>8</sub> needs 25



tu<sub>2</sub> —→ tu<sub>4</sub>

| R | TIME            |                 |     |                 |
|---|-----------------|-----------------|-----|-----------------|
| Е | tu <sub>2</sub> |                 |     |                 |
| S |                 | tu <sub>4</sub> |     | tu <sub>9</sub> |
| S | tu1             |                 | tu7 | tu <sub>8</sub> |
| 0 |                 |                 |     |                 |

```
p: Planning = \{ (tu_2, r_1, t_1), (tu_1, r_3, t_1), (tu_4, r_2, t_2), (tu_7, r_3, t_3), (tu_8, r_3, t_4), (tu_8, r_3, t_4), (tu_9, r_2, t_4) \}
```

# Planning in General

A new demand

 $tu_3 \longrightarrow tu_5$ 

can then be represented as the set of module placements (i.e. a set of sets):

 And a conflict-free solution for a new schedule looks like this:

"new\_demand = {S  $\cdot \exists p1 \cdot \exists p2 \cdot S = \{p1, p2\} \land teaching\_unit\_of p1 = tu3$  $\land$  teaching\_unit\_of p2 = tu5  $\land$  time\_of p1 < time\_of p2}"

| R | TIME            |                 |                 |                 |
|---|-----------------|-----------------|-----------------|-----------------|
| Е | tu <sub>2</sub> |                 |                 |                 |
| S |                 | tu <sub>4</sub> | tu <sub>5</sub> | tu <sub>9</sub> |
| S | tu1             | tu <sub>3</sub> | tu7             | tu <sub>8</sub> |
| 0 |                 |                 |                 |                 |