# Some Thoughts on Planning Problems 

Burkhart Wolff

Projet Genie Logiciel (Room Planner) 2023

## Planning in General

- A "Planning" consists of an assignment between:
- Ressources R (Rooms, Processors, ...)
- Time-Slots T ("Schedules")
- Task-units (TU)
- ... satisfying constraints:
- Ressources must match to a Resource-Requirements
- Task-units may have temporal constraints (tu $u_{1}$ before tu $\mathrm{u}_{5}, \quad \mathrm{tu} \mathrm{m}_{7}+$ " 3 days" before $\mathrm{tu}_{8}$ )
- Task-units may have exclusivity constraints (the same processor/organizer can not be at the same time in different tasks ...)


## Planning in General

- UML - wise, this boils down to this:



```
p: Planning = { (tu_, ri, th),
                                    (tu_1, r3, th),
                                    (tu4, re, t2),
                                    (tu7, re, t3),
                                    (tus, re, t4),
    (tug, re, tu)
    }
```


## Planning in General

- Temporal Constraints on Tasks: e.g.

$$
\begin{aligned}
& \mathrm{tu}_{1}<\mathrm{tu}_{7} \wedge \mathrm{tu}_{7}<\mathrm{tu}_{8} \wedge \mathrm{tu}_{7}<\mathrm{tu}_{9} \\
\wedge & \mathrm{tu}_{2}<\mathrm{tu}_{4}
\end{aligned}
$$


or sth. like:

> tu $u_{1}, \mathrm{tu}_{7}$ in different weeks, i.e.
> $\mathrm{tu} \mathrm{u}_{1}+$ " 4 work-days" $<\mathrm{tu}_{7}$

- Ressource requirement ("needs"):
$\mathrm{tu}_{7}$ needs $50, \mathrm{r}_{3}$ offers 60;
tug needs $25, r_{2}$ offers 25 ,
tus needs 25


```
p: Planning = {(tur, ri, ti),
                                    (tu1, r3, t1),
                                    (tu4, re, tra),
                                    (tu7, r3, ts),
                                    (tus, r3, tu),
    (tug, re, tu)
    }
```


## Planning in General

- A new demand

$$
\mathrm{tu}_{3} \longrightarrow \mathrm{tu}_{5}
$$

can then be represented as the set of module placements (i.e. a set of sets):

$$
\begin{aligned}
\text { "new_demand } \equiv\{S . \exists \mathrm{p} 1 . \exists \mathrm{p} 2 . \mathrm{S}= & \{\mathrm{p} 1, \mathrm{p} 2\} \wedge \text { teaching_unit_of p1 }=\text { tu3 } \\
& \wedge \text { teaching_unit_of p2 = tu5 } \\
& \wedge \text { time_of } p 1<\text { time_of } p 2\} "
\end{aligned}
$$

- And a conflict-free solution for a new schedule looks like this:

| $\mathbf{R}$ | TIME | $\ldots$ | $\ldots$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{E}$ | $\mathrm{tu}_{2}$ |  |  |  |
| $\mathbf{S}$ |  | $\mathrm{tu}_{4}$ | tu | $\mathrm{tu}_{9}$ |
| $\mathbf{S}$ | $\mathrm{tu}_{1}$ | $\mathrm{tu}_{3}$ | tu | $\mathrm{tu}_{8}$ |
| $\mathbf{0}$ |  |  |  |  |

