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Abstract

A graph is k-linked (k-edge-linked), k ≥ 1, if for each k pairs of vertices x1, y1, · · · , xk, yk,
there exist k pairwise vertex-disjoint (respectively edge-disjoint) paths, one per pair xi and
yi, i = 1, 2, · · · , k. Here we deal with the properly-edge-colored version of the k-linked (k-
edge-linked) problem in edge-colored graphs. In particular, we give conditions on colored
degrees and/or number of edges, sufficient for an edge-colored multigraph to be k-linked
(k-edge-linked). Some of the obtained results are the best possible. Related conjectures are
proposed.

1 Introduction and notation

The investigation of k-linkings for non colored graphs gave some important and interesting results
both from a mathematical and algorithmic point of view [6, 7, 8, 9, 10, 14, 15, 16, 17]. Here we
deal with the colored version of the k-linked problem in edge-colored multigraphs. In the case
of edge-colored complete graphs, some results of algorithmic nature for the k-linked problem
were already obtained in [11]. The study of this type of problems has witnessed significant
development during last decades, both from the point of view of its theoretical interest and
of its domains of applications. In particular, problems arising in molecular biology are often
modeled using colored graphs, i.e., graphs with colored edges and/or vertices [13]. Given such
an edge-colored graph, original problems correspond to extract subgraphs colored in a specified
pattern. The most natural pattern in such a context is that of a proper coloring, i.e., adjacent
edges having different colors. Various applications of properly edge-colored Hamiltonian and
Eulerian cycles and paths are studied in [12, 13]. Properly colored paths and cycles have also
applications in various other fields, as in VLSI for compacting a programmable logical array [5].
Although a large body of work has already been done [1, 2, 3, 4, 11], in most of that previous
work the number of colors was restricted to two. For instance, while it is well known that
properly edge-colored hamiltonian cycles can be found efficiently in 2-edge colored complete
graphs, it is a long standing question whether there exists a polynomial algorithm for finding
such hamiltonian cycles in edge-colored complete graphs with three colors or more [3]. In this
paper we consider graphs with edges colored with an arbitrary number of colors. In particular,
we study conditions on colored degrees and/or edges sufficient for an edge-colored multigraph
to be k-linked (k-edge-linked).
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Formally, let {1, 2, · · · , c} be a set of given c ≥ 2 colors. Throughout the paper, Gc denotes
an edge-colored multigraph so that each edge is colored with some color i ∈ {1, 2, · · · , c} and
no two parallel edges joining the same pair of vertices have the same color. We also suppose
that Gc has no isolated components, i.e., the underling non-colored graph is connected. The
vertex and edge-sets of Gc are denoted V (Gc) and E(Gc), respectively. The order n of Gc is
the number of its vertices. The size m of Gc is the number of its edges. For a given color
i, Ei(Gc) denotes the set of edges of Gc on color i. When no confusion arises, we write V,E
and Ei instead of V (Gc), E(Gc) and Ei(Gc), respectively. When Gc is not a multigraph, i.e.,
no parallel edges between any two vertices are allowed, we call it graph, as usual. If H is an
induced subgraph of Gc, then N i

H(x) denotes the set of vertices of H, joined to x with an edge
on color i. The colored i − degree of x in H, denoted by diH(x) corresponds to the cardinality∥∥N i

H(x)
∥∥ of N i

H(x). Whenever H ∼= Gc, for simplicity, we write N i(x) (resp. di(x)) instead
of N i

Gc(x) (resp. diGc(x)). For a given vertex x and a given positive integer k, the notation
dc(x) ≥ k means that for every i ∈ {1, 2, · · · , c}, di(x) ≥ k. An edge between two vertices x
and y is denoted by xy and its color by c(xy). For two given vertices x and y and a given color

i, some times, to help reading, we use the notation x
i
− y instead of xy ∈ Ei(Gc). A subgraph

of Gc is said to be properly edge-colored, if any two adjacent edges in this subgraph differ in
color. A properly edge-colored path does not allow vertex repetitions and any two successive
edges on this path differ in colors. The length of a path is the number of its edges. A graph is
k-linked (k-edge-linked) whenever for every k disjoint pairs of vertices x1, y1, x2, y2, · · · , xk, yk,
there exist k vertex-disjoint (edge-disjoint) properly edge-colored paths, one per pair xi and yi,
i = 1, 2, · · · , k.

The paper is organized as follows: In Section 2, we give conditions on colored degrees,
sufficient for the k-linked (k-edge linked) property. In Section 3, we give conditions involving
both minimum colored degrees and the number of edges, sufficient for the k-linked (k-edge-
linked) property. One of the results of this section is a partial answer to an old question by one
of the authors published in [10]. Through both sections, several conjectures are proposed.

2 Degree conditions for k-linked edge-colored multigraphs

Let us start with the following conjecture for k-linked edge-colored multigraphs involving colored
degrees.

Conjecture 2.1. Let Gc be a c-edge-colored multigraph of order n and k a non-zero positive
integer. There exists a minimum function f(n, k) such that if for every vertex x, dc(x) ≥ f(n, k),
then Gc is k-linked.

Probably in the above conjecture it suffices to set f(n, k) = n
2 + k − 1. Indeed, let A, (resp.

B, C) be a complete edge-colored multigraph of order n−2k+2
2 (respectively, 2k − 2, n−2k+2

2 ).
Consider the disjoint union of A, B, C and suppose that each vertex of B is joined to each
vertex of A∪C by c parallel edges all on distinct colors. Although the resulting multigraph has
colored degrees at least n

2 +k−2, it has no k vertex-disjoint properly edge-colored paths between
pairs of vertices xi and yi, where x1 is a vertex in A, y1 is a vertex in C and the remaining xi, yi
vertices belong to B, 2 ≤ i ≤ k.
Some support to the above conjecture may be obtained from the following theorem.
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Theorem 2.2. Let Gc be a c-edge-colored multigraph of order n, with n ≥ 242k, k a non-zero
positif integer. If for every vertex x, dc(x) ≥ n

2 + k − 1, then Gc is k-linked.

Proof. Let Gc be a c-edge-colored multigraph of order n, n ≥ 242k, such that for every vertex
x, dc(x) ≥ n

2 +k−1. We are going to prove by contradiction that Gc is k-linked. More precisely,
we will prove the stronger result that, given k pairs of vertices x1, y1, · · · , xk, yk of Gc, each
pair xi and yi is joined by a properly edge-colored path of length at most 8.
Assume therefore that Gc is not k-linked. Then there are 2k distinct vertices x1, y1, x2, y2, ...,
xk, yk such that there are no k pairwise vertex-disjoint paths, one path per pair xi, yi. Let us
consider now a set I of integers, such that there are ‖I‖ pairwise vertex-disjoint paths of length
at most 8 joining the pairs xi, yi, with i ∈ I. We consider I such that its cardinality ‖I‖ is
the maximum possible. Clearly ‖I‖ < k, for otherwise we are finished. In the rest of the proof
we are going to show that we can find more than ‖I‖ pairwise vertex-disjoint paths as long as
the cardinality of I is considered strictly smaller than k. This will contradict the maximality
property of I and end the proof.

Claim 1. ‖I‖ ≥ 2.

Proof. Assume that there exists at least one pair xi, yi, say x1 and y1, of vertices such that there
is no edge between x1 and y1. Otherwise, we are finished, by considering the k paths defined
by the k edges xiyi, i = 1, 2 · · · , k. Set S = {xi, yi, 1 ≤ i ≤ k} and let r (red) and b (blue) be
two fixed colors in {1, 2, · · · , c}. So drG−S(x1) ≥ n

2 + k − 1 − 2(k − 1) = n
2 − k + 1. Similarly,

dbG−S(y1) ≥ n
2−k+1. However ‖N r

G−S(x1)∪N b
G−S(y1)‖ ≤ n−2k, so ‖N r

G−S(x1)∩N b
G−S(y1)‖ ≥ 2.

Consequently, we can find two distinct vertices, say u and v, in N r
G−S(x1) ∩N b

G−S(y1). If there

is an edge between x2 and y2, then this edge x2y2 together with the path x1

r
− u

b
− y1 prove that

‖I‖ ≥ 2. If not, then there are two distinct vertices u′ and v′ in N r
G−S(x2)∩N b

G−S(y2). W.l.o.g.

we may suppose u 6= v′, but then we have found again two paths x1

r
− u

b
− y1 and x2

r
− v′

b
− y2,

as desired.

As ‖I‖ < k, in the sequel, let us suppose w.l.ofg. that 1 /∈ I. In order words, we suppose
that there is no properly-edge colored path of length at most 8 between x1 and y1.
Let X be the set of vertices which are used in order to build the ‖I‖ pairwise vertex-disjoint pair-
wise vertex-disjoint paths of length at most 8, one per pair xi and yi, with i ∈ I. Clearly
‖X‖ ≤ 7k.
Set A = N r(x1)− (S ∪X) and B = N b(y1)− (S ∪X). Then A ∩ B = ∅, for otherwise if there
is a vertex z ∈ A ∩ B, then the path x1zy1 is of length two, a contradiction to the choice of x1

and y1. Also ‖A‖ ≥ n
2 + k − 1− ‖X‖ − ‖S‖ = n

2 − 8k − 1. Similarly, ‖B‖ ≥ n
2 − 8k − 1.

Set C = G− (A ∪ B ∪X ∪ S). We have ‖A‖ ≥ n
2 − k − 1− ‖X‖ and ‖B‖ ≥ n

2 − k − 1− ‖X‖.
Thus ‖C‖ = n− ‖A‖ − ‖B‖ − ‖S‖ − ‖X‖ ≥ 2 + ‖X‖, hence ‖C‖ ≤ 8k − 1 and k ≥ 3.

We distinguish now between two Cases (I) and (II) depending upon A and B.

(I) There is no edge between A and B.
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For a color i ∈ {r, b} and for each vertex x ∈ A and y ∈ B,

diA∪C(x) = diG−(B∪X∪S)(x) = diG−(X∪S)(x) ≥ n

2
+ k − 1− 7k − 2k =

n

2
− 8k − 1 (1)

and
diB∪C(y) = diG−(A∪X∪S)(y) = diG−(X∪S)(y) ≥ n

2
− 8k − 1 (2)

Claim 2. For every pair u, v of distinct vertices in A (repectively in B), there are at least 3k
distinct red-blue paths between u and v (the order of the colors is important here) and at least
3k distinct blue-red paths between u and v. These paths do not go through a vertex of X ∪ S.

Proof. We will prove only the red-blue case, the blue-red case being similar by intechanging
the red-blue colors and applying the same arguments. Let u and v be two distinct vertices of A.
We have drG−(B∪X∪S)(u)+dbG−(B∪X∪S)(v) ≥ n−16k−2. However ‖G−(B∪X∪S)‖ < n

2 −k+1
and n − 16k − 2 − (n2 − k + 1) = n

2 − 15k − 3 > 3k. Therefore there are at least 3k distinct
red-blue paths between u and v. These paths do not go through a vertex of X ∪ S. We obtain
the same results for the red-blue paths between u and v in B.

Claim 3. N b(x1) ∩B = ∅ and N r(y1) ∩A = ∅.

Proof. Assume that N b(x1)∩B is not empty. Let y be a vertex in N b(x1)∩B. As n
2−8k−1 > 8k,

we have drB∪C(y) ≥ n
2 − 8k − 1 ≥ ‖C‖. Consequently there is a vertex y′ ∈ B such that the

edge yy′ is red. But then we can consider the path x1

b
− y

r
− y′

b
− y1, a contradiction to the

hypothesis that there is no path between x1 and y1 of length less than 8 in Gc. We obtain the
same result whenever N r(y1) ∩A 6= ∅. This completes the proof of the claim.

Let us set now Φ = A ∩N b(x1) and Ψ = B ∩N r(y1). Consider two vertices x ∈ Φ and y ∈ Ψ.
For i ∈ {r, b}, we have diG−S(x) = diG−(B∪S)(x) ≥ n

2 + k − 1− 2k + 1 = n
2 − k, since x /∈ N i(y1).

Similarly, diG−S(y) = diG−(A∪S)(x) ≥ n
2 + k − 1 − 2k + 1 = n

2 − k, since y /∈ N i(x1). Con-
sequently drG−S(x) + dbG−S(y) ≥ n − 2k. Moreover (S ∪ {x, y}) ∩ (N r

G−S(x) ∪ N b
G−S(y)) = ∅

and so ‖N r
G−S(x) ∪ N b

G−S(y)‖ ≤ n − 2k − 2. In conclusion, ‖N r
G−S(x) ∩ N b

G−S(y)‖ ≥ 2 and
‖N b

G−S(x) ∩ N r
G−S(y)‖ ≥ 2. If N r

G−S(x) ∩ N b
G−S(y) is not a subset of X, then by considering

some vertex z ∈ N r
G−S(x)∩N b

G−S(y)−X we define the path x1

b
− x

r
− z

b
− y

r
− y1 of length less

than 8, a contradiction. So, assume that N r
G−S(x)∩N b

G−S(y) ⊂ X and N b
G−S(x)∩N r

G−S(y) ⊂ X
Let Γxy a subset of I such that i ∈ I if and only if there is a vertex z ∈

(
N b
G−S(x) ∩N r

G−S(y)
)
∪(

N r
G−S(x) ∩N b

G−S(y)
)

and with the property that any path between xi and yi goes through z.
Clearly, Γxy is not empty. We define also Γ to be a subset of I such that i ∈ Γ if and only if
there are at least two distinct pairs of vertices x, y and x′, y′, with {x, x′} ⊆ Φ and {y, y′} ⊆ Ψ
and i satisfies i ∈ Γxy ∩ Γx′y′ .
LetXΓ be the set of vertices which are used in order to build the ‖Γ‖ pairwise vertex-disjoint paths
of length at most 8 joining the pairs xi, yi, with i ∈ Γ. Thus XΓ ⊂ X.

Claim 4. Γ is not empty.
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Proof. We have ‖Φ‖ ≥ n
2 − 8k − 7k > 3k, since Φ = A ∩ N b(x1) and ‖N b

A(x1)‖ ≥ n
2 + k −

1− ‖X‖ − ‖C‖ − ‖S‖ = n
2 − 16k − 1 ≥ 3k. Also ‖Ψ‖ > 3k. Thus there are at least 3k pairs of

distinct vertices in Φ×Ψ. However ‖I‖ < k. So Γ is not empty.

Claim 5. For each i ∈ Γ and any choice of two distinct colors j and l, either N j(xi) ∩ Φ = ∅
and N l(yi) ∩Ψ = ∅ or N j(xi) ∩Ψ = ∅ and N l(yi) ∩ Φ = ∅.

Proof. Since ‖A ∪ B‖ > n − 16k − 2, we may consider that there are at least three vertices
u, u′ and u′′ of N r(xi) which belong either to A or to B. Assume that these three vertices are
in A. We must show that there is no edge between yi and A. Indeed, assume that there is an
edge vyi in Gc, v ∈ A. W.l.o.g. we may suppose that u 6= v and that there are two vertices
x ∈ Φ and y ∈ Ψ such that i ∈ Γxy and x 6= u and x 6= v. If c(vyi) = b, then, by Claim 3, there

is a vertex w, distinct from u, v, x such that the path xi
r
− u

b
− w

r
− v

b
− yi exists in Gc. If

c(vyi) = r, then there is a vertex w distinct from u, v, x in A (see (1)) and a vertex w′ distinct

from u, v, w, x in A such that the path xi
r
− u

b
− w′

r
− w

b
− v

r
− yi (Claim 3) exists in Gc. But

then, we may obtain the paths x1

b
− x

r
− z

b
− y

r
− y1 or x1

r
− x

b
− z

r
− y

b
− y1 (where z is a vertex

used between xi and yi) which is in contradiction with our assumption that there is no path of
length less than 8 between x1 and y1. This completes the proof of this claim.

Claim 5 means that there is no vertex in Φ (respectively in Ψ) having both xi and yi as
neighbors, for any i ∈ Γ. As there is no edge between Φ and y1 and no edge between Ψ and x1,
then for i ∈ {r, b}, and for each vertex x of Φ and each vertex y of Ψ we have,

diG−S(x) = diA∪C∪X(x) ≥ n

2
+ k − 1− (2k − 1) + ‖Γ‖ =

n

2
− k + ‖Γ‖

and
diG−S(y) = diB∪C∪X(y) ≥ n

2
− k + ‖Γ‖.

By summing the above inequalities we obtain drG−S(x) + dbG−S(y) ≥ n − 2k + 2‖Γ‖. Also
(S ∪ {x, y}) ∩ (N r

G−S(x) + N b
G−S(y)) = ∅. Consequently ‖N r

G−S(x) ∪ N b
G−S(y)‖ ≤ n − 2k − 2.

In conclusion, we obtain ‖N r
G−S(x)∩N b

G−S(y)‖ ≥ 2+2‖Γ‖ and ‖N b
G−S(x)∩N r

G−S(y)‖ ≥ 2+2‖Γ‖.

From now on, we are going to define ‖I‖ + 1 disjoint paths each of length at most 8. This
will contradict the maximality property of I and will permit to complete the proof of case (I).
Without loss of generality, let us set Γ = {2, 3, ..., ‖Γ‖+ 1}. Furthermore, since xi and yi play a
symmetric role, we may suppose that for each i ∈ Γ and for any choice of two colors j and l, we
haveN j(xi)∩Φ = ∅ andN l(yi)∩Ψ = ∅. Since ‖N r(xi)∩A‖ ≥ k and ‖N b(yi)∩B‖ ≥ k, we can find
‖Γ‖+1 distinct vertices x′, x′2, x

′
3, ..., x

′
‖Γ‖+1 in A and ‖Γ‖+1 distinct vertices y′, y′2, y

′
3, ..., y

′
‖Γ‖+1

in B such that c(xix′i) = c(x1x
′) = r and c(yiy′i) = c(y1y

′) = b. Recall also that for every pair
of vertices x ∈ Φ, y ∈ Ψ, we have ‖N b

G−S(x)∩N r
G−S(y)‖ ≥ 2 + 2‖Γ‖. In addition ‖Φ‖ ≥ 3k and

‖Ψ‖ ≥ 3k. Consequently we can find ‖Γ‖ distinct vertices x′′2, x
′′
3, ..., x

′′
‖Γ‖+1 in A, ‖Γ‖ distinct

vertices y′′2 , y
′′
3 , ..., y

′′
‖Γ‖+1 in B and ‖Γ‖ + 1 distinct vertices z, z2, z3, ..., z‖Γ‖+1 in XΓ. Indeed,

there are at least 2k pairs of distinct vertices in Φ × Ψ and there are at most ‖I‖ − ‖Γ‖ pairs
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of distinct vertices of Φ × Ψ which are joined by paths x′′i
b
− zi

r
− y′′i and x′

b
− z

r
− y′ of length

two going through X − XΓ according to the definition of Γ. Also all vertices of these paths
are distinct from the previous ones. Finally, according to the Claim 2, we can find ‖Γ‖ distinct
vertices x(3)

2 , x
(3)
3 , ..., x

(3)
‖Γ‖+1 in A and ‖Γ‖ distinct vertices y(3)

2 , y
(3)
3 , ..., y

(3)
‖Γ‖+1 in B, such that

the paths x′i
b
− x(3)

i

r
− x′′i and y′′i

b
− y(3)

i

r
− y′i are in Gc and all vertices of these paths are distinct

from the previous ones.
In this way we defined the ‖I‖+ 1 distinct paths

xi
r
− x′i

b
− x(3)

i

r
− x′′i

b
− zi

r
− y′′i

b
− y(3)

i

r
− y′i

b
− yi

and
x1

r
− x′

b
− z

r
− y′

b
− y1.

As each of the above paths has length less than 8, this is a contradiction to the maximality
property of I.

(II) There is at least one edge between A and B.

Claim 6. There are two subsets D and E of V (Gc) such that
i) D ⊂ A, E ⊂ B, ‖D‖ ≥ 3k, ‖E‖ ≥ 3k and ‖D ∪ E‖ ≥ n

2 + k,
ii) for each vertex x ∈ D, N b(x) ∩A = ∅ and for each vertex y ∈ E, N r(y) ∩B = ∅ and
iii) for each pair of vertices x, x′ of D, ‖N r

B(x) ∪N b
B(x′)‖ ≥ 3k and for each pair of vertices y,

y′ of E, ‖N r
A(y) ∪N b

A(y′)‖ ≥ 3k.

Proof. Let xy be an edge between A and B, x ∈ A, y ∈ B. Assume w.l.o.g. that its color is

blue. Then, there is no red edge between y and B, for otherwise the path x1

r
− x

b
− y

b
− z

b
− y1,

z ∈ B, has length less than 8, a contradiction to our assumptions. So, drA(y) = drA∪B(y) ≥
n
2 + k − 1− 9k − 8k + 1 = n

2 − 16k and for each vertex x ∈ N r
A(y), dbB(x) ≥ n

2 − 16k.
Let E be a subset of B such that every vertex u of E has at least 2

3(n2 − 24k) neighbors
v in N r

A(y), the color of uv is blue and subject to this requirement E is as big as possible.
We must first show that such a set E exists and ‖E‖ ≥ n

2 − 60k ≥ 3k. We have ‖B‖ ≤
n − ‖S‖ −min(‖A‖) ≤ n

2 + 6k. The worst case arrises when each vertex u of N r
A(y) is joined

with monochromatic blue edges to each vertex of E and distribute the rest of the colors on edges
(if any) joining u with the remaining vertices of B. In fact we must show that the average of
the blue edges between a vertex of B − E and N r

A(y) is at least 2
3(n2 − 24k). In particular, we

must prove that, if ‖E‖ = n
2 − αk, then

(drA(y)− ‖E‖) ∗ dbA(x)
max(‖B‖)− ‖E‖

≥ 2
3

(
n

2
− 24k)

(α− 16)k ∗ (n2 − 16k)
(α+ 6)k

≥ 2
3

(
n

2
− 24k)

αn

6
≥ 10n− 352k

In particular, for ‖E‖ = n
2 − 60k we obtain α = 60 and then the previous equation is true. Also

for each y ∈ E, dbA(y) ≥ 2
3(n2 −24k) and drA(y) ≥ n

2 −16k. With similar arguments we define the
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subset D of A, such that for x ∈ N r
A(y), every vertex u of D is connected to at least 2

3(n2 − 24k)
vertices v of N b

A(x) with red edges and D is as maximum as possible. Then ‖D‖ ≥ n
2 −60k ≥ 3k

and for every x ∈ D, drB(x) ≥ 2
3(n2−24k) and dbB(x) ≥ n

2−16k. Moreover, for each vertex x ∈ D,
N b(x) ∩ A = ∅ and for each vertex y ∈ E, N r(y) ∩ B = ∅. In addition, for each pair x, x′ of
vertices of D, drB(x) ≥ 2

3(n2 −24k) and dbB(x) ≥ n
2 −16k. So drB(x)+dbB(x) ≥ 5

6n−32k. However
‖B‖ ≤ n

2 +6k. Thus ‖N r
B(x)∪N b

B(x′)‖ ≥ n
3 −38k ≥ 3k. Similarly, for every pair y, y′ of vertices

of E, we have ‖N r
A(y)∪N b

A(y′)‖ ≥ 3k. Then ‖D∪E‖ ≥ n+k since ‖D∪E‖ ≥ n−120k ≥ n
2 +k.

This completes the proof of the claim.

Let x, y be two vertices of Gc, x ∈ D, y ∈ E. Clearly {x1, y1} ∩ N b(x) = ∅, for otherwise

one of the paths x1

r
− x

b
− y1 or x1

b
− x

r
− y′

b
− y1, y′ ∈ E) exists in Gc, a contradiction

to the assumption that there is no path between x1 and y1 of length less than 8. Similarly,
{x1, y1} ∩N r(y) = ∅. We have dbGc−(S∪{y})(x) ≥ n

2 + k − 1− 2(k − 1)− 1 = n
2 − k. Analogously

drGc−(S∪{x})(y) ≥ n
2 −k. We also have dbGc−(S∪{y})(x)+drGc−(S∪{x})(y) ≥ n−2k and (S∪{x, y})∩

(N b
Gc−(S∪{y})(x)∪N r

Gc−(S∪{x})(y)) = ∅. So ‖N b
Gc−(S∪{y})(x)∪N r

Gc−(S∪{x})(y)‖ ≤ n− 2k− 2. In
conclusion, we obtain ‖N b

Gc−(S∪{y})(x)∪N r
Gc−(S∪{x})(y)‖ ≥ 2. If N b

Gc−(S∪{y})(x)∪N r
Gc−(S∪{x})(y)

is not a subset of X, then we can consider the path x1

b
− x

r
− z

b
− y

r
− y1, contradicting again

our assumptions. So we assume that N b
Gc−(S∪{y})(x)∪N r

Gc−(S∪{x})(y) ⊂ X. Let Ωxy be a subset
of I such that i ∈ Ωxy if and only if there is a vertex z ∈ N b

Gc−(S∪{y})(x) ∪N r
Gc−(S∪{x})(y) such

that the path between xi and yi goes through z. The set Ωxy is not empty.
We also define a subset Ω of I such that i ∈ Ω if and only if there are at least four distinct
vertices x, x′, y, y′ such that x, x′ ∈ D, y, y′ ∈ E and i ∈ Ωxy ∩ Ωx′y′ . Let XΩ be the set
of vertices which are used in order to build the ‖Ω‖ pairwise vertex-disjoint paths of length at
most 8 joining the pairs xi, yi, with i ∈ Ω. Hence, XΩ ⊂ X.

Claim 7. Ω is not empty.

Proof. Straightforward from the fact that ‖D‖ ≥ 2k, ‖E‖ ≥ 2k and ‖I‖ ≤ k.

Claim 8. For every i in Ω, either (N r(xi) ∪N r(yi))∩E = ∅ and
(
N b(xi) ∪N b(yi)

)
∩D = ∅ or

(N r(xi) ∪N r(yi)) ∩D = ∅ and
(
N b(xi) ∪N b(yi)

)
∩ E = ∅.

Proof. Since ‖D∪E‖ > n
2 +k, we can claim that there are at least three vertices u, u′ and u′′ of

N r(xi) which belong either to D or to E. Assume that these three vertices are in A. We will show
by contradiction that there is no red edge between yi and E. Assume therefore that there is a red
edge vyi in Gc, with v ∈ E. According to Claim 6, there is a blue edge vw in Gc, w ∈ D. W.l.o.g.
let us suppose that u 6= w and that there are two vertices x ∈ D, y ∈ E such that i ∈ Ωxy, x 6= u,
x 6= w and y 6= v. Moreover, according to Claim 6, there is a vertex t of E such that t 6= u, t 6= y,

and the path u
b
− t

r
− w exists in Gc. But then we may define the paths xi

r
− u

b
− t

r
− w

b
− v

r
− yi

and x1

r
− x

b
− z

r
− y

b
− y1, where z is a vertex used by the path between xi and yi, a contradiction

to our assumptions. So (N r(xi) ∪N r(yi))∩E = ∅ or (N r(xi) ∪N r(yi))∩D = ∅. With the same
argument, we obtain that

(
N b(xi) ∪N b(yi)

)
∩ E = ∅ or

(
N b(xi) ∪N b(yi)

)
∩ D = ∅. Assume

that (N r(xi) ∪N r(yi)) ∩ E = ∅ and
(
N b(xi) ∪N b(yi)

)
∩ E = ∅. Then there are two vertices

x ∈ D, y ∈ E such that i ∈ Ωxy. Similarly there are two distinct vertices u and v of D such
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that x 6= u, v and u ∈ N r(xi) and v ∈ N b(yi). Moreover, according to Claim 6, there is a vertex

w of E such that w 6= y and the path u
b
− t

r
− v exists in Gc. But then we may define the set

of paths xi
r
− u

b
− w

r
− v

b
− yi and x1

r
− x

b
− z

r
− y

b
− x1, where z is a vertex used by the path

between xi and yi, again a contradiction to our assumptions. The completes the proof of Claim
8.

Now we can define two subsets Ωr and Ωb of Ω as follows: i ∈ Ωr if and only if i ∈ Ω,
(N r(xi) ∪N r(yi))∩E = ∅ and

(
N b(xi) ∪N b(yi)

)
∩D = ∅. Similarly, i ∈ Ωb if and only if i ∈ Ω,

(N r(xi) ∪N r(yi)) ∩ D = ∅ and
(
N b(xi) ∪N b(yi)

)
∩ E = ∅. According to Claim 8, we have

Ωr ∩ Ωb = ∅ and Ωr ∪ Ωb = Ω. Moreover Ωr 6= ∅, since ‖N b
Gc−(S∪{y})(x) ∪N r

Gc−(S∪{x})(y)‖ ≥ 2.
With the dfinitions above, Claim 8 means that, if i ∈ Ωr, then there are no blue edges between
D and {xi, yi} and no red edges between E and {xi, yi}. Similarly, if i ∈ Ωb, then there are no
red edges between D and {xi, yi} and no blue edges between E and {xi, yi}.
Thus, for every vertex x of D,

dbGc−(S∪{y})(x) ≥ n

2
+ k − 1− 2(k − 1)− 1 + 2‖Ωr‖ =

n

2
− k + 2‖Ωr‖,

drGc−(S∪{y})(x) ≥ n

2
+ k − 1− 2k − 1 + 2‖Ωb‖ =

n

2
− k + 2‖Ωb‖ − 2.

Similarly, for every vertex y in E,

dbGc−(S∪{x})(y) ≥ n

2
+ k − 1− 2k − 1 + 2‖Ωb‖ =

n

2
− k + 2‖Ωb‖ − 2,

drGc−(S∪{x})(y) ≥ n

2
+ k − 1− 2(k − 1)− 1 + 2‖Ωr‖ =

n

2
− k + 2‖Ωr‖.

From the above inequalities we obtain dbGc−(S∪{y})(x) + drGc−(S∪{x})(y) ≥ n − 2k + 4‖Ωr‖.
Furthermore (S ∪ {x, y}) ∩ (N b

Gc−(S∪{y})(x) ∪ N r
Gc−(S∪{x}))(y) = ∅. So ‖N b

Gc−(S∪{y})(x) ∪
N r
Gc−(S∪{x})(y)‖ ≤ n − 2k − 2. In conclusion we obtain ‖N b

Gc−(S∪{y})(x) ∩ N r
Gc−(S∪{x})(y)‖ ≥

4‖Ωr‖+ 2 and ‖N r
Gc−(S∪{y})(x) ∩N b

Gc−(S∪{x})(y)‖ ≥ 4‖Ωb‖ − 2.

We distinguish now between two cases depending upon the cardinality of Ωb.

Case 1. ‖Ωb‖ = 0.
As ‖Ωb‖ = 0, it follows that ‖Ωr‖ = ‖Ω‖. Now, we are going to define ‖Ω‖+ 1 pairwise vertex
disjoint paths each of length at most 8. As Ω is a subset of I, this will be a contradiction with its
maximality property. Set Ωr = {2, 3, ..., ‖Ωr‖+1} . Since ‖N r(xi)∩D‖ ≥ k and ‖N b(yi)∩E‖ ≥ k,
we can find ‖Ωr‖ + 1 distinct vertices x′, x′2, x

′
3, ..., x

′
‖Ωr‖+1 of D and ‖Ωr‖ + 1 distinct vertices

y′, y′2, y
′
3, ..., y

′
‖Ωr‖+1 of B such that c(xix′i) = c(x1x

′) = r and c(yiy′i) = c(y1y
′) = b. Recall also

that for every two vertices x ∈ D, y ∈ E, we have‖N b
Gc−(S∪{y})(x)∩N r

Gc−(S∪{x})(y)‖ ≥ 4‖Ωr‖+2
and ‖D‖ ≥ 3k and ‖E‖ ≥ 3k. Thus we can find ‖Ωr‖ vertices x′′2, x

′′
3, ..., x

′′
‖Ωr‖+1 of D, ‖Ωr‖

vertices y′′2 , y
′′
3 , ..., y

′′
‖Ωr‖+1 of E and ‖Ωr‖ + 1 vertices z, z2, z3, ..., z‖Ωr‖+1 of XΩ such that the

distinct paths x′′i
b
− zi

r
− y′′i and x′

b
− z

r
− y′ exist in Gc. All the above mentionned sets of

vertices exist in Gc, since there are at least 2k pairs of distinct vertices of D × E and there are
at most ‖I‖ − ‖Ωr‖ pairs of distinct vertices of D×E which are joined by a path of length two
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going through X −XΩ according to the definition of Ω. Last, according to Claim 6, we can find
‖Ωr‖ vertices x(3)

2 , x
(3)
3 , ..., x

(3)
‖Ωr‖+1 of D and ‖Ωr‖ vertices y(3)

2 , y
(3)
3 , ..., y

(3)
‖Ωr‖+1 of E, such that

the paths x′i
b
− x

(3)
i

r
− x′′i and y′′i

b
− y

(3)
i

r
− y′i exist in Gc. But in that way we may define the

following ‖Ωr‖+ 1 pairwise vertex-disjoint paths

xi
r
− x′i

b
− x(3)

i

r
− x′′i

b
− zi

r
− y′′i

b
− y(3)

i

r
− y′i

b
− yi

and
x1

r
− x′

b
− z

r
− y′

b
− y1,

a contradiction.

Case 2. ‖Ωb‖ > 0 The proof of this second case is based on Claims 9-12 below.

Claim 9. There are at least three disinct pairs of vertices uj and vj , j = 1, 2, 3, such that
Ωujvj ∩ Ωb 6= ∅.

Proof. Let XΩr be the set of vertices which are used in order to define ‖Ωr‖ pairwise vertex-
disjoint paths of length at most 8, one per pair xi, yi, with i ∈ Ωr. Then XΩr ⊂ XΩ. Indeed
assume there are at most two distinct pairs of vertices uj , vj such that Ωujvj ∩ Ωb 6= ∅, j = 1, 2.
Then, by using arguments similar to those of Case 1, we can define ‖Ωr‖ + 1 pairwise vertex
disjoint paths between x1 and y1 and between xi and yi of length at most 8, for every i ∈ Ωr.
To define these paths, we need to find ‖Ωr‖ vertices x′′2, x

′′
3, ..., x

′′
‖Ωr‖+1 in D, ‖Ωr‖ vertices

y′′2 , y
′′
3 , ..., y

′′
‖Ωr‖+1 in E and ‖Ωr‖+ 1 vertices z, z2, z3, ..., z‖Ωr‖+1 in XΩr such that the following

paths x′′i
b
− zi

r
− y′′i and x′

b
− z

r
− y′ exist in Gc. Indeed all the above-mentionned sets of vertices

exist in Gc because, as there are at least 2k pairs of vertices of D × E, then there are at most
‖I‖ − ‖Ωr‖ pairs of distinct vertices of D × E which are joined by paths of length two going
through X −XΩ according to the definition of Ω. Also, as there are at most 2 pairs of distinct
vertices of D × E which are joined by paths of length two going through X − XΩ, then there
are at least ‖Ωr‖+ 1 pairs of distinct vertices (u′j , v

′
j) of D × E such that Ωu′jv

′
j
⊂ Ωr for every

j. This completes the proof of the claim.

Claim 10. N r
Gc−(S∪{y})(x) ∩N b

Gc−(S∪{x})(y) ⊂ X.

Proof. Assume that there is a vertex z of N r
Gc−(S∪{y})(x) ∩ N b

Gc−(S∪{x})(y) such that z ∈
C ∪ A ∪ B. Since ‖Ωb‖ > 0, there is an integer t ∈ Ωb such that we can find four distinct
vertices x′, u′ ∈ D and y′, v′ ∈ E such that t ∈ Ωx′y′ , u ∈ N b(xt). Also we can find two vertices
v ∈ N r(yt) such that x, x′, u, z (respectively y, y′, v, z) are pairwise distinct. Let zt be a vertex
of the path between xt and yt such that zt ∈ N b

Gc−(S∪{y′})(x
′) ∩N r

Gc−(S∪{x′})(y
′). By using this

vertex zt and according to Claim 6, we can find two vertices u′ and w′ such that both paths

xt
b
− u

r
− u′

b
− x

r
− z

b
− y

r
− v′

b
− v

r
− yt and x1

r
− x′

b
− zt

r
− y′

b
− y1 exist in Gc.

Let Θxy a subset of I such that i ∈ Θxy if and only if there is a vertex z ∈ N r
Gc−(S∪{y})(x)∪

N b
Gc−(S∪{x})(y) such that the path between xi and yi goes through z. Θxy is not empty, since
‖N r

Gc−(S∪{y})(x) ∩N b
Gc−(S∪{x})(y)‖ ≥ 4‖Ωb‖ − 2 and ‖Ωb‖ > 0. We define also a subset Θ of I
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such that i ∈ Θ if and only if there are at least four vertices x, x′ ∈ Φ, y, y′ ∈ Ψ with x 6= x′

and y 6= y′ such that i ∈ Θxy ∩ Θx′y′ . Let XΘ be the set of vertices which are used in order to
build the ‖Θ‖ pairwise vertex-disjoint paths each of length at most 8 joining the pairs xi, yi,
with i ∈ Θ. Clearly XΘ ⊂ X.

Claim 11. Θ is not empty.

Proof. As ‖D‖ ≥ 2k, ‖E‖ ≥ 2k and ‖I‖ ≤ k, the conclusion is straightforward.

Claim 12. For every i ∈ Θ, either (N r(xi) ∪N r(yi)) ∩ E = ∅ and
(
N b(xi) ∪N b(yi)

)
∩D = ∅

or (N r(xi) ∪N r(yi)) ∩D = ∅ and
(
N b(xi) ∪N b(yi)

)
∩ E = ∅.

Proof. Let i ∈ Θ. If i ∈ Ω the Claim is true according to Claim 7. Assume therefore that
i /∈ Ω. Since ‖D ∪ E‖ > n

2 + k, there are at least three vertices u, u′ and u′′ of N r(xi) which
belong either to D or to E. Assume that these three vertices are in D. We must show that
there is no red edge between yi and E. Assume by contradiction that there is a red edge vyi
in Gc with v ∈ E. According to Claim 6, there is a blue edge vw in Gc, w ∈ D. W.l.o.g. we
may assume that u 6= w and that there are two vertices x ∈ D, y ∈ E such that i ∈ Θxy,
x 6= u, x 6= w and y 6= v. Since ‖Ωb‖ > 0, by Claim 10 we can find an integer t ∈ Ωb and
two vertices x′t ∈ D and y′t ∈ E such that t ∈ Ωx′ty

′
t
. Furthermore x, x′t, w (respectively y,

y′t, v) are pairwise distinct. In addition, we can also find two distinct vertices x′′t and y′′t such
that x′′t ∈ N b(xt) and y′′t ∈ N r(yt). Now, according to Claim 6, there are two vertices w′,
x

(3)
t of E and one vertex x

(3)
t of D, distinct from the above-mentionned ones, and such that

the paths u
b
− w′

r
− w, x′′t

r
− x

(3)
t

b
− x and y′′t

r
− y

(3)
t

b
− y exist in Gc. However in that

way we may define the paths xi
r
− u

b
− w′

r
− w

b
− v

r
− yi, x1

r
− x′t

b
− zt

r
− y′t

b
− x1 and

xt
b
− x′′t

r
− x

(3)
t

b
− x

r
− zi

b
− y

r
− y

(3)
i

b
− y′′i

r
− y1 ( zi is a vertex used between xi and yi and zt

a vertex used between xt and yt) a contradiction to our assumptions. Thus we may conclude
that either (N r(xi) ∪N r(yi)) ∩ E = ∅ or (N r(xi) ∪N r(yi)) ∩ D = ∅. By similar arguments
we obtain

(
N b(xi) ∪N b(yi)

)
∩ E = ∅ or

(
N b(xi) ∪N b(yi)

)
∩D = ∅. In order to complete the

prood we need to exclude the case (N r(xi) ∪N r(yi)) ∩ E = ∅ and
(
N b(xi) ∪N b(yi)

)
∩ E = ∅.

Assume therefore that (N r(xi) ∪N r(yi)) ∩ E = ∅ and
(
N b(xi) ∪N b(yi)

)
∩ E = ∅. There are

two vertices x ∈ D, y ∈ E such that i ∈ Ωxy. In addition, there are two distinct vertices u and
v of D such that x 6= u, v, u ∈ N r(xi) and v ∈ N b(yi). But, then we may define the paths

xi
r
− u

b
− w

r
− v

b
− yi, x1

r
− x′t

b
− zt

r
− y′t

b
− x1 and xt

b
− x′′t

r
− x(3)

t

b
− x

r
− zi

b
− y

r
− y(3)

i

b
− y′′i

r
− y1,

again a contradiction to our assumptions. This completes the proof of Claim 12.

Let us now set Λ = Ω ∪ Θ. We define two new subsets Λr and Λb of I as follows: We let
i ∈ Λr if and only if i ∈ Λ, (N r(xi) ∪N r(yi))∩E = ∅ and

(
N b(xi) ∪N b(yi)

)
∩D = ∅. Similarly,

i ∈ Λb if and only if i ∈ Λ, (N r(xi) ∪N r(yi))∩D = ∅ and
(
N b(xi) ∪N b(yi)

)
∩E = ∅. According

to these definitions and Claim 8, we have Λr ∩ Λb = ∅ and Λr ∪ Λb = Λ. Now, in terms of Λr

and Λb, Claims 8 and 13 mean that, if i ∈ Λr, then there are no blue edges between D and
{xi, yi} and no red edges between E and {xi, yi}. Similarly, if i ∈ Λb, then there are no red
edges between D and {xi, yi} and no blue edges between E and {xi, yi}. We recall that there is
no blue edge between D and {x1, y1} and no red edge between E and {x1, y1}).
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Thus for each vertex x of D we have,

dbGc−(S∪{y})(x) ≥ n

2
+ k − 1− 2(k − 1)− 1 + 2‖Λr‖ =

n

2
− k + 2‖Λr‖,

drGc−(S∪{y})(x) ≥ n

2
+ k − 1− 2k − 1 + 2‖Λb‖ =

n

2
− k + 2‖Λb‖ − 2.

Similarly, for each vertex y of E,

dbGc−(S∪{x})(y) ≥ n

2
+ k − 1− 2k − 1 + 2‖Λb‖ =

n

2
− k + 2‖Λb‖ − 2,

drGc−(S∪{x})(y) ≥ n

2
+ k − 1− 2(k − 1)− 1 + 2‖Λr‖ =

n

2
− k + 2‖Λr‖.

By summing the above inequalities we obtain, dbGc−(S∪{y})(x) + drGc−(S∪{x})(y) ≥ n − 2k +
4‖Λr‖. Also, (S ∪ {x, y}) ∩ (N b

Gc−(S∪{y})(x) ∪ N r
Gc−(S∪{x}))(y) = ∅. So ‖N b

Gc−(S∪{y})(x) ∪
N r
Gc−(S∪{x})(y)‖ ≤ n−2k−2. We conclude that ‖N b

Gc−(S∪{y})(x)∩N r
Gc−(S∪{x})(y)‖ ≥ 4‖Λr‖+2.

Similarly, ‖N r
Gc−(S∪{y})(x) ∩N b

Gc−(S∪{x})(y)‖ ≥ 4‖Λb‖ − 2.
Let XΛ be the set of vertices which are used in order to define the ‖Λ‖ pairwise vertex-
disjoint paths of length at most 8, joining the pairs xi, yi, for each i ∈ Λ. We have XΛ ⊂ X.
In the sequel, we shall define ‖Λ‖+ 1 distinct paths each of length at most 8. This will contra-
dict the maximality property of Λ, and will permit to complete the proof of the theorem. Set
Λ = {2, 3, ..., ‖Λ‖ + 1}. Recall that for each i ∈ Λr, ‖N r(xi) ∩D‖ ≥ k and ‖N b(yi) ∩ E‖ ≥ k.
Respectively, for each i ∈ Λb, ‖N b(xi) ∩ D‖ ≥ k and ‖N r(yi) ∩ E‖ ≥ k. Thus, we can find
‖Λ‖+ 1 distinct vertices x′, x′2, x

′
3, ..., x

′
‖Ωr‖+1 in D and ‖Λ‖+ 1 vertices y′, y′2, y

′
3, ..., y

′
‖Ωr‖+1 in

B. Furthermore, for every i ∈ Λr, c(x1x
′) = r, c(y1y

′) = b, c(xix′i) = r. Also for every i ∈ Λb,
c(xix′i) = b. In addition, for every i ∈ Λr, c(yiy′i) = b. Finally, for every i ∈ Λb, c(yiy′i) = r.
Moreover, we can find ‖Λ‖ vertices x′′2, x

′′
3, ..., x

′′
‖Λ‖+1 of D, ‖Λ‖ vertices y′′2 , y

′′
3 , ..., y

′′
‖Λ‖+1 of E

and ‖Λ‖ + 1 vertices z, z2, z3, ..., z‖Λ‖+1 of XΛ such that the paths x′′i
b
− zi

r
− y′′i if i ∈ Λr or

x′′i
r
− zi

b
− y′′i if i ∈ Λb and x′

b
− z

r
− y′ exist in Gc. Indeed, there are at least 2k pairs of

distinct vertices of D × E and there are at most ‖I‖ − ‖Λ‖ pairs of distinct vertices of D × E
which are joined by a path of length two going through X − XΛ according to the definition
of Λ. Assume first ‖Λr‖ ≥ ‖Λb‖. First, we consider the vertices x′′i , y

′′
i , zi with i ∈ Λb (re-

call that for x ∈ D, y ∈ E, we have ‖N r
Gc−(S∪{y})(x) ∩ N b

Gc−(S∪{x})(y)‖ ≥ 4‖Λb‖ − 2 ≥ Λb

). Next we consider the vertices x′′i , y
′′
i , zi with i ∈ Λr (again for x ∈ D, y ∈ E, it holds

‖N b
Gc−(S∪{y})(x)∩N r

Gc−(S∪{x})(y)‖ ≥ 4‖Λr‖+ 2 ≥ Λb + Λr). Assume next ‖Λr‖ < ‖Λb‖. In that
case, we consider first the vertices x′′i , y

′′
i , zi with i ∈ Λr (recall again that for x ∈ D, y ∈ E,

‖N b
Gc−(S∪{y})(x) ∩N r

Gc−(S∪{x})(y)‖ ≥ 4‖Λr‖+ 2 ≥ Λr ). Next we consider the vertices x′′i , y
′′
i , zi

with i ∈ Λb (as for x ∈ D, y ∈ E, it holds ‖N r
Gc−(S∪{y})(x) ∩ N b

Gc−(S∪{x})(y)‖ ≥ 4‖Λb‖ − 2 ≥
Λb + Λr). Finally, according to Claim 6, we can find ‖Λ‖ vertices x(3)

2 , x
(3)
3 , ..., x

(3)
‖Λ‖+1 of D and

‖Λ‖ vertices y(3)
2 , y

(3)
3 , ..., y

(3)
‖Λ‖+1 of E. By using these vertices we may define a set of paths as

follows: If i ∈ Λr we define the paths x′i
b
− x

(3)
i

r
− x′′i or if i ∈ Λbr, then x′i

r
− x

(3)
i

b
− x′′i .

Furtehrmore, if i ∈ Λr, we define y′′i
b
− y(3)

i

r
− y′i or if i ∈ Λr we define y′′i

r
− y(3)

i

b
− y′i.
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In that way we may define ‖Λ‖+ 1 distinct paths as follows:
For every i ∈ Λr,

xi
r
− x′i

b
− x(3)

i

r
− x′′i

b
− zi

r
− y′′i

b
− y(3)

i

r
− y′i

b
− yi.

For every i ∈ Λr,

xi
b
− x′i

r
− x(3)

i

b
− x′′i

r
− zi

b
− y′′i

r
− y(3)

i

b
− y′i

r
− yi.

Finally, for i = 1

x1

r
− x′

b
− z

r
− y′

b
− y1.

This contradicts the maximality property of Λ and completes the proof of the theorem.

Theorem 2.3. Let Gc be a c-edge-colored multigraph of order n and k a non-zero positive
integer. If for every vertex x, dc(x) ≥ n

2 , then Gc is k-edge-linked.

Proof. Let xi, yi, 1 ≤ i ≤ k, be 2k distinct vertices of Gc. We shall prove a stronger result,
namely, that we can find k pairwise edge-disjoint paths of length at most two, one per pair xi
and yi.
Assume first that for some i, the edge xiyi exists in Gc. Then this edge defines a path between
xi and yi. This choice will not affect the rest of the proof, as any path between another pair of
vertices xj , yj , 1 ≤ j 6= i ≤ k going through the edge xiyi has length at least three.
In the sequel, we can therefore assume that there are no edges xiyi in E(Gc), for each i =
1, 2, · · · , k. Let us choose two colors, say r (red) and b (blue). As dr(xi) ≥ n

2 and db(yi) ≥ n
2 ,

we obtain dr(xi) + db(yi) ≥ n, for each i = 1, ..., k. As there is no edge xiyi, we can find two
distinct vertices, say ai and bi, in Gc such that ai ∈ N r(xi) ∩N b(yi) and bi ∈ N r(xi) ∩N b(yi).

If ai /∈ {xj , yj , 1 ≤ j 6= i ≤ k}, then we consider the path xi
r
− ai

b
− yi. These two edges xiai

and aiyi are not used by paths joining other pairs of vertices xj , yj , j 6= i, since we claim
that the length of these other paths is at most two. After the choice of such paths, it suffices
to construct pairwise edge-disjoint paths with the remaining pairs of vertices xi, yi such that
{ai, bi, 1 ≤ i ≤ k} ⊂ {xi, yi, 1 ≤ i ≤ k}.
We shall complete the proof by showing that, in the worst case (which is {ai, bi, 1 ≤ i ≤ k} ⊂
{xi, yi, 1 ≤ i ≤ k}), we can construct k pairwise edge-disjoint paths of length at most two, one
per pair xi, yi, for each i = 1, ..., k. Assume therefore that for any i and j, 1 ≤ j 6= i ≤ k, we
have xj ∈ N r(xi) ∩ N b(yi) or yj ∈ N r(xi) ∩ N b(yi). Now, let us choose and group together
the properly edge-colored paths of the form xi−xi+1−yi which are pairwise edge-disjoint ones.
We change the order of the pairs xq, yq and we swap, if necessary, xq and yq and aq with bq in
order to maximize the cardinality of each group. Let d be the cardinality of a maximal group.
W.l.o.g., this group can be considered as the one defined by x1−x2−y1,..., xd−xd+1−yd (d is
considered modulo k). If d = k, then the proof has done since there are k pairwise edge-disjoint
paths of length at most two, one per pair xi, yi, i = 1, ..., k, as claimed. Otherwise, we use the
same process in order to find the next maximal group of pairwise edge-disjoint paths for the
remaining pairs of vertices xi, yi, i = d + 1, ..., k. This is possible, since if ai = xj , with i > d

and j ≤ d, then we can consider the path xi
r
− xj

b
− yi, which uses new edges not already used

be previously defined groups of paths. This process is finite, since at each step the number of
the remaining pairs not linked yet decreases strictly. Hence, at the end of the process, we have
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found k pairwise edge-disjoint paths of length at most two, one per pair xi, yi, i = 1, ..., k. This
completes the proof of the theorem.

3 Minimum colored degrees and number of edges sufficient for
the k-linked property in edge-colored multigraphs

Let us start with the following theorem involving minimum number of edges sufficient for the
k-linked property.

Theorem 3.1. Let Gc be a c-edge-colored multigraph of order n and k a non-zero positive
integer, n ≥ 2k. If m ≥ cn(n−1)

2 − c(n− 2k + 1) + 1, then Gc is k-linked.

Proof. By induction on n. For n = 2k the statement is true. Indeed, in this particular
case, it is an easy exercice to see that all edges xiyi are present in Gc, i = 1, 2, · · · , k. The theo-
rem is also true for small values of n and k. Let us fix 2k distinct vertices x1, y1, · · · , xk, yk in Gc.

Assume first that for some i, say i = 1, there exists a path of length one between x1

and y1 in Gc. Consider the graph G′ = Gc \ {x1, y1} on n − 2 vertices. It has at least

m − (2nc − 3c) = c

(
n2 − 7n

2
+ 2k + 2

)
+ 1 edges. Hence G′ is (k − 1)-linked by induc-

tion. Therefore we can find k − 1 pairwise vertex-disjoint paths between each pair xi, yi in
G′, i = 2, 3, · · · , k. These k − 1 paths of G′ together with the edge x1y1 define the k pairwise
vertex-disjoint paths in Gc, as desired.

Assume next that for some i, say i = 1, there exists a properly edge-colored path of
length two between x1 and y1 in Gc. Let z denote the indermediate vertex of this path.
In this case consider the graph G′ = Gc \ {x1, z, y1} on n − 3 vertices. It has at least

m − [3c(n− 3) + 2c] = c

[
n2 − 9n

2
+ 2k + 6

]
+ 1 edges, thus it is (k − 1)-linked by induction.

The k − 1 paths of G′ together with the path between x1 and y1 through z define again the k
pairwise-vertex-disjoint paths in Gc, as desired.

Assume finally that for each i = 1, 2, · · · , k, there exist no path between xi and yi of
length at most two in Gc. Thus c edges are missing in Gc between xi and yi, for otherwise
a path of length one could be defined between xi and yi in Gc. Furthermore, for each vertex
z /∈ {x1, x2, · · · , xk}, at least c edges are missing between z and {xi, yi} in Gc, i = 1, 2, · · · , k.
By summing the missing edges for a given pair xi and yi we obtain c(n − 2k) + c. There-
fore for the k pairs, we conclude that at least kc(n − 2k + 1) edges are missing in Gc. But
then, the number of edges of Gc is at most cn(n−1)

2 − kc(n − 2k + 1). For k ≥ 1, we obtain
cn(n−1)

2 −kc(n−2k+ 1) < cn(n−1)
2 − c(n−2k+ 1) + 1, a contradiction. This completes the proof

of the theorem.

Above theorem is the best possible. Indeed, let us consider a c-edge-colored multigraph on n
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vertices, n ≥ 2k ≥ 2, obtained as follows: Consider the disjoint union of an isolated vertex x1

and a c-edge-colored complete multigraph on n− 1 vertices. Then add all possible edges on all
possible colors between x1 and 2k − 2 fixed vertices, say x2, y2, · · · , xk, yk, of the complete
graph. The resulting graph, although it has cn(n−1)

2 − c(n− 2k+ 1) edges, it is not k-linked. In
fact, let y1 be a vertex of the complete graph, other than x2, y2, · · · , xk, yk. Then there are
no k pairwise vertex-disjoint paths, one per pair xi and yi, 1 ≤ i ≤ k, as any path between x1

and y1 go through the rest of vertices x2, y2, · · · , xk, yk.

In the rest of the section we deal with conditions involving both minimum colored degrees
and number of arcs, sufficient for the k-linked (k-edge linked) property. More precisely, let r, k,
be two fixed positive non-zero integers. We are looking for functions f(n, r, k) and g(n, r, k) such
that if a colored multigraph Gc on n vertices has colored degrees at least r and if the number
of its edges is at least f(n, r, k) (respectively, at least g(n, r, k)), then it is k-linked (respectively
k-edge-linked). In order to state our conjectures later, let us first define the extremal graph
Hc(t1, t2, t3, t4, t5) (or shortly Hc) as follows: Let t1, t2, t3, t4, t5 be given non-zero positive inte-
gers. Let now A1, A2, A3, A4, A5 be five c-edge-colored multigraphs on t1, t2, t3, t4 and t5
vertices, respectively. We define A1 (respectively A2, A5) to be a complete edge-colored multi-
graph, so that between each two vertices of A1 (respectively of A2, A5) there are all possible
multicolored edges, one edge per each available color. The graph A3 (respectively A4) is com-
plete and monochromatic on one fixed color, say red, (respectively, say blue). We define now
Hc to be the disjoint union of A1, A2, A3, A4, A5 by adding all edges on all possible colors
between A5 and A1 ∪ A2 ∪ A3 ∪ A4, all blue and red edges between A3 and A4, all red edges
between A1 ∪ A2 and A3 and all blue edges between A1 ∪ A2 and A4. The graph Hc has the
interesting property that any path between a vertex x of A1 and a vertex y of A2 go through
the set A5.
The extremal graph Hc helps to state the conjecture below for k-linked multigraphs.

Conjecture 3.2. Let Gc be a c-edge-colored multigraph of order n and k, r be two non-zero
positive integers. Assume that for every vertex x, dc(x) ≥ r, 2k − 1 ≤ r ≤ n

2 + k − 2.
i) if c = 2, n ≥ 6r − 10k + 14, and m ≥ f1(n, r, k) = n2 − n(2r − 4k + 7) + (r − 2k + 2)(3r −
2k + 3) + 2(2r − 2k + 3) + 1,
ii) if c = 2, n ≤ 6r − 10k + 14, and m ≥ f2(n, r, k) = 3n2

4 + n(k − 5
2)− k(k − 3) + 11,

iii) if c ≥ 3 and m ≥ f3(n, r, k, c) = c
2

[
n2 − n(2r − 4k + 7) + 2(r − 2k + 3)(r + 1)

]
+ 1,

then Gc is k-linked.

If true, Conjecture 3.2 is the best possible. Indeed, let us consider the following extremal
graphs:
For Case (i), we consider the graph Hc(1, n + 2k − 2r − 3, r − 2k + 2, r − 2k + 2, 2k − 2)
with f1(n, r, k) − 1 edges. Choose now k pairs of vertices, x1 ∈ A1, y1 ∈ A2 and xi, yi ∈ A5,
2 ≤ i ≤ k. Then there are no k pairwise vertex-disjoint paths one per pair xi, yi since any path
between x1 and y1 goes through vertices of A5. However all vertices of A5 are already used by
the paths joining the other pairs of vertices xi, yi, i = 2, · · · , k.
For Case (ii) we consider the graph Hc(1, 1, n2−k,

n
2−k, 2k−2). It has f2(n, r, k)−1 edges. How-

ever, as in the previous case, there are no k pairwise vertex-disjoint properly edge-colored paths,
for x1 ∈ A1, y1 ∈ A2 and xi, yi ∈ A5, with i = 2, · · · , k.
Finally, for Case (iii) we consider the graph Hc(r−2k+3, n−r−1, 0, 0, 2k−2) with f3(n, r, k, c)−1
edges. Again, there are no k pairwise vertex-disjoint properly edge-colored paths xi, yi for
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x1 ∈ A1, y1 ∈ A2 and xi, yi ∈ A5, i = 2, · · · , k.

In the sequel, we shall prove Conjecture 3.2 for k = 1 and r, c non fixed. But for conve-
nient reasons we will prove the cases c = 2, c = 3 and c ≥ 4 separately, in Theorems 3.3, 3.4,
3.5, respectively.

Theorem 3.3. Let Gc be a 2-edge-colored multigraph of order n and r a non-zero positive
integer. Assume that for every vertex x, dc(x) ≥ r, r ≤ n

2 − 1.
i) if n ≥ 6r + 4 and m ≥ n2 − n(2r + 3) + 3r2 + 5r + 3,
ii) if n ≤ 6r + 4 and m ≥ 3n2

4 −
3n
2 + 1,

then Gc is linked.

Proof. The proof is by contradiction. Assume that, although conditions of theorem are fullfilled,
there is no path between two given vertices x and y of Gc. Let R be a function denoting the
number of edges of the complement of Gc. In other words, R denotes the number of edges to
be added to Gc in order to become a complete 2-edge colored multigraph of order n. Clearly a
2-edge colored multigraph on n vertices has n(n− 1) edges. Under the hypothesis that there is
no path between x and y, it will be enough to show that if n ≥ 6r+ 4 (respectively n ≤ 6r+ 4),
then R is at least n(n−1)− [n2−n(2r+3)+3r2 +5r+2] = n(2r+2)−3r2−5r−2 (respectively
n(n− 1)− [3n2

4 −
3n
2 ] = n2

4 + n
2 ). This will be a contradiction with the number of edges of Gc.

Let Ar, Ab, C, D be four subsets of V (Gc) such that:

• for each z ∈ Ar, there is a path from x to z ending by a red edge and there is no path
from x to z ending by a blue edge in Gc.

• for each z ∈ Ab, there is a path from x to z ending by a blue edge and there is no path
from x to z ending by a red edge in Gc.

• for every z ∈ C, there are at least two (not necessarily disjoint) paths from x to z in Gc,
the first path ending by a red edge and the second one by a blue edge.

• D = V (Gc)−
(
Ar ∪Ab ∪ C ∪ {x}

)
According to previous definitions, the following two Claims 1 and 2 are obvious.

Claim 1. There is no blue edge between x and Ar and no red edge between x and Ab.

Claim 2. There is no edge between D and C ∪ {x}, no blue edge between D and Ar and no
red edge between D and Ab.

Claim 3. There is no blue edge in Ar and by symmetry there is no red edge in Ab.

Proof. Assume that there is a blue edge, say uv, in Ar. Let P denote a properly edge-colored
path from x to u such that the last edge of this path is red. We may suppose that v is not an
internal vertex of P , for otherwise we can consider v instead of u and then consider the segment
of P between x and v instead of P . Then the path P ∪ uv joins x to v in Gc and its last edge
uv is blue. Thus we conclude that v ∈ C, a contradiction since Ar and C are vertex-disjoint by
definition.
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Claim 4. For every z ∈ C, there is at most one blue edge, say zu, between z and Ar and if this
unique edge zu exists in Gc, then there is no red edge zx in Gc.

Proof. Assume by contradiction that there are at least two blue edges, say zu and zv in Gc

u, v ∈ Ar. Consider a path P from x to z whose last edge is red. Clearly such a path exists in
Gc, by the definition of C. If u is not on this path, then u ∈ C, since P ∪ zu defines a path from
x to u whose last edge is blue, a contradiction to the definitions of Ar and C. Similar arguments
hold if we consider v instead of u. Consequently, we conclude that both u and v belong to P .
Let u− (respectively u+) denote the predecessor (respectively the sucessor) of u, when we go
from x to z along P . Analogously we define v− and v+ and z−. As u and v are both vertices of
Ar, the edges u−u and v−v are both red. Furtehrmore, as P is a properly edge-colored path, it
follows that both edges uu+ and vv+ are blue. Now by considering the path x · · ·u−uzz− · · · v−v
between x and v, we conclude that v ∈ C, a contradiction to the definitions of Ar and C. This
proves that there exists at most one edge between each vertex z ∈ C and Ar. Remains to prove
that if for some vertex z ∈ C, this unique edge, say zu, u ∈ Ar exists in Gc, then the edge zx
(if any) is not a red one. Assume therefore that a red edge xz exists in Gc. But then the path

x
r
− z

b
− u exists well in Gc and its last edge is a blue one. Thus u ∈ C, again a contradiction,

since Ar and C are vertex disjoint by definition. This completes the proof of the claim.

Claim 5. For every z ∈ C, there is at most one red edge between z and Ab and if this edge
exists in Gc, then the edge zx (if any), is not a blue one.

Proof. Similar to that of previous claim.

Now we are ready to determine R. Set ‖Ar‖ = ar, ‖Ab‖ = ab, ‖C‖ = c and ‖D‖ = d. Clearly
ar + ab + c+ d = n− 1. Then,
R = ar + ab + 2d(c+ 1) + d(ar + ab) + ar(ar−1)

2 + ab(ab−1)
2 + c(ar + ab)

= 2d(c+ 1) + (d+ c+ 1)(ar + ab) + a2
r+a2

b
2 − ar+ab

2

= 2d(c+ 1) + (d+ c+ 1
2)(ar + ab) + (ar+ab)2

2 − arab.
We need to minimize R. Let us first fix ar + ab. Set ar + ab = a and consider ar = ab = a

2 .
Then,

R = 2d(c+ 1) + a(d+ c+
1
2

) +
a2

4
As a is fixed, then d+ c is also fixed, since a+ c+ d+ 1 = n. We distinguish now between two
cases depending upon a and r.

First case a ≥ 2r
For c = 0 and d = n− 1− a, we obtain

R = 2(n− 1− a) + a(n− a− 1
2

) +
a2

4
= −3a2

4
+ a(n− 5

2
) + 2(n− 1)

If we consider R as a function of a, then the minimum values of R are obtained for a = 2r or
for a = n− 2. In particular, R(2r) = 2n(r + 1)− 3r2 − 5r − 2 and R(n− 2) = n2

4 + n
2 . Now by

comparing R(2r) and R(n− 2) we may see that for n ≥ 6r + 4, R(2r) ≥ R(n− 2). Otherwise,
if n ≤ 6r + 4, then R(n− 2) ≥ R(2r). This is in contradiction with the number of edges of Gc
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and completes the proof of that case.

Second case a < 2r
In this second case we consider c = r− a

2 and d = n− r− a
2 − 1. For these particular values of c

and d we obtain,

R = 2(n− r − a

2
− 1)(r − a

2
+ 1) + a(n− a− 1

2
) +

a2

4
= −a

2

4
− a

2
+ 2n(r + 1)− 2(r + 1)2

If we consider R as a function of a, we can see that the minimum values of R are obtained
for a = 2r − 1 or a = 2. Furthermore R(2r − 1) = 2n(r + 1) − 2(r + 1)2 − 2 and R(2) =
2n(r + 1)− 3r2 − 4r − 7

4 . As each of these two values is greater than n(2r + 2)− 3r2 − 5r − 2,
this contradicts the hypothesis on the number of edges of Gc and completes the proof of the
case and of the theorem.

Theorem 3.4. Let Gc be a 3-edge-colored multigraph of order n and r a non-zero positive integer.
Assume that for every vertex x, dc(x) ≥ r, r ≤ n

2 −1. If m ≥ 3
2 [n2−n(2r+3)+2r(r+2)+2]+1,

then Gc is linked.

Proof. The proof is by contradiction. Let x and y be two vertices of Gc. Assume that there
is no properly edge-colored path between x and y. As in previous theorem, let R be a function
denoting the number of edges of the complement of Gc. In other words, R denotes the number
of edges to be added to Gc in order to become a complete 3-edge colored multigraph of order n.
Clearly the number of edges of a complete 3-edge colored multigraph of order n is 3n(n−1)

2 . Set
λ = 3n(n−1)

2 − 3
2 [n2 − n(2r + 3) + 2r(r + 2) + 2] = 3n(r + 1)− 3r(r + 2)− 3. In order to obtain

a contradiction, under the hypothesis that there is no path between x and y, it will be enough
to show that R ≥ λ. Let Ai, D, E be five subsets of V (Gc), 1 ≤ i ≤ 3, such that :

• For every z ∈ Ai, 1 ≤ i ≤ 3, there is a path from x to z ending by an edge on color i and
there is no path from x to z ending by an edge on a color different than i.

• For every z ∈ D, there are at least two (not necessarily disjoint) paths from x to z, the
first one ending by an edge on color i and the second on ending by an edge on color j,
1 ≤ j 6= i ≤ 3.

• E = V (Gc)−
((
∪1≤i≤3A

i
)
∪D ∪ {x}

)
According to previous definitions, the three Claims 1, 2, and 3 below are obvious.

Claim 1. For each i = 1, 2, 3, there is no edge on color j between x and Ai, 1 ≤ j 6= i ≤ 3.

Claim 2. There is no edge between E and D ∪ {x}.

Claim 3. For each i = 1, 2, 3, there is no edge of color j between E and Ai, 1 ≤ j 6= i ≤ 3.

Claim 4. For each i = 1, 2, 3, there is no edge on color j in Ai, 1 ≤ j 6= i ≤ 3.
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Proof. Assume that there is an edge uv in Ai on some color j, 1 ≤ j 6= i ≤ 3. Let P denote a
properly edge-colored path from x to u in Gc. We may suppose that v does not belong to P , for
otherwise, we may exchange u and v and, instead of P , consider the segment of P from x to v.
Moreover the color of the last edge of P is i. But then we may conclude that the path P ∪ uv
exists in Gc and its last edge is on color j. Thus we obtain that v ∈ C, a contradiction to the
definitions of A and C.

Claim 5. For each i and j, 1 ≤ i 6= j ≤ 3, there is no edge on color l between Ai and Aj , l 6= i
and l 6= j.

Proof. Assume that there is an edge, say uv, on color l between A and Aj , u ∈ Ai and v ∈ Aj ,
l 6= i, j. Let P denote a properly edge-colored path between x and u. W.l.o.g. we may suppose
that v does not belong to P , for otherwise, as in previous claim, we can exchange u and v.
Moreover the color of the last edge of P is i. In that case, by considering the path P ∪ uv, we
conclude that v ∈ C. This is a contradiction with the definitions of Aj and C.

Claim 6. For every z ∈ D and for each i = 1, 2, 3, there is at most one edge on color i,
between z and ∪j 6=iAj . Furthermore if this unique edge between z and ∪j 6=iAj exists, then there
exist no edge zx on color j in Gc, j 6= i.

Proof. Assume by contradiction that there are two distinct edges, say zu and zv, both on color
i between z and ∪j 6=iAj , u, v ∈ ∪j 6=iAj . By the definition of D, there is a path, say P , from x
to z whose last edge is on color l, l 6= i. If the vertex u is not on P , then u ∈ D, since P ∪ zu
is a path of Gc joining x to u. Similar arguments hold for v. Consequently, in what follows we
may suppose that both u and v belong to P . Suppose w.l.ofg. that u is before v when we walk
from x to z along P . Let u− (respectively u+) denote the predecessor (respectively the sucessor)
of u. Analogously, we define v− and v+ and z−. Let q (respectively q′) be the color of edge
u−u (respectively v−v) As u and v are both vertices of ∪j 6=iAj , q 6= i and q′ 6= i. Furthermore,
as P is properly edge-colored, the color of edge vv+ is different fom q′. Now by considering
the path x · · ·u−uzz− · · · v−v between x and v, we conclude that v ∈ D, a contradiction to the
definitions of Aj , j 6= i and D. This proves that there exists at most one edge between each
vertex z ∈ D and ∪j 6=iAj . Remains to prove that if for some vertex z ∈ D, this unique edge,
say zu, u ∈ ∪j 6=iAj exists in Gc, then the edge zx (if any) is not on color j, j 6= i. Assume

therefore that an edge xz on color j exists in Gc. But then the path x
j
− z

i
− u exists well in

Gc and its last edge is on color i. Thus u ∈ D, again a contradiction, since ∪j 6=iAj and D are
vertex disjoint by definition. This completes the proof of the claim.

Now we are ready to determine R. Set ‖Ai‖ = ai,‖D‖ = d and ‖E‖ = e. Clearly
∑3

i=1 ai +
d+ e+ 1 = n. Then,

R = 2
3∑
i=1

ai + 3e(d+ 1) + 2e
3∑
i=1

ai + 2
3∑
i=1

ai(ai − 1)
2

+ 2d
3∑
i=1

ai +
1
2

∑
i 6=j

aiaj ,

that is,

R = 3e(d+ 1) + 2(e+ d+
1
2

)
3∑
i=1

ai + 2
3∑
i=1

a2
i

2
+

1
2

∑
i 6=j

aiaj .
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Set
∑3

i=1 ai = a. To minimize R, with a fixed, we must consider ai = a
3 , for each i = 1, 2, 3.

For these particular values of ai we obtain,

R = 3e(d+ 1) + 2a(e+ d+
1
2

) +
2
3
a2

As a is fixed, we may suppose that d+e is also fixed, since a+d+e+1 = n. Now we distinguish
between three cases depending upon n, r and a.

First case n ≥ 3r + 2 and a ≥ 3r.
By taking d = 0 and e = n− 1− a, we obtain,

R = 3(n− a− 1) + 2a(n− a− 1
2

) +
2
3
a2 = −a2 4

3
+ a(2(n− 1

2
)− 3) + 3(n− 1)

If we consider R as a function of a, we can see that the minimum values of R are obtained
for a = 3r or a = n − 2. In particular, R(n − 2) = 2

3n
2 + 1

3n −
1
3 and R(3r) = −12r2 +

3r
(
2(n− 1

2)− 3
)
+3(n−1) = 3n(2r+1)−12r (r + 1)−3. It suffices to show that R(n−2)−λ ≥ 0

and R(3r)−λ ≥ 0. However, R(n− 2)−λ = 2
3n

2− (3r+ 8
3)n+ 3r(r+ 2) + 8

3 . We see easily that
R(n− 2)− λ ≥ 0, if n ≥ 3r + 2. Similarly, for n ≥ 3r + 2 R(a = 3r)− λ = 3nr − 9r2 − 6r ≥ 0.
This completes the proof of this case.

Second case n ≥ 3r + 2 and a < 3r
For d = r − a

3 and e = n− r − 2a
3 − 1, we obtain

R = 3(n−r−a2
3
−1)(r− a

3
+1)+2a(n−a− 1

2
)+

2
3
a2 = −2

3
a2 +a(n−r−2)+3n(r+1)−3(r+1)2

We can see that R is minimum for a = 0 or a = 3r. Furthermore R(0) = λ = 3(n−r−1)(r+1) =
3n(r + 1)− 3r(r + 2)− 3 Now we can verify that R(3r) ≥ R(0). Indeed,

R(3r)−R(0) = (n− 2)(
n

3
− r − 2

3
)

But n ≥ 3r + 2 ≥ 2, so R(3r)−R(0) ≥ 0. This completes the proof of this second case.

Third case n < 3r + 2.
By the hypothesis of the theorem, n ≥ 2r+2. Set n = 3r+2− ε where ε is an integer, 0 < ε ≤ r.
Clearly a+ d+ e+ 1 = 3r + 2− ε = n. To maximize a, we take a = 3(r − ε), d = ε, e = ε+ 1.
However for d = r − a

3 , e = n− r − 2a
3 − 1 and for any a < 3(r − ε), we have

R = 3(2r − ε− 2a
3

+ 1)(r − a

3
+ 1) + 2a(3r − ε− a+

3
2

) +
2
3
a2

R = −2
3
a2 + (2r − ε)a+ 3(2r2 + 3r − εr − ε+ 1) f(ε, r) + g(ε, r)

The minimum values of R are obtained for a = 0 or a = 3(r − ε). In particular, R(0) =
3(2r − ε+ 1)(r + 1) = 3

[
2r2 + (3− ε)r + 1− ε

]
and R(3r − 3ε) = 3(2r2 + 3r − ε+ 1− ε2) But

R(3r − 3ε)−R(0) = 3ε(r − ε) ≥ 0.
This completes the proof of this last case and of the theorem.

The previous results deal within at most 3 colors. For more than 3 colors, we have the
following theorem.
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Theorem 3.5. Let Gc be a c-edge-colored multigraph of order n, c > 3 and r an integer. Assume
that for every vertex x, dc(x) ≥ r, 1 ≤ r ≤ n

2 −1. If m ≥ c
2

[
n2 − n(2r + 3) + 2r(r + 2) + 2

]
+ 1,

then Gc is linked.

Proof. By contradiction. Let x and y two vertices of Gc. Assume that there is no path between
x and y in Gc. Let R be a function counting the number of edges in the complement of Gc. The
main purpose is to show that R ≥ c(n(r+ 1)− r(r+ 2)− 1) which will be in contardiction with
m. Since there is no path between x and y in Gc, we may suppose that there is no path either
between x and y in the subgraph Gci of Gc containing the edges of color i, i+1 and i+2 (modulo
c) of Gc, for every fixed color i = 1, 2, · · · , c. As for R, in a similar way let us define Ri for each
such subgraph Gci . Now Ri ≥ 3

2(n(r+1)−r(r+2)−1). Then R = c
3Ri ≥ c(n(r+1)−r(r+2)−1),

since every color is used three times. This completes the proof of the theorem.

Let us turn now our attention to sufficient conditions involving minimum degrees and number
of arcs guarantying the k-edge-linked property. More precisely, let us formulate the following
conjecture.

Conjecture 3.6. Let Gc be a c-edge-colored multigraph of order n and k, r be two non-zero
positive integers. Assume that for every vertex x, dc(x) ≥ r, r ≤ n

2 − 1.
i) if c = 2, n ≥ 6r + 4 and m ≥ g1(n, k, r) = n2 − n(2r + 3) + 3r2 + 5r + 3,
ii) If c = 2, n ≤ 6r + 4 and m ≥ g2(n, k, r) = 3n2

4 −
3n
2 + 1,

iii) if c ≥ 3 and m ≥ g3(n, k, r, c) = c
2

[
n2 − n(2r + 3) + 2r(r + 2) + 2

]
+min(k − 1, r) + 1,

then Gc is k-edge-linked.

If true, this conjecture should be the best possible. Indeed :
For (i), we consider the 2-edge-colored multigraph Hc(1, n − 2r − 1, r, r, 0). Although it has
g1(n, k, r)− 1 edges, it is no 1-edge linked. In particular, there is no properly edge-colored path
between x1 and y1, for any choice of vertices x1 ∈ A1 and y1 ∈ A2.
For (ii), we consider the the 2-edge-colored multigraph Hc(1, 1, n2−1, n2−1, 0) having g2(n, k, r)−
1 edges. As in previous Case (i) there is no properly edge-colored path between any pair of ver-
tices x1 ∈ A1, y1 ∈ A2.
Finally for (iii), we consider the c-edge-colored multigraph Hc(r+1, n−r−1, 0, 0, 0). If r+1 ≥ k
then we add k−1 edges between A1 and A2. Now if we consider xi ∈ A1 and yi ∈ A2, 1 ≤ i ≤ k,
then we can not find k pairwise edge-disjoint paths one per pair xi, yi, since there are at most
k− 1 edges between A1 and A2. Thus Hc is not k-edge-linked. Otherwise, if r ≤ k then we add
r edges between A1 and A2. If we select xi ∈ A1 and yi ∈ A2, 1 ≤ i ≤ r+ 1, then, again, we can
not find r + 1 pairwise edge-disjoint paths, one per pair xi, yi, since there are at most r edges

between A1 and A2. Thus, although Hc has
c[n2−n(2r+3)+2r(r+2)+2]

2 + min(k − 1, r) edges, it is
not (r + 1)-edge-linked for r + 1 < k.

By Theorem 3.5, Conjecture 3.6 above is true for k = 1 and r, c non fixed. Also in Theorem
3.8 stated later we prove that this conjecture remains true for r = 1, c = 2 and k non fixed.
In view of Theorem 3.8, let us prove the following lemma.

Lemma 3.7. Let Gc be a 2-edge-colored multigraph of order n ≥ 5. Assume that for every
vertex x, dc(x) ≥ 1.
i) If n ≥ 10, and m ≥ n2 − 5n+ 11,
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ii) If n < 10, and m ≥ 3n2

4 −
3n
2 + 1,

then there exists a properly edge-colored path of length at most four joining any two given vertices
x and y in Gc.

Proof. We prove this lemma by contradiction. Let x and y be two fixed vertices of Gc. Assume
that there is no properly edge-colored path of length at most four between x and y. As in
previous theorems, let R denote the number of missing edges of Gc. The fact that we cannot
find paths between x and y of length one, two, three and four, gives an idea of how to determine
R. Set λ1 = n(n− 1)− [3n2

4 −
3n
2 + 1] = n2

4 + n
2 − 1 and λ2 = n(n− 1)− [n2− 5n+ 11] = 4n− 11.

Set also α = ‖N b(x) ∩N b(y)‖ and β = ‖N r(x) ∩N r(y)‖. Then,
R = 2 + (n− 2− db(x)) + (n− 2− dr(x)) + (n− 2− db(y)) + (n− 2− dr(y))

+ (db(x)− α)(db(y)− α) + α(db(x)− α) + α(db(y)− α) + α(α−1)
2

+ (dr(x)− β)(dr(y)− β) + β(dr(x)− β) + β(dr(y)− β) + β(β−1)
2

= 4n− 6 + f(db(x), db(y), α) + g(dr(x), dr(y), β).

We distinguish now between two cases dependening upon if α, β are zero or not.

Case 1. α 6= 0 and β 6= 0
In order to minimize R, we set db(x) = db(y) = α and dr(x) = dr(y) = β. So

f(db(x), db(y), α) = −2α+
α(α− 1)

2
=
α(α− 5)

2

As α+ β ≤ n− 2 we obtain R = 4n− 6 + α(α−5)
2 + β(β−5)

2 = 4n− 6 + (α+β)(α+β−5)
2 − αβ.

Assume first α + β ≤ 5. We can easily see that R ≥ 4n − 12 by using all possible different
values of α, β, namely, (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3). Set Rmin = 4n − 12.
The function λ1 −Rmin = n2

4 + 7n
2 + 11 has two roots, namely, n1 = 7−

√
5 and n2 = 7 +

√
5.

Hence, for 5 < n ≤ 10 we have λ1 < Rmin, a contradiction, since Rmin should be smaller than
λ1.
Assume next α + β > 5. By studying the function R(α, β), we deduce that R(α, β) ≥ R(3, 3).
It means that R(α, β) ≥ 4n − 12. Since n ≥ 10, there are at least two different vertices z
and z′ not in N b(y) ∪ N r(x) ∪ N b(x) ∪ N r(y) ∪ {x, y}. As there does not exist a properly
edge-colored path of length four between x and y in Gc, we deduce that for every u ∈ N b(x)
and for every v ∈ N r(y) the red edge uz (or the blue edge zv) is missing in Gc, for otherwise

the path x
b
− u

r
− z

b
− v

r
− y (respectively for z′) between x and y has length four. This

implies that R(α, β) ≥ 4n − 10. As λ2 = 4n − 11 < 4n − 10 ≤ R(α, β), we conclude that
the number of edges of Gc is at most n2−5n+10, a contradiction with the hypothesis of Case (i).

Case 2. α = 0 or β = 0
Assume β = 0. Then R(α) = 4n − 6 + α(α−5)

2 . One can easily see that R(α) ≥ R(3) = 4n − 9.
Since R(3) ≥ λ1 and R(3) ≥ λ2, this is a contradiction for both Cases (i) and (ii). This
completes the proof of the Lemma.

Theorem 3.8. Let Gc be a 2-edge-colored multigraph and k an integer, n ≥ 2k ≥ 10. Assume
that for every vertex x, dc(x) ≥ 1. If m ≥ n2 − 5n+ 11, then Gc is k-edge-linked.
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Proof. Let xi and yi be 2k vertices of Gc , 1 ≤ i ≤ k. Let us try to find k pairwise edge-disjoint
paths, one per pair xi, yi, 1 ≤ i ≤ k. By previous lemma, there exists a properly edge-colored
path of length at most four between each pair xi and yi.

Claim. There exists at most one pair xi, yi of vertices such that the length of any path between
xi and yi is greater than two in Gc.
Proof. Assume by contradiction that there are at least two pairs of vertices, say x1, y1 and

x2, y2 such that the length of any path between x1 and y1 (respectively x2 and y2) is greater
than two. Then, for every z ∈ Gc − {x1, y1}, either the blue edge x1z or the red edge y1z is

missing in Gc, for otherwise the path x1

b
− z

r
− y1 is of length two between x1 and y1. Analo-

gously we conclude that either the red edge x1z or the blue edge y1z is missing in Gc. Similar
arguments hold for x2 and y2. Furthermore, as there is no path of length one between x1 and y1

(respectively between x1 and y1) there is no edge x1y1 ( x2y2) in Gc. Now by summing all these
missing edges we conclude that Gc has less than n(n−1)− [2(n−2)+2(n−4)+4] < n2−5n+11
edges , a contradiction. This completes the proof of the claim.

According to the previous claim, for at most one pair xi, yi, there is a path between xi and yi
of length greater than two. In addition, according to Lemma 3.7, the length of such a path is
three or four.

Assume first that there exists a path of length at most two between xi and yi in Gc, for each
i = 1, · · · , k. For every i, let Zi = {zi1, zi2, ..., zipi

} denote the set vertices of Gc such that there is
a path between xi and yi going through a vertex of Zi. Then using arguments almost identical
to those of the proof of Theorem 2.3 (only replace {ai, bi, 1 ≤ i ≤ k} by Zi = {zi1, zi2, ..., zipi

}),
we may find k pairwise edge-disjoint paths as desired.
Assume next that for some 1 ≤ i ≤ k, say i = k, any path between xk and yk has length 3
or 4. According to arguments used in previous case and in the proof of Theorem 2.3, we can
define k − 1 pairwise edge-disjoint paths for the pairs of vertices xi, yi, 1 ≤ i ≤ k − 1. In order
to complete the proof, it should be enough to show that whenever a path between xk and yk
shares a common edge with some path between pairs xi and yi, 1 ≤ i ≤ k − 1, then one can
choose either another apropriate path between xi and yi or another apropriate path between xk
and yk, in order to obtain the desired k pairwise edge-disjoint paths.

Assume next that any path between xk and yk has length 3. As there is no path between
xk and yk of length at most two in Gc, as in the proof of claim above, we may conclude that
there are at least 2(n − 2) + 2 missing edges in Gc. Assume first that xiyi is the shared edge
between the path joining xk to yk and the rest of the paths joining the pairs xi, yi, 1 ≤ k ≤ k−1.

Then ∀z ∈ Gc − {xk, xi, xi−1, yk, yi, yi−1}, noone of the (n− 6) paths xi
b
− z

r
− yi or xi

r
− z

b
− yi

of length two is present in Gc. Moreover, an edge xiyi, an edge xi−1yi−1 and at least 2 edges
for the possible existence of an alternating cycle xixi−1yiyi−1xi are missing in Gc. The sum of
above-mentionned missing edges is at least 4n− 10. It follows that Gc has at most n2− 5n+ 10,
a contradiction. Assume next that only xi or yi, say xi, is adjacent with a common edge of the
path joining xk and yk and some of the paths joining the rest of the pairs xi, yi, 1 ≤ k ≤ k− 1.
Then for each z in Gc−

{
xk, xi, xi−1, yk, yi, yi−1, z

k
l

}
,where zkl /∈ xk, yk, xi, we may count 2(n−7)
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missing edges, as noone of the paths xi
b
− z

r
− yi or xi

r
− z

b
− yi is present in Gc. Then there

are at least 2 missing edges for the pairs xi, yi and xi−1, yi−1, an edge linking xi and yi through
zkl and finally 2 edges between xixi−1yiyi−1xi. Hence we deduce here that at least 4n− 9 edges
are missing in Gc, a contradiction to the fact that Gc has at least n2 − 5n+ 11 edges.

Assume finally that the length of any path between xk and yk is 4. We shall complete the
proof by taking in account the three following subcases:

• xiyi is a common edge between a path joining xk to yk and some path joining the rest of
pairs xi, yi, 1 ≤ k ≤ k − 1.

• for some 1 ≤ i ≤ k − 1, both edges of the path between xi and yi of length two belong to
the path between xk and yk.

• Only xi (or yi) is adjacent with a common edge of the path joining xk to yk and some
path joining the rest of pairs xi, yi, 1 ≤ k ≤ k − 1.

As there is no path of length at most two between xk and yk, we may count at least 2(n−2)+2
missing edges in Gc. There is also no path of length three between xk and yk. Hence we can
add at least two more edges on the missing ones. Thus up to now, at least 2(n− 2) + 2 + 2 = 2n
edges are missing in Gc.
Now, in the first subcase, let zkl , zkl 6= xi, yi be the fourth vertex which completes the path
between xk and yk. Then for all z of Gc −

{
xk, xi, xi−1, yk, yi, yi−1, z

k
l

}
, we may count a total

of 2(n − 7) missing edges. There are also at least 4 missing edges between xixi−1yiyi−1xi and
xi−1xi−2yi−1yi−2xi−1.
In the second subcase, besides the counted number of the first cas, we can add 2 missing edges
xiyi.
In the last subcase, instead of 2(n− 7), we have 2(n− 8) missing edges and have also all other
missing edges mentionned in the second subcase. We also add at least 2 missing edges which
could define a path xi−xk−yi and 2 edges for the path xi−yk−yi.
For each of the above cases, by summing all missing edges, we find that there are at least 4n−11
missing edges in Gc. It follows that Gc has at most n2 − 5n + 10 edges, a contradiction. This
completes the proof of the theorem.
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