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Abstract

This paper deals with the existence and search of properly edge-
colored paths/trails between two, not necessarily distinct, vertices s
and t in an edge-colored graph from an algorithmic perspective. First
we show that several versions of the s−t path/trail problem have poly-
nomial solutions including the shortest path/trail case. We give poly-
nomial algorithms for finding a longest properly edge-colored path/trail
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between s and t for some particular graphs and characterize edge-
colored graphs without properly edge-colored closed trails. Next, we
prove that deciding whether there exist k pairwise vertex/edge disjoint
properly edge-colored s − t paths/trails in a c-edge colored graph Gc

is NP-complete even for k = 2 and c = O(n2), where n denotes the
number of vertices in Gc. Moreover, we prove that these problems
remain NP-complete for c-colored graphs containing no properly edge-
colored cycles and c = O(n). We obtain some approximation results
for those maximization problems together with polynomial results for
some particular classes of edge-colored graphs.
Key words: Edge colored graphs, connectivity, properly edge-colored
paths, trails and cycles.

1 Introduction, Notation and Terminology

In the last few years a great number of problems have been dealt with in
terms of edge-colored graphs for modelling purposes as well as for theoretical
investigation [4, 8, 9, 10, 20, 25]. Previous work on the subject has focused
on the determination of particular properly edge-colored subgraphs, such
as Hamiltonian or Eulerian configurations, colored in a specified pattern
[2, 3, 5, 6, 7, 11, 23, 27, 29], that is, subgraphs such that adjacent edges
have different colors. Our first aim in that respect was to extend the graph-
theoretic concept of connectivity to colored graphs with a view to gaining
some insight into our problem from Menger’s Theorem in particular. In other
words, we intended to define some sort of local alternating connectivity for
edge-colored graphs.

Difficulties arose, however, from local connectivity being not polynomially
characterizable in edge-colored graphs, as can easily be seen. Thus, there
can be no counterpart to Menger’s Theorem as such, and even the notion of
a connected component as an equivalence class does not carry over to edge-
colored graphs since the concatenation of two properly edge colored paths
is not necessarily properly edge colored. We settled then for some practical
and theoretical results, herein presented, which deal with the existence of
vertex-disjoint paths/trails between given vertices in c-edge colored graphs.
Most of those path/trail problems happen to be NP-complete, which thwarts
all attempts at systematization.

Formally, let Ic = {1, 2, · · · , c} be a set of given colors, c ≥ 2. Throughout
the paper, Gc will denote an edge-colored simple graph such that each edge
is in some color i ∈ Ic and no parallel edges linking the same pair of vertices
occur. The vertex and edge-sets of Gc are denoted by V (Gc) and E(Gc),
respectively. The order of Gc is the number n of its vertices. The size of
Gc is the number m of its edges. For a given color i, Ei(Gc) denotes the
set of edges of Gc colored i. For edge-colored complete graphs, we write Kc

n
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instead of Gc. If Hc is a subgraph of Gc, then N i
Hc(x) denotes the set of

vertices of Hc, linked to x with an edge colored i. The colored i − degree
of x in Hc, denoted by di

Hc(x), is |N i
Hc(x)|, i.e., the cardinality of N i

Hc(x).
An edge between two vertices x and y is denoted by xy, its color by c(xy)
and its cost (if any) by cost(xy). The cost of a subgraph is the sum of its
edge costs. A subgraph of Gc containing at least two edges is said to be
properly edge-colored if any two adjacent edges in this subgraph differ in
color. A properly edge-colored path does not allow vertex repetitions and
any two successive edges on this path differ in color. A properly edge-colored
trail does not allow edge repetitions and any two successive edges on this
trail differ in color. The length of a path (trail) is the number of its edges.
Given two vertices s and t in Gc, we define an s− t path (trail) to be a path
(trail) with end-vertices s and t. Sometimes s will be called the source, and
t the destination of the path (trail). A properly edge-colored path/trail is
said to be closed if its endpoints coincide, and its first and last edges differ in
color. A closed properly edge-colored path (trail) is usually called a properly
edge-colored cycle (closed trail).

Given a digraph D(V,A) and 2 vertices u, v ∈ V , we denote by ~uv an arc of
A. In addition, we define N+

D (x) = {y ∈ V : ~xy ∈ A} the out-neighbourhood
of x in D, and by N−

D (x) = {y ∈ V : ~yx ∈ A} the in-neighbourhood of x in D.
Finally, we represent by ND(x) = N+

D (x)∪N−
D (x) the in-out-neighbourhood

of x ∈ V (D) (or just neighbourhood for short). Also, given an induced
subgraph Q of a non colored graph G, a concatenation of Q in G consists
of replacing Q by a new vertex, say zQ, so that each vertex x in G − Q is
connected to zQ by an edge iff there exists an edge xy in G for some vertex
y in Q.

This paper is concerned with algorithmic issues regarding various trail/path
problems between two given vertices s and t in Gc. First, we study the
s− t path/trail version problem. Polynomial algorithms are established for
such problems as the Shortest properly edge-colored path/trail, the Short-
est properly edge-colored path/trail with forbidden pairs, the Shortest prop-
erly edge-colored cycles/closed trails and the Longest properly edge-colored
path/trail for some particular instances. We also characterize edge-colored
graphs without properly edge-colored closed trails. Next, we deal with the
Maximum Properly Vertex Disjoint Path and Maximum Properly Edge Dis-
joint Trail problems, whose objective is to maximize the number of properly
edge-colored vertex-disjoint paths (respectively, edge-disjoint trails) between
s and t. Although these problems can be solved in polynomial time in general
non-colored graphs, most of their instances are proved to be NP-complete
in the case of edge-colored graphs. In particular we prove that, given an
integer k ≥ 2, deciding whether there exist k properly edge-colored ver-
tex/edge disjoint s − t paths/trails in Gc is NP-complete even for k = 2
and c = O(n2). Moreover, for an arbitrary k we prove that these prob-
lems remain NP-complete for c-colored graphs containing no properly edge-
colored cycles/closed trails and c = O(n). We show a greedy procedure for
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these maximisation problems, throught the sucessive construction of prop-
erly edge-colored shortest s − t paths/trails. This is a straithfoward gener-
alization of the greedy procedure to maximize the number of edge or vertex
disjoint paths between k pair of vertices in non-colored graphs (see [22, 19]
for details). Similarly, we obtain an approximation performance ratio.

The following two results will be used in this paper. The first result, due
to Yeo [29], characterizes edge-colored graphs without properly edge-colored
cycles.

Theorem 1.1. (Yeo) Let Gc be a c-edge colored graph, c ≥ 2, such that
every vertex of Gc is incident with at least two edges colored differently.
Then either Gc has a properly edge-colored cycle or for some vertex v, no
component of Gc − v is joined to v by at least two edges in different colors.

In terms of edge-colored graphs, Szeider’s main result [26] on graphs with
prescribed general transition systems may be formulated as follows:

Theorem 1.2. (Szeider) Let s and t be two vertices in a c-edge colored
graph Gc, c ≥ 2. Then, either we can find a properly edge-colored s− t path
or else decide that such a path does not exist in Gc in linear time on the size
of the graph.

Given Gc, the main idea of the proof is based on earlier work by Edmonds
(see for instance Lemma 1.1 in [23]) and amounts to reducing the properly
edge-colored path problem in Gc to a matching problem in a non-colored
graph defined appropriately. The latter graph will be called henceforth the
Edmonds-Szeider graph and is defined as follows. Given two vertices s and
t in Gc, set W = V (Gc) \ {s, t}. Now, for each x ∈ W , we first define a
subgraph Gx with vertex- and edge-sets, respectively:

V (Gx) =
⋃

i∈Ic
{xi, x

′
i|N i

Gc(x) 6= Ø} ∪ {x′′
a, x

′′
b} and

E(Gx) = {x′′
ax

′′
b} ∪

(

⋃

{i∈Ic|x′
i∈V (Gx)}({xix

′
i} ∪ (

⋃

j=a,b{x′
ix

′′
j }))

)

.

Now, the Edmonds-Szeider non-colored graph G(V,E) is constructed as fol-
lows:

G(V ) = {s, t} ∪ (
⋃

x∈W V (Gx)), and
G(E) =

(
⋃

i∈Ic
(sxi|sx ∈ Ei(Gc)) ∪ (xit|xt ∈ Ei(Gc)) ∪ (xiyi|xy ∈ Ei(Gc))

)

∪
(
⋃

x∈W E(Gx)
)

.

The interesting point in the construction is that, given a particular (trivial)
perfect matching M in G\{s, t}, a properly edge-colored s− t path exists in
Gc if and only if there exists an augmenting path P relative to M between
s and t in G. Recall that a path P is augmenting with respect to a given
matching M if, for any pair of adjacent edges in P , exactly one of them is
in M , with the further condition that the first and last edges of P are not in
M . Since augmenting paths in G can be found in O(|E(G)|) linear time (see
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[28], p.122), the same execution time holds for finding properly edge-colored
paths in Gc as well, since O(|E(G)|) = O(|E(Gc)|).

2 The s− t path/trail problem

Given two, not necessarily distinct, vertices s and t in Gc, the main question
of this section is to give polynomial algorithms for finding (if any) a properly
edge-colored s−t path or trail in Gc. The s−t path problem was first solved
by Edmonds for two colors (see Lemma 1.1 in [23]) and then extended by
Szeider [26] to include any number of colors. Here we deal with variations
of the properly edge-colored trail/path problem, i.e., the problem of finding
an s − t trail, closed trails, the shortest s − t path/trail, the longest s − t
path (trail) in graphs with no properly edge-colored cycles (closed trails),
s− t paths/trails of size O(logn) and s− t paths/trails with forbidden pairs.

2.1 Finding a properly edge-colored trail between two ver-
tices

This section is devoted to the s − t trail problem. Among other results,
we prove that the s − t trail problem reduces to the s − t path problem.
As the latter problem has been proved polynomial [26], it follows that our
problem is polynomial as well. Let us start with the following simple, though
fundamental, result.

Lemma 2.1. (Fundamental Lemma) Given two vertices s, t of Gc, assume
that there exists a s− t properly edge-colored trail T in Gc. Further, suppose
that at least one internal vertex on this trail is visited three times or more.
Then, there exists another s− t trail T ′ in Gc such that no vertex is visited
more than twice on T ′.

Proof. Set T = e1e2 · · · ek, where ei are the edges of the trail. Let
{a1, a2, · · · , ar} denote the set of distinct vertices of T . Let now λi de-
note the number of times vertex ai is visited on T , for each i = 1, 2, · · · , r.
Set λ = max(λ1, λ2, · · · , λr). Let us choose T to be the shortest such trail
so that λ is the smallest possible, as is therefore the number of vertices ai

with λi = λ. If λ ≤ 2 we are done. Assume therefore λ ≥ 3. Thus, there
exist some vertex, say ap, 1 ≤ p ≤ r, visited at least three times on T .
Assume λ = 3, the proof being almost identical for higher values. Let us
rewrite T = e1e2 · · · eiei+1 · · · ejej+1 · · · efef+1ef+2 · · · ek so that : i) ap is
the vertex common to the pair of edges ei, ei+1, (respectively to ej , ej+1 and
to ef , ef+1) and ii)ap is not a member of the vertex set of the graph induced
by the edges of the segment ef+2 · · · ek. Notice that edges ei and ej+1 have
the same color, for otherwise, the trail e1e2 · · · eiej+1 · · · efef+1ef+2 · · · ek

violates the choice of T , since ap is visited fewer times on this trail than
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on T . Similarly, edges ei and ef+1 have the same color. But then the
trail e1e2 · · · eief , ef−1ef−2 · · · ej+2ej+1ef+1ef+2 · · · ek violates the choice of
T . This completes the argument and the proof of lemma. �

Thus, we need only consider trails where no vertex is visited more than twice
to deal with our problem. As a result, we can transform the trail- to the
path-problem as follows. Given Gc and an integer p ≥ 2, let us consider an
edge-colored graph denoted by p−Hc (henceforth called the trail-path graph)
obtained from Gc as follows. Replace each vertex x of Gc by p new vertices
x1, x2, · · · , xp. Furthermore for any edge xy of Gc colored, say j, add two
new vertices vxy and uxy, add the edges xivxy, uxyyi, for i = 1, 2, · · · , p all
of them colored j, and finally add the edge vxyuxy in the new (unused) color
j′ ∈ {1, 2, · · · , c} with j′ 6= j. For convenience of notation, the edge-colored
subgraph of p − Hc induced by the vertices xi, vxy, uxy, yi and associated
with the edge xy of Gc will be denoted throughout by Hc

xy. Moreover for
p = 2, we write Hc instead of p−Hc. Then, we have the following relation
between Gc and p−Hc, for p = 2:

Theorem 2.2. Given two vertices s and t in Gc, there exists a properly
edge-colored s − t trail in Gc, if and only if, there exists a properly edge-
colored s1 − t1 path in Hc.

Proof. Let s, t be two vertices in Gc. Assume first that there exists a
properly edge-colored trail, say, T = e1, e2, · · · , ek between s and t in Gc,
where ei are the edges of the trail and s is the left endpoint of e1 while t
is the right endpoint of ek. By Lemma 2.1, we may choose T so that no
vertex is visited more than twice on T . Given Hc as defined above, we show
how to construct a properly edge-colored path P between s1 and t1 in Hc.
For any edge ei = xy of T , we consider the associated subgraph Hc

ei
in Hc,

and then replace the edge ei by one of the segments x1vxy, vxyuxy, uxyy1 or
x1vxy, vxyuxy, uxyy2 or x2vxy, vxyuxy, uxyy1 or x2vxy, vxyuxy, uxyy2 in Hc.

Conversely, any properly edge-colored s1−t1 path in Hc uses precisely one of
the subpaths x1vxy, vxyuxy, uxyy1 or x1vxy, vxyuxy, uxyy2 or x2vxy, vxyuxy, uxyy1

or x2vxy, vxyuxy, uxyy2 in each subgraph Hc
xy of Hc. Now it is easy to see

that a properly edge-colored s1−t1 path in Hc will correspond to a properly
edge-colored s− t trail T in Gc where no vertices are visited more than twice
on T . �

The following corollary is a straightforward consequence of Theorem 1.2 and
Theorem 2.2.

Corollary 2.3. Consider two distinct vertices s and t in a c-edge colored
graph Gc. Then we can either find a properly edge-colored s− t trail or else
decide correctly that such a trail does not exist in Gc in linear time on the
size of Gc.

Proof. To find a properly edge-colored s − t trail in Gc, it suffices to

6



construct Hc as above and then use Theorem 1.2 in order to find a properly
edge-colored path between s1 − t1 in Hc, provided that one exists. Clearly
graph Hc has O(km) edges where m is the number of edges of Gc and k is a
small constant. We obtain the corresponding properly edge-colored trail in
Gc by replacing appropriate segments of the path in Hc with the associated
edges in Gc. �

We conclude the section with some results on closed trails in edge-colored
graphs. In particular, we intend to characterize edge-colored graphs without
properly edge-colored closed trails. Recall that the problem of checking
whether Gc contains no properly edge-colored cycle was initially solved by
Grossman and Häggkvist [18] for 2-edge colored graphs and then by Yeo
[29] for an arbitrary number of colors (see Theorem 1.1 above). In both
studies, the authors used the concept of a cut-vertex separating colors, i.e.
a vertex x such that all the edges between each component of Gc − x and
x are colored alike. Here, by introducing the concept of bridges separating
colors, we obtain the following :

Theorem 2.4. Let Gc be c-edge colored graph, such that every vertex of Gc

is incident with at least two edges colored differently. Then either Gc has a
bridge or Gc has a properly edge-colored closed trail.

Proof: Given Gc, let us consider again the trail-path graph Hc, associated
with Gc as in the foregoing. Observe that if a vertex x of Gc is incident with
two edges colored differently in Gc, then both x1 and x2 will be incident
with edges of different colors in Hc. In addition, for every edge xy of Gc, we
have by the definition of Hc that both vxy and uxy are incident with edges
of two different colors. Therefore, we conclude that if every vertex of Gc is
incident with at least two edges in different colors in Gc, than every vertex
of Hc will be incident with at least two edges of different colors in Hc. Then,
it follows by Theorem 1.1 that Hc has either a cut-vertex separating colors
or a properly edge-colored cycle.

Now, suppose first that Hc has a cut-vertex separating colors. If this cut-
vertex is one of vxy ∈ Hc

xy, then it is easy to see that uxy is another cut-vertex
of Hc separating colors. Therefore, the edge vxyuxy is a bridge in Hc. This
implies that the edge xy of Gc associated with Hc

xy is also a bridge in Gc.

Assume now that Hc has a properly edge-colored cycle. Then we conclude
that Gc has a properly edge-colored trail if and only if we have an properly
edge-colored cycle in Hc.

From the above, it follows that if each vertex of Gc is incident with at
least two edges colored differently, then Gc has either a bridge or a properly
edge-colored trail, as required. �

As for the algorithmic aspects of this problem, it suffices to delete all bridges
and all vertices adjacent to edges of the same color in Gc to test for the
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existence of a properly edge-colored closed trail in polynomial time. Notice
that all such edges and vertices may be deleted without any properly edge-
colored closed trail being destroyed. Thus, if the resulting graph is non-
empty, it will contain a properly edge-colored closed trail.

2.2 Shortest properly edge-colored paths/trails

In this section we consider shortest properly edge-colored s − t paths and
trails. By associating appropriate costs with the edges of the Edmonds-
Szeider non-colored graph G(V,E) defined in the introduction, we first show
how to find, if any, a shortest properly edge-colored path between (not
necessarelly distinct) s and t in Gc. The procedure will then be used to find
a shortest properly edge-colored trail between s and t in Gc. At the end of
the section, we will show how to find a shortest properly edge-colored cycle
and closed trail.

For the shortest properly edge-colored path problem, let us consider the
following algorithm:

Algorithm 1: Shortest properly edge-colored path

Input: A c-edge colored graph Gc, vertices s, t ∈ V (Gc).
Output: If any, a shortest properly edge-colored s− t path P in Gc.
Begin

1. Define: W = V (Gc) \ {s, t};
2. For every x ∈W construct Gx as defined in Section 1;
3. Construct the Edmonds-Szeider graph G associated with Gc;
4. Define: E′ = ∪x∈W E(Gx);
5. For every pq ∈ E(G) \ E′ do cost(pq)← 1;
6. For every pq ∈ E′ do cost(pq)← 0;
7. If G contains a perfect matching then

7.1 - Find a Mininum Weighted Matching M in G;
7.2 - Using M , return P in Gc;
end if ;

End.

Intuitively, the idea in Algorithm 1 is to penalize all edges of G associated
with edges in the original graph Gc. In this way, we ensure that a minimal
perfect matching M will maximize the number of edges of E(Gx) (with cost
0) associated with x ∈ V (Gc) \ {s, t}.

To obtain P from M in Step 7.2, we concatenate all subgraphs Gx to a
single vertex x and delete the remaining edges not in M . Notice that all
the vertices not in the associated s − t path in Gc are isolated, otherwise,
M would not be a minimum perfect matching.

In addition, observe that the overall complexity of Algorithm 1 is dominated
by the complexity of the minimum perfect matching (Step 7.1). Several
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matching algorithms exist in the literature. Gabow’s bound [13] in O(n(m+
nlogn)), is one of the best in terms of n and m, but other bounds are
possible when the edge weights are integers. Note that Algortihm 1 may be
easily adapted if we deal with arbitrary positive costs associated with colored
edges. Gabow and Tarjan [15] proposed an ingenious approach to obtain
a bound in O(mlog(nN)

√

nα(n,m)logn)), where α(n,m) is the Tarjan’s
“inverse” of Ackerman’s function and N is the maximum weight of an edge.
See also Gerards [16] for a reference on general matchings.

Formally, we have established the following result:

Theorem 2.5. Algorithm 1 always find, if any, a shortest properly edge-
colored s− t path in Gc.

Proof. Let M be a minimum perfect matching in G and P the associated
path in Gc (obtained after Step 7.2). For a contradiction, suppose that P
is not a properly edge-colored shortest path in Gc. Then, there exists an-
other properly edge-colored s − t path P ′ in Gc with cost(P ′) < cost(P ).
In addition, suppose that all the remaining vertices not in P ′ are isolated.
Now, observe that cost(pq) = 1 for every pq ∈ E(G) \ E′ and cost(pq) = 0
for every pq ∈ E′. Thus, we can easilly construct a new matching M ′ in
G such that all edges with unit costs are associated with edges in the s− t
path P ′. The remaining edges of M ′ will have cost zero. In this way, since
cost(P ′) < cost(P ), we obtain cost(M ′) < cost(M) resulting in a contradic-
tion. Therefore, P is a shortest properly edge-colored path in Gc. �

Now, to solve the shortest trail problem, it suffices to use the above algorithm
as follows: Given s and t in Gc, construct the trail-path graph Hc associated
with Gc. Next, we find a shortest properly edge-colored s1 − t1 path P in
Hc by the previous algorithm. Then, by using path P of Hc, come back
and construct a shortet properly edge-colored s − t trail in Gc. Hence our
algorithm:

Algorithm 2: Shortest properly edge-colored s− t trail

Input: A c-edge colored graph Gc, vertices s, t ∈ V (Gc).
Output: The shortest properly edge-colored s − t trail T in Gc (provided
that one exists).
Begin

1. Construct the trail-path graph Hc associated to Gc;
2. Using Algorithm 1, find a shortest s1 − t1 path P in Hc;
3. Return trail T associated to path P with cost(T ) = cost(P )

3 ;
End.

For the correctness of the algorithm, remember that each subgraph Hc
xy of

Hc is associated with some edge xy of Gc. Furthermore, observe that a
properly edge-colored path Pxi,xj

between xi and yj in Hc
xy contains exactly

3 edges. Thus, in order to obtain T in Gc from P in Hc, it suffices to replace
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each segment Pxi,xj
of P with the corresponding edge xy in Gc. Thus, the

correctness of Algorithm 2 is guaranteed by Theorems 2.2 and 2.5.

We conclude this section with some algorithmic results on shortest properly
edge-colored cycles and closed trails. In particular, we adapt the ideas de-
scribed above to construct such shortest cycles or closed trails in Gc (if any),
as follows. For an arbitrary vertex x of Gc, construct a graph Gc+1

x (with
c + 1 colors) associated with x by appropriately spliting x into vertices, say
sx and tx, and c auxiliary vertices x1, .., xc. Vertices sx and tx will corre-
spond to temporary source and destination of Gc+1

x , and vertices x1, .., xc

are defined in such a way that properly edge-colored sx − tx paths in Gc+1
x

will correspond to properly edge-colored cycles in Gc passing through vertex
x ∈ V (Gc). Therefore, it suffices to repeat this process for every vertex x of
Gc while saving the minimum cost solution at each iteration. Formally, we
define:

V (Gc+1
x ) = (V (Gc) \ {x}) ∪ {sx, tx, x1, ..., xc} and

E(Gc+1
x ) = (E(Gc) \ {xy : y ∈ NGc(x)}) ∪ (

⋃

i∈Ic
{xiy : y ∈ N i

Gc
(x)} ∪

({sx, tx} × {x1, .., xc}).

In the construction of E(Gc+1
x ) above we set c(xiy) = i for every color

i ∈ Ic. In addition we color every edge of {sx, tx} × {x1, .., xc} with a new
color c+1. After this construction, we find a shortest properly edge-colored
path between sx and tx in Gc+1

x . This process is repeated for the remaining
vertices of Gc. Note that a properly edge-colored sx− tx path Px in Gc+1

x of
length |Px| is associated with a properly edge-colored cycle Cx in Gc passing
through x of length |Cx| = |Px| − 2. Hence the procedure:

Algorithm 3: Properly edge colored shortest cycle

Input: A c-edge colored graph Gc.
Output: If any, a smallest properly edge-colored cycle of Gc.
Begin

1. Nedges ←∞; {minimum number of edges in the sx − tx path in Gc+1
x }

2. For every x ∈ V do
2.1 Construct Gc+1

x as above using sx and tx as source and destination;
2.2 Using Alg. 2, find (if any) a shortest sx − tx path Px in Gc+1

x ;
2.3 If |Px| < Nedges then SP ← Px and Nedges ← |Px|;

3. If Nedges <∞ then
3.1 Using SP , return a smallest properly edge-colored cycle in Gc pass-

ing by x of length Nedges − 2;
End.

Formally we have established the following result:

Theorem 2.6. Given Gc, Algorithm 3 always finds a shortest properly edge-
colored cycle in Gc or else decides correctly that Gc has no properly edge-
colored cycle at all.

As with Algorithm 2, the correctness of Algorithm 3 is guaranted by Theo-
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rem 2.5.

As for shortest closed trails, to exhibit an arbitrary properly edge-colored
closed trail, it suffices to replace Gc+1

x with a new graph Gc+1
α (x) in the fol-

lowing way (represented by Gα, for short). Let Gβ = Gc+1
x \{sx, tx, x1, .., xc}

a subgraph of Gc+1
x . Construct the trail-path graph Hc

β, associated to
Gβ . Finally, to obtain Gα add vertices {sx, tx, x1, .., xc} to Gβ and define
color(pq) = c + 1 for every edge pq ∈ {sx, tx} × {x1, .., xc}. In this case, all
edges xiy (for i ∈ Ic) of color i in Gc+1

x are changed by 2 edges xiy1, xiy2 in
Gα with the same color. Now, it is easy to see that properly edge-colored
paths sx−tx in Gα corresponds to properly edge-colored closed trails passing
by x in Gc and vice-versa. Now, in Algorithm 3, it is sufficient to change
Gc+1

x by Gα and repeat the same sequence of steps. Again, the correctness
of this new procedure is guaranted by Theorems 2.2 and 2.5.

2.3 The longest properly edge-colored s− t path/trail prob-
lem

The problem of finding the longest properly edge-colored s − t path in ar-
bitrary c-edge colored graphs is obviously NP-complete since it generalizes
the Hamiltonian Path problem in non-directed graphs. Here, we propose a
polynomial time procedure for finding the longest properly edge-colored s−t
path (trail) in graphs with no properly edge-colored cycles (closed trails).
Finally, in this section, we generalize the color coding technique (introduced
by [1]) to find (if it exists) properly edge-colored s − t paths or trails of
length k = O(logn).

Theorem 2.7. Assume that Gc has no properly edge-colored cycles. Then,
we can always find in polynomial time a longest properly edge-colored s − t
path or else decide that such a path does not exist in Gc.

Proof. Let W = V (Gc)\{s, t} and E′ = ∪x∈W E(Gx) (see Section 1 for the
definition of Gx). Now, construct the non-colored Edmonds-Szeider graph G
associated to Gc and define cost(pq) = 1 for every edge pq ∈ E(G) \E′, and
cost(pq) = 0 for every pq ∈ E′. Compute (if possible) the maximum perfect
matching M in G, otherwise, we would not have a properly edge-colored
path between s and t (see [17] for the complexity of the maximum perfect
matching problem). Now, given M , to determine the associated s − t path
P in Gc, we construct a new non-colored graph G′ by just concatenating
subgraphs Gx to a single vertex x. It is easy to see that G′ will contains a
s− t path, cycles and isolated vertices, associated respectively to a properly
edge-colored s − t path, properly edge-colored cycles and isolated vertices
in Gc . However, by hypothesis Gc does not contains properly edge-colored
cycles. Therefore, each edge with unitary cost in M it will be associated to
an edge in P and vice-versa. Then, since M is a maximum matching, the
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associated path P will be the longest properly edge-colored s− t path in Gc.
�

Observe in the problem above that, since every vertex is visited at most
once and we do not have properly edge-colored cycles, all the vertices not in
the longest s − t path will be isolated. However, to find a longest properly
edge-colored s − t trail we do not know how many times a given vertex
x ∈ V (Gc) \ {s, t} will be visited. Note that Lemma 2.1 cannot be applied
to this case. Nonetheless, we have the following result concerning the longest
properly edge-colored s− t trail.

Theorem 2.8. Let Gc be a c-edge colored graph with no properly edge-
colored closed trails and two vertices s, t ∈ V (Gc). Then, we can always find
in polynomial time, a longest properly edge-colored s− t trail in Gc, provided
that one exists.

Proof. Given Gc, construct the associated trail-path graph p − Hc for
p = ⌊(n − 1)/2⌋ (as described in Subsection 2.1). Note that, no vertices
may be visited more than p times in Gc. To see that, consider a properly
edge-colored s− t trail T of length n− 1 passing by x ∈ Gc with every cycle
through x in this path of lenght 3.

Now, using the same arguments as in Theorem 2.2, we can easily prove that
each properly edge-colored closed trail in Gc is associted with a properly
edge-colored cycle in p−Hc. Therefore, since Gc does not contain properly
edge-colored closed trails (by hypothesis), it follows that p − Hc has no
properly edge-colored cycle. In addition, note that p−Hc has O(n2) vertices.
Thus, by Theorem 2.7 we can find (if any) a longest properly edge-colored
path, say P between s1 and t1 in p−Hc in polynomial time. Therefore, the
associated trail, say T in Gc will be a longest properly edge-colored s − t
trail with cost(T ) = cost(P )

3 . �

We conclude this section with a result on longest paths of a randomized
flavor. Consider an arbitrary edge-colored graph Gc. Now, we show how to
construct (if exists) a properly edge-colored s − t path in Gc of length k =
O(logn) in randomized polynomial time. Actually, this is a straithforward
generalization of the color coding technique [1] for finding arbitrary paths
or cycles of length k in non-colored graphs or digraphs. In their work, a
random coloring of vertices is performed at each step. Similarly, in our case,
a random labelling of the vertices in W = V (Gc) \ {s, t} using labels of the
set Lk−1 = {1, 2, .., k − 1} is executed at each time.

Here, we say that a properly edge-colored s−t path P is fully labelled (instead
of colorful, as in [1]) if each vertex on it has a different label. Suppose that
labels 0 and k are assigned respectively to s and t. In this way, note that
(k − 1)!/(k − 1)(k−1) represents the probability of a properly edge-colored
s − t path of length k to become fully labelled. The following result shows
how many steps are necessary to find a fully labelled properly edge-colored

12



s− t path in Gc of length k (provided that one exists).

Lemma 2.9. Consider a c-edge colored graph Gc, two vertices s and t of
Gc, and l : W → Lk−1 a labelling of all vertices of W . If any, a fully labered
properly edge-colored path between s and t of length k in Gc can be found in
O(c(k − 1)2(k−1)m) time in the worst case.

Proof. As in [1], the proof is based on a dynamic programming approach.
Suppose that at iteration i (for i = 1, .., k−1) we have found for each vertex
v ∈ W , the possible sets of labels associated with fully labelled properly
edge-colored s−v paths of lengh i. Let Lv(i) be the collection of all these sets
of labels. In addition, also record the color of the last edge in the properly
edge colored path associated with some set L ∈ Lv(i) (represented here by
last(L, s, v)). At each step i, we verify all pairs (L, last(L, s, v)) (note that
at most c

(k−1
i

)

of such pairs are possible) and every edge (v, u) ∈ E. Thus, if
l(u) /∈ L (where l(u) denotes the label of vertex u) and c(vu) 6= last(L, s, v),
we add label l(u) to the collection of u corresponding to paths of length
i + 1. Finally, in the last step, since l(t) obviouslly belongs to every subset
L associated with the collection of some vertex x ∈ W , it suffices to verify
if xt ∈ E and c(xt) 6= last(L, s, x). Therefore, Gc contains a properly edge-
colored fully labelled s − t path of length k with respect to labelling L, if
and only if the final collection associated with vertex t is non-empty. Thus,
the maximum number of steps associated with each labelling L will be equal
to cm

∑k−1
i=1 i

(k−1
i

)

which is clearly O(cm(k − 1)2(k−1)). �

Therefore, if α = (k − 1)(k−1)/(k − 1)!, we have the following randomized
polynomial time algorithm to find a properly edge-colored s − t path of
length k in Gc.

Algorithm 4: Properly edge-colored s− t path of length k
Input: A c-edge colored graph Gc and two vertices s, t.
Output: A properly edge-colored path s− t path of length k in Gc (if any).
Begin

1. count← 0;
2. Repeat

2.1- Randomly, assign k − 1 labels to all vertices of V (Gc) \ {s, t};
2.2- count← count + 1;

Until (A full labered properly edge-colored s − t path of length k is
found) or (count = α);
End.

Theorem 2.10. Consider an arbitrary c-edge colored graph Gc and vertices
s, t ∈ V (Gc). Then, Algorithm 4 finds, if any, a properly edge-colored s − t
path of length k = O(logn) in randomized polynomial time.

Proof. Initially, observe that (k−1)!/(k−1)(k−1) represents the probability
of an s − t path of length k becoming fully labelled at each step. Suppose
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that this event is represented by A (good labelling) and its complement by
Ā (bad labelling). Therefore, the probability of bad labellings in all α trials
is nearly (1− 1

α)α ≤ 1
e . Then, Pr(A) > 1/e after α repetitions.

Now, by the Stirling’s approximation it follows that α < ek−1. Thus, from
the preceeding Lemma, the total complexity will be equal to O(cm(k −
1)2(k−1)ek−1). Therefore, we have a polynomial time procedure equal to
O(cmnO(d)) if we consider k = d.logn, where d is a constant. �

Corollary 2.11. Consider an arbitrary edge colored graph Gc. Then, we
can find, if any, a properly edge-colored s−t trail in Gc of length k = O(logn)
in randomized polynomial time.

Proof. It suffices to construct the associated trail-path graph p −Hc (for
p = ⌊(n−1)/2⌋) and to find, if possible, a properly edge-colored path between
s1 and t1 of length 3logn in p−Hc. �

2.4 The forbidden-pair version of the one s − t path/trail
problem

Consider a c-edge-colored graph Gc, a pair a vertices s, t and a set S =
{{s1, t1}, {s2, t2}, · · · , {sk, tk}} of k pairs of vertices of Gc. In the Properly
s− t Path with k Forbidden Pairs problem (ppkfp for short), the objective
is to find a properly edge-colored s − t path containing at most one vertex
from each pair in S. Using a simple transformation attributed to Häggkvist
[23], we prove the following result concerning c-edge colored graphs:

Theorem 2.12. The ppkfp problem is NP-complete.

Proof. The ppkfp obviously belongs to NP. To prove that ppkfp is NP-
hard, we construct a reduction from the Path with Forbidden Pairs problem
- pfp [14]. Given a digraph D(V,A), a pair a vertices s, t and a set S =
{{s1, t1}, {s2, t2}, · · · , {sk, tk}} of k pair of vertices, the objective in the pfp

problem is to define a s − t directed path in D that contains at most one
vertex from each pair in S or else decide that such a path does not exist in
D. In the present reduction, we construct a c-edge colored graph Gc(V ′, E)
with V ′ = V ∪ {P 1

~xy, .., P
c−1
~xy : ~xy ∈ A}. To simplify the notation, for every

~xy ∈ A consider x = P 0
~xy and y = P c

~xy. Now, the edge set E is constructed

in the following way: every arc ~xy ∈ A is changed by edges P j
~xyP

j+1
~xy for

j = 0, .., c − 1 with c(P j
~xyP

j+1
~xy ) = j + 1. The set S of forbidden pairs in

Gc remains the same. After that, it is easy to see that feasible paths in D
corresponds to feasible paths in G and vice-versa. �

In addition, notice that if k is constant, the ppkfp problem can be easily
solved in polynomial time. Basically, at each step i of this algorithm, we
construct a new graph Gi = (Vi, Ei) with Vi = V \Pi where Pi = {pi

1, .., p
i
k}
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and pi
j = sj or tj (for j = 1, .., k), and Ei = E(Vi). For each subgraph

Gi we find an properly edge-colored s − t path (provided that one exists)
using the Edmonds-Szeider graph. One can easily check that 2k possible
combinations of set Pi are necessary. In this way, the total complexity will
be equal to O(2kp(n,m)) where p(n,m) is the complexity of the shortest
properly colored s− t path algorithm defined previously. Finally, all results
in this section are easily extended to the Properly s−t Trail with k Forbidden
Pairs problem since it generalizes the ppkfp problem.

3 The k-path/trail problem

Let k-pvdp and k-pedt be the decision versions associated respectively
with Maximum Properly Vertex Disjoint Path (mpvdp) and the Maximum
Properly Edge Disjoint Trail (mpedt) problems, i.e., given a c-edge colored
graph Gc, two vertices s, t ∈ V (Gc) and an integer k ≥ 2, we want to
determine if Gc contains at least k properly edge-colored vertex disjoint
paths (respectively, edge disjoint trails) between s and t. Initially, in next
section we show that that both k-pvdp and k-pedt are NP-complete even
for k = 2 and c = O(n2). In particular, in graphs with no properly colored
cycles (respectively, closed trails) and c = O(n) colors, we prove that k-pvdp

(respectively, k-pedt) is NP-complete for an arbitrary k ≥ 2. Next, at the
end of the section, we stablish some approximation results and polynomial
algorithms for special cases for both mpvdp and mpedt problems.

3.1 NP-complete results for general graphs

In Theorem 3.2 stated below we will prove that both 2-pvdp and 2-pedt are
NP-complete for 2-edge-colored graphs. In view of that theorem, let us first
consider an auxiliary result concerning directed closed trails in digraphs.

Let u and v be two fixed vertices in a digraph D. Deciding if D contains or
not a directed cycle containing both u and v is known to be NP-complete [12].
Here, we denote this problem by Vertex-Disjoint Oriented Cycle (vdoc). In
next theorem we prove that deciding if D contains or not a directed closed
trail containing both u and v is also NP-complete. We denote this last
problem by Arc-Disjoint Oriented Closed Trail (adoct).

Theorem 3.1. The adoct problem is NP-Complete.

Proof. The adoct problem obviously belongs to NP. To prove that adoct

is NP-hard, we define a reduction from the following problem. Given four
vertices p1, q1, p2, q2 beloning to a digraph D, we wish to determine if there
exist 2 arc-disjoint directed trails connecting p1− q1 and p2− q2 in D. Here,
this problem will be named 2-Arc Disjoint Trail (2-adt) problem. As proved
in [12] the 2-adt is NP-complete.
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In particular, given a digraph D, we show how to construct in polynomial
time another directed graph D′ with a pair of vertices u, v in D′ such that
there are 2 arc-disjoint trails p1 − q1 and p2 − q2 in D, if and only if there
exists a directed closed trail containing both u and v in D′.

Before constructing D′ let us set S = {p1, p2, q1, q2}, S′ = {p′1, p′2, q′1, q′2}
and S′′ = {p′′1, p′′2 , q′′1 , q′′2}. The idea is to split apropriately each vertex pi

(qi) in S into two new vertices p′i and p′′i (q′i and q′′i ) beloning to S′ and S′′,
respectively. Thus, we have:

V (D′) = (V (D) \ S) ∪ S′ ∪ S′′ ∪ {u, v},

and

A(D′) =

(

A(D) \ {
⋃

x∈S

{ ~xy, ~yx : y ∈ ND(x)}}
)

∪
(

⋃

x′′∈S′′

{ ~x′′w : w ∈ N+
D (x)}

)

∪

∪
(

⋃

x′∈S′

{ ~wx′ : w ∈ N−
D (x)}

)

∪ { ~up′1,
~p′1p

′′
1,

~p′2p
′′
2 ,

~q′1q
′′
1 , ~q′′1v, ~vp′2,

~q′2q
′′
2 , ~q′′2u}.

Given the definitions above, consider two arc-disjoint trails p1−q1 and p2−q2,
say T1 and T2 respectively, in D. Then, it is easy to see that the sequence:

T = (u, p′1, p
′′
1 , T1, q

′
1, q

′′
1 , v, p′2, p

′′
2 , T2, q

′
2, q

′′
2 , u)

defines a closed trail containing both u and v in D′ (see Figure 1).

Conversely, consider a closed trail containing both vertices u and v in D′.
Note that, we have exacly one outcoming and one incoming arc incident to
u and v. It follows that, all closed trails containing u and v, also contain all
vertices in S′ and S′′ and each pair (p′i, p

′′
i ) and (q′i, q

′′
i ), for i = 1, 2, must be

visited exactly once. This is possible, if and only if we have a trail between
p′1 and q′′1 , and p′2 and q′′2 in D′. If we delete u, v ∈ D′, and contract all
pairs (p′i, p

′′
i ) to obtain pi, and (q′i, q

′′
i ) to obtain qi, i = 1, 2, we obtain 2

arc-disjoint trails p1 − q1 and p2 − q2 in D. �

Now, we have the following result:

Theorem 3.2. Let Gc be a 2-edge colored graph and 2 vertices s, t ∈ V (Gc).
Then, both 2-pvdp and 2-pedt problems are NP-Complete.

Proof. We can easily check in polynomial time that both 2-pvdp and
2-pedt problems are in NP. To show that they are NP-hard, we propose
polynomial time reductions from the vdoc and adoct problems, respec-
tively. Consider two vertices u and v in a digraph D . We show how to con-
struct in polynomial time, a 2-edge colored graph Gc and a pair of vertices
a, b ∈ V (Gc), such that there is a cycle (respectively, closed trail) containing
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u and v in D, if and only if there are 2 vertex-disjoint properly edge-colored
a− b paths (respectively, 2 edge-disjoint properly edge-colored a− b trails)
in Gc. Let us first define from D another digraph D′ by replacing u by
two new vertices s1, s2 with N−

D′(s2) = N−
D (u), N+

D′(s1) = N+
D (u). Similarly

replace t1, t2 and N−
D′(t2) = N−

D (v), N+
D′(t1) = N+

D (v). Finally, add the arcs
(s2, s1) and (t2, t1) in D′. Now in order to define Gc replace each arc ~xy of
D′ by a colored segment xzy where z is a new vertex and edges xz, zy are
on colors red and blue, respectively. Finally, we define z = a for z between
s1 and s2, and z = b for z between t1 and t2. Observe now that there is a
vertex-disjoint cycle (respectively, arc-disjoint closed trail) containing u and
v in D if and only if there are two vertex-disjoint properly edge-colored a−b
paths (respectively, properly edge-colored edge-disjoint a − b trails) in Gc.
�

Theorem 3.3. Both 2-pvdp and 2-pedt problems remain NP-complete
even for graphs with O(n2) colors.

Proof. Both 2-pvdp and 2-pedt problems restricted to graphs with O(n2)
colors obviously belongs to NP. Now, given a 2-edge colored graph Gc with
n vertices, define a complete graph Kc′

n with all edges of different colors
and an additional edge xy with x ∈ V (Kc′

n ), y ∈ V (Gc) and color c(xy) =
c′ + 1. In this way, the new resulting graph Gc′+1

α with edges E(Gc′+1
α ) =

E(Gc)∪E(Kc′
n )∪{xy} will have n2 +1 different edge colors and 2n vertices.

Therefore, 2 properly edge-colored s−t paths/trails in Gc (with 2 colors) will
correspond to 2 properly edge-colored paths/trails in Gc′+1

α with c′ = O(n2)
colors and vice-versa. Thus, from the preceeding theorem (restricted to 2-
edge colored graphs), we conclude that both 2-pvdp and 2-pedt problems
in graphs with O(n2) colors are NP-complete. �
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3.2 NP-complete results for graphs with no properly edge-
colored cycles (closed trails)

Now, we prove that k-pvdp and (respectively, k-pedt) for k ≥ 2, remains
NP-complete even for 2-edge colored graphs with no properly edge-colored
cycles (respectively, closed trails). We conclude this section generalizing
these results for graphs with O(n) colors.

Recall that, as discussed in previous sections, the existence or not of properly
edge-colored cycles or closed trails in edge-colored graphs may be checked in
polynomial time. Our proof is based on some ideas similar to those used by
Karp [21] for the Discrete Multicommodity Flow problem for non-oriented
(and non-colored) graphs (usually known in the literature as the Vertex
Disjoint Path problem).

Theorem 3.4. Let Gc be a 2-edge colored graph without properly edge-
colored cycles (respectively, closed trails). Given two vertices s and t in Gc,
to decide if there exist k properly vertex-disjoint s − t paths (respectively, k
properly edge-disjoint s− t trails) in Gc is NP-complete.

Proof. Let us first consider the vertex-disjoint version. The problem (short-
ened as usual to k-pvdp) obviously belongs to NP. To show that k-pvdp is
NP-hard we construct a reduction using the Satisfiability problem. Consider
a boolean expression B = ∧k

l=1Cl in the Conjuntive Normal Formula with
k clauses and n variables x1, .., xn. We show how to construct a 2-edge col-
ored graph Gc(V,E) and two vertices s, t and with no properly edge-colored
cycles, such that a truth assignment for B corresponds to k properly ver-
tex disjoint s − t paths in Gc, and reciprocally, k properly vertex-disjoint
s − t paths in Gc define a truth assignment for B. Basically, the idea is to
construct a set of k auxiliary source-sink pairs sl, tl of vertices, each pair
corresponding a to clause Cl. Each variable xj is associated to a 2-edge
colored grid graph Gj . Then graph Gc is obtained by apropriately joining
all together these grid graphs and then adding two new vertices s and t.

Given B, consider a boolean variable x occurring in the positive form in
clauses i1, i2, .., ip and in the negative form in clauses j1, j2, .., jq . Each ocur-
rence of x in the positive (negative) form is associated to a horizontal path
sia−tia (vertical path sjb

−tjb
) in the grid Gx such that all consecutive edges

between vertices sia and tia for a = 1, .., p (respectively, between sjb
and tjb

for b = 1, .., q) differ in one color. Every properly edge-colored path sia − tia
has a vertex in common with every properly edge-colored path sjb

− tjb
.

We say that grid Gx satisfy the blocking property if there are no properly
edge-colored paths between sia and tjb

, or respectively, between sjb
and tia

for some a = 1, .., p and b = 1, .., q (see the example of Figure 2). In the
first step, all grids Gxj

, for j = 1, .., n, are constructed satisfying the block-
ing property. Note that, different colorings of Gx satisfying the blocking
property are possible. In this case, we can arbitrally choose any one among
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them.

Now, we say that a set of grids satisfies the color constraint if all edges
incident to sl and tl, l = 1, .., k, in all ocurrences of sl and tl in the various
grids, have the same color. All grids Gxj

for j = 1, .., n, must be constructed
in order to satisfy both blocking property and color constraint. However,
note that the color constraint may be not verified after the first step. To
solve this problem, suppose w.l.o.g., that all edges incident to sl in the
various grids must be red if l is odd, and blue if l is even. Similarly, suppose
that all edges incident to tl (in the various grids) must be blue if l is odd,
and red if l is even.

Therefore, suppose that edge slw (for w ∈ NGxj
(sl)) must be blue. If

c(slw) = blue after the first step, we are done. Otherwise, we add a new
vertex p between sl and w and fix c(slp) = blue and c(pw) = red. We apply
this procedure for every edge incident to sl (for l = 1, ..k) in the various
subgraphs Gxj

for j = 1, .., n. Finally, we repeat the same transformation
for every tl and Gxj

for l = 1, .., k and j = 1, ..n. Note that, at the end
of this process, we have all grids satisfing both blocking property and color
constraint (see Figure 3(a)).

Now, the overall construction of graph Gc is done in two steps. Initially, we
identify all occurrences of sl (respectively, tl) beloning to the various grids
Gxj

, as a single vertex s′l (respectively, t′l). We repeat this process for each
l = 1, .., k. Let G′ be this new graph. Note that, due to the color constraint,
all edges incident to s′l (respectively t′l) in G′ must have the same color.

In the second step, we add a source s and destination t, and new edges ss′l
and t′lt for l = 1, .., k. Therefore, to construct k properly edge-colored paths
between s and t in this new graph, all edges ss′l (respectively t′lt) must be
colored with a different color, other than those incident to sl or tl in G′ (see
Figure 3(b)). Let G′′ this new graph.
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(a) To satisfy the color constraint, we colored all edges incident to s1, s3, t2
and t1, t3, x2, respectively, with red and blue colors. (b) To construct Gc we
add s and t, and 2 auxiliary vertices. All edges incident to s and t are blue
and red respectively.

Now, note that we can have c(ss′a) 6= c(ss′b) (analgously c(t′at) 6= c(t′bt)) for
some a, b ∈ {1, .., k} with a 6= b. In addition, by construction of our grids, we
can have a properly edge-colored path between s′a and s′b in some grid Gxj

for some j ∈ {1, .., n}. Therefore, in this case, we can have a properly edge-
colored cycle through s (or t) in G′′ (what is not allowed by hypothesis). To
avoid that in the construction of Gc, it suffices to add auxiliary vertices pi

between s and s′i (respectively, auxiliary vertices qi between t and t′i) and
conveniently change the colors of edges spi (respectively qit) such that all
edges incident to s (respectively t), have the same color. In this way, the
new resulting graph Gc will contains no properly edge-colored cycles.

Thus, given a truth assignment for B, we obtain a set of k properly edge-
colored vertex disjoint s− t paths in the following manner. If variable xj is
true, we select the horizontal paths in the grid Gxj

between vertices sia and
tia (for a = 1, .., p); if xj is false, we select the vertical paths between sjb

and tjb
(for b = 1, .., q). Note that, if either xj or x̄j occurs in clause Cl, and

is true in the assignment, we have a path between vertices s′l and t′l in G′

(and consequently, between s and t in Gc). Therefore, if B is true, we will
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have k properly vertex-disjoint paths between s and t in Gc, each of them
passing by s′l and t′l for l = 1, .., k.

Conversely, consider a set of k properly vertex disjoint s − t paths in Gc.
Observe in the grid Gxj

that, if we have a properly edge-colored path be-
tween vertices sia and tia′ for a ∈ {1, .., p} and a′ ≤ a, the clause Cia and
variable xj will be true. Analogously, if we have a path between sjb

and
tjb′

for b ∈ {1, .., q} and b′ ≤ b, the clause Cjb
will be true and variable xj

will be false. Thus, k properly vertex disjoint s − t paths will correspond
to k true clauses in B. Therefore, for an arbitrary k ≥ 2, we proved that
k-pvdp problem is NP-complete in 2-edge colored graphs with no properly
edge-colored cycles.

Now, we turn to the edge-disjoint version (k-pedt) of this problem. To
prove that k-pedt is NP-Complete, we cannot use the same arguments as
above. Note that, we can have 2-edge-disjoint paths between s and t in Gc

corresponding to vertical and horizontal paths in some grid Gx. In another
words, we can have a vertex in the intersection of both paths. If this happens,
we cannot determine the value of x in B. To solve this problem, it suffices to
change each vertex (represented by Xab) in the intersection of paths sia− tia
for a = 1, .., p (horizontal path) and sjb

− tjb
for b = 1, .., q (vertical path) in

the grid Gx by 3 new verticess w1, w2 and w3 as described in Figure 4.

In addition, suppose that verticess va,Xab and vc belongs to path sia − tia
and verticess vb,Xab and vd belongs to path sjb

−tjb
(in Gx). Further, w.l.o.g.

consider c(vaXab) = c(Xabvd) = red and c(vbXab) = c(Xabvc) = blue. In
this case, we split Xab into vertices w1, w2, w3 and fix c(w1w2) = blue and
c(w1w2) = red (see Figure 4). Note that this new graph with grids, say G′

x,
also satisfy both blocking property and color constraint. Further, in G′

x, if
we have a path between sia and tia (for some a ∈ {1, .., p}) passing by va

and vc, we cannot have a path between sjb
and tjb

(for some b ∈ {1, .., q})
passing by vb and vd (otherwise, both paths would not be edge disjoint). If
we repeat this construction at every grid Gx in Gc (to obtain new grids G′

x),
we conclude that k-pedt problem is NP-complete in 2-edge colored graphs
with no properly edge-colored cycles.
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Finally, to extend this result to 2-edge colored graphs with no properly
edge-colored closed trails, it suffices to repeat the construction above and
replace one or more arbitrary edges xy ∈ Gc with color i ∈ {red, blue} by
a colored segment xzy where z is a new vertex between x and y, and 2
additional vertices p, q with edges zp, pq and qz. These edges are colored in
the following way: c(xz) = c(zy) = c(pq) = i and c(zp) = c(qz) 6= i. In this
way, k properly edge disjoint s − t trails in this new graph Gc (with colors
red and blue) will be associated to a true assignment for B and vice versa.
�

Theorem 3.5. The k-pvdp (respectively, k-pedt) problem remains NP-
complete even for graphs with O(n) colors and no properly edge-colored cycles
(respectively, closed trails).

Proof. The k-pvdp (k-pedt) problem in graphs with n colors and no
properly edge-colored cycles (closed trails) is obviously in NP. Let Gc a 2-
edge colored graph with no properly edge-colored cycles (closed trails) and
2 vertices s, t ∈ V (Gc). Using Gc, we construct a new graph Gc′

α with
c′ = n colors and no properly edge-colored cycles (closed trails) such that k
properly vertex (edge) disjoint s − t paths (trails) in Gc, corresponds to k
properly vertex (edge) disjoint s− t paths (trails) in Gc′

α and vice versa.

First, consider a non-colored complete graph G1 = Kn. Choose an arbitrary
x ∈ V (G1) and color c(xy) = 1 for every y ∈ NG1

(x). Let G2 = G1 \ {x}
be the new resulting non-colored graph. Choose a new vertex x ∈ V (G2)
and color c(xy) = 2 for every y ∈ NG1

(x). Repeat the process above for
every non-colored graph Gi for i = 1, .., n − 1. Let Kc′

n for c′ = n − 1, the
resulting colored complete graph. Obviously, Kc′

n contains no properly edge-
colored cycles (closed trails). Finally, add a new edge pq with p ∈ V (Gc),
q ∈ V (Kc′

n ) and a new color c(pq) = n. Note in this way, that the new graph
Gc′

α with edges E(Gc′
α ) = E(Gc) ∪ E(Kc′

n ) ∪ {xy} contains no alternating
cycles (closed trails) and will have n different colors. Therefore, it follows
from the preceeding theorem (restricted to 2-edge colored graphs) that the
k-pvdp (k-pedt) problem in graphs with n colors and no properly edge-
colored cycles (closed trails) is NP-complete. �

3.3 Some Approximation and Polynomial results

Given two vertices s and t in an edge-colored graph Gc we consider the
problem of finding the Maximum number of Properly Edge-Disjoint s − t
Trails - mpedt (respectively, Maximum number of Properly Vertex-Disjoint
s − t Paths - mpedt) in Gc. In the sequel, we describe a greedy procedure
for the mpedt, based in the determination of shortest properly edge-colored
s − t trails. Its performance ratio is based on the same arguments used for
the Edge Disjoint Path problem between k pairs of vertices in non-directed
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graphs [19, 22]. We conclude this section by presenting some polynomial
results for some particular instances of both problems.

Algorithm 5: Greedy procedure for mpedt problem

Input: A c-edge colored graph Gc and two vertices s, t of Gc.
Output: A set X of edges corresponding to the maximum possible number
of properly edge-colored edge-disjoint s− t trails.
Begin

1. X ← ⊘; E ← E(Gc)
2. Repeat

2.1 Using Alg. 2, find a shortest properly s− t trail T in Gc;
2.2 X ← X ∪ E(T );
2.3 E(Gc)← E(Gc) \ E(T );

Until (no properly edge-colored s− t trails are found);
End.

Now consider the following definitions: we say that a trail T1 hits a trail
T2, or equivalently, that T2 is hitted by T1, if and only if T1 and T2 share a
common edge. If Γ denotes the set of all properly edge-colored s − t trails,
we define I ⊆ Γ as the subset of trails obtained by the greedy procedure and
J ⊆ Γ the subset of trails associated to the optimal solution.

Theorem 3.6. Algorithm 5 has performance ratio equal to O(1/
√

m).

Proof. Let T ∈ Γ be an arbitrary trail in Gc. We say that a trail T ∈ Γ is
short if |E(T )| ≤ √m, and long otherwise. Therefore, for a trail T ∈ Jlong

we have |E(T )| ≥ (
√

m + 1) and |Jlong|(
√

m + 1) ≤ m. Thus, w.l.o.g., if we
consider |I| ≥ 1, it follows that |Jlong| <

√
m < |I|√m.

Additionally, we can say that every trail Tj ∈ Jshort \ I is hit by a trail
Ti ∈ Ishort, otherwise (if Ti ∈ Ilong) at the point when Ti was picked, Tj

was available and shorter than Ti and should have been taken by the greedy
procedure. Thus, if Ti is the shortest trail that hits Tj we have |E(Ti)| ≤
|E(Tj)| ≤

√
m.

Now, observe that all trails in Ishort have at most |Ishort|
√

m edges and each
Pj ∈ Jshort \ I is hitted by at least one edge of Ishort. Futhermore, since all
trails Tj are edge-disjoint it follows that one edge in Ishort cannot hit more
then one trail Tj . Thus, |Jshort \ I| ≤ |Ishort|

√
m ≤ |I|√m.

Finally, we have |J | = |Jshort| + |Jlong| < |(Jshort \ I) ∪ I| + |I|√m ≤
(2
√

m+1)|I| which guarantees a O(1/
√

m) performance ratio for the mpedt

problem. �

To give some idea about the determination of the value
√

m above, suppose
that a trail T1 hits k paths of J \ I1 at the first step of Algortihm 5. Note
that, one edge of T1 can hit at most one other path of J and therefore T1

have length at least k. Since T1 is a shortest s − t trail, all other trails in
J \ I1 also have at least k edges. Therefore, k2 ≤ m, so k =

√
m. This idea
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Figure 5: Let Gc be a 2-edge colored graph. Suppose |E(Ti)| = k + 2 for
i = 1, .., k/2. The ratio between Algorithm 3 and the optimal solution is
2/k.

may be inductively applied for the remaining steps of the greedy procedure.

In the Figure 5, we consider a 2-edge colored graph graph Gc with |E(Ti)| =
k + 2 for i = 1, .., k/2. In this case, since |E(T0)| = k + 1 (the shortest
s − t trail), Algorithm 5 will first consider T0, hitting k/2 properly edge-
colored s − t trails. Clearly the optimal solution is obtained by choosing
trails T1, .., Tk/2. Thus 2/k is ratio between greedy and optimal solution
where k ≤ √m.

We turn now to the vertex-disjoint version of the above problem, namely,
the Maximum number of Properly Vertex-Disjoint s − t paths in Gc. We
can easily modify Algorithm 5 to solve mpvdp. In this case, after the deter-
mination of a shortest s− t path P (instead of trail T ), it suffices to remove
all vertices beloning to P \ {s, t}. We call this new procedure Greedy-VD.
Using the same ideas as described in Theorem 3.6, we proof the following
result:

Theorem 3.7. The Greedy-VD procedure has performance ratio equal to
O(1/

√
n) for the mpvdp problem.

We end this section with some polynomial results for some specific families of
graphs. To begin with, we introduce the following definition: given an edge
colored graph Gc, we say that a cycle Cx : xa1 · · · ajx with x 6= ai for i =
1, .., j is an almost properly colored cycle (closed trail) through x in Gc, if and
only if c(xa1) = c(xaj) and both paths (respectively trails) x−a1 and x−aj

are properly colored. If c(xa1) 6= c(xaj), then Cx define a properly edge-
colored cycle (closed trail) through x. In the sequel, we show how to solve
the mpvdp (respectively, mpedt) problem in polynomial time for graphs
containing no properly or almost properly colored cycles (respectively, closed
trails) through s or t. Notice that to check if a colored graph Gc contains or
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not a properly or an almost properly cycle (closed trail) through x, it suffices
to define an auxiliary graph Gc

x obtained from Gc by replacing x with two
new vertices xa and xb and setting NGc

x
(xa) = NGc(x) and NGc

x
(xb) =

NGc(x). Now, using Theorem 1.2 (respectively, Corollary 2.3) we compute,
if any, a properly edge-colored xa− xb path (trail) in Gc

x. Clearly if no such
xa − xb path (trail) exists in Gc

x, then there exists no properly or almost
properly edge colored cycle (closed trail) through x in Gc.

Initially, consider the following decision version associated with mpvdp prob-
lem. Given some constant k ≥ 1, we show how to construct a polynomial
time procedure for the k-pvdp in graphs with no (almost) properly colored
cycles through s or t.

Theorem 3.8. Consider a constant k ≥ 1 and a c-edge colored graph Gc

with no (almost) properly colored cycles through s or t. Then, the k-pvdp

problem may be solved in polynomial time.

Proof. Suppose, w.l.o.g., that we do not have (almost) properly colored
cycles through vertex s in Gc. Observe in this case that (almost) properly
colored closed trails (with vertex repetitions) through s are allowed.

For k = 1, the problem is polynomially solved by Edmonds-Szeider’s Algo-
rithm. For k ≥ 2, we construct an auxiliary non-colored graph G′ in the fol-
lowing way. As discussed in Section 1, we first define W = V (Gc)\{s, t}, and
non-colored graphs Gx for every x ∈W (see the first part in the definition of
the Edmonds-Szeider’s graph). Now, define Sk = {s1, .., sk}, Tk = {t1, .., tk}
and proceed as follows:

V (G′) = Sk ∪ Tk ∪ (
⋃

x∈W V (Gx)), and
E(G′) =

⋃

j=1,..,k

(
⋃

i∈Ic
{(sjxi|sx ∈ Ei(Gc)) ∪ (xitj |xt ∈ Ei(Gc))}

)

∪
(
⋃

i∈Ic
(xiyi|xy ∈ Ei(Gc))

)

∪
(
⋃

x∈W E(Gx)
)

.

Now, find a perfect matching M (if any) in G′ and concatenate each sub-
graph Gx into a single vertex x. Let G′′ this new graph. Observe that all
paths in G′′ are defined by edges belonging to M ∩ E(G′′). In addition, we
cannot have a path between si and sj in G′′ (otherwise, we would have a (an
almost) properly cycle though s in Gc). In this way, all paths in G′′ begins
at vertex si ∈ Sk and finish at some vertex tj ∈ Tk. Finally, we construct a
non-colored graph G′′′ by concatenating Sk and Tk respectively to vertices
s and t. In this way, note that s− t paths in G′′′ are associated to properly
edge-colored s− t paths in Gc and vice-versa. Therefore, if the construction
of a perfect matching M in G′ is possible (what is done in polynomial time),
we obtain k properly edge colored s− t paths in Gc. �

Since the perfect matching problem is solved in polynomial time, we can
easily construct a polynomial time procedure for the mpvdp in graphs with
no (almost) properly colored cycles through s or t. To do that, it suffices to
repeat all the steps described in Theorem 3.8 for k = 1, .., n − 2 until some
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non-colored graph G′ containing no perfect matchings is found.

The ideas above may be generalized for the mpedt in graphs with no (al-
most) properly colored closed trails through s or t. First, consider its asso-
ciated decision version.

Theorem 3.9. Consider a constant k ≥ 1 and a c-edge colored graph Gc

with no (almost) properly edge-colored closed trails through s or t. Then,
the k-pedt problem may be solved in polynomial time.

Proof. Given Gc, construct the associated trail-graph p−Hc (as described
in Section 2) for p = ⌊(n−1)/2⌋. Note that, no vertices may be visited more
than p times in Gc even if they share different properly edge-colored s − t
trails. To see that, condider a vertex x ∈ Gc and a properly edge-colored
s−t trail of length 2 through x, all other properly edge-colored trails through
x will have at least 4 edges (each of them containing 2 new vertices in Gc).

Suppose, w.l.o.g., that we do not have (almost) properly colored closed trails
through vertex s in Gc. Now, using Theorem 2.2, we can easily prove that
Gc contains a (an almost) properly colored closed trail through s, if and
only if, Hc contains a (an almost) properly colored cycle through s1. As
a consequence of that, we have no (almost) properly edge-colored cycles
through s1 in Hc. Thus, by Theorem 3.8 we can find in polynomial time (if
any) k properly edge-colored paths between s1 and t1 in the graph Hc. Now,
by concatenating every subgraph Hc

xy in Hc to edge xy in Gc we obtain k
properly edge-colored s− t trails in Gc. �

Similarly to the mpvdp problem, to construct a polynomial procedure for
the mpedt, it suffices to repeat all the steps above (in Theorem 3.9 for
k = 1, .., n−2 until some non-colored graph associated to Hc and containing
no perfect matching is found.

4 Conclusions and open problems

In this work, we have considered path problems in edge-colored graphs. We
generalized some previous results concerning properly edge-colored paths
and cycles in colored graphs, which allowed us to devise efficient algorithms
for finding them. On the negative side, we proved that finding k properly
vertex/edge disjoint s−t paths/trails is NP-complete even for k = 2 and c =
O(n2). In addition, we showed that both problems remain NP-complete for
arbitrary k ≥ 2 in graphs with no properly edge-colored cycles (closed trails)
and c = O(n), which led us to investigate approximation. For that purpose,
a procedure for maedp, which greedily builds shortest properly edge-colored
s − t paths, was shown to have a respectable O(1/

√
m) performance ratio.

Similarly, we obtained an approximation ratio in O(1/
√

n) for the mavdp.
Finally, we showed that both mavdp (maedp) are solved in polynomial time
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when restricted to graphs with no properly edge-colored cycles (closed trails)
through s or t. However, the following questions are left open.

Is the following problem NP-complete?

Problem 4.1. Input: Given a 2-edge colored graph Gc(V,E) with no prop-
erly edge-colored cycles, two vertices s, t ∈ V and a fixed constant k ≥ 2.
Question: Does G constain k properly edge-colored vertex/edge disjoint paths
between s and t?

As a future direction, another important question is to consider the approx-
imation performance ratio (as well as inapproximability results) for both
mpvdp and mpedt for general colored graphs or for graphs with no prop-
erly edge-colored cycles (closed trails). Finally, another interesting topic of
research is to generalize our results on properly edge-colored walks in c-edge
colored graphs with edge capacities.

We conclude our paper by recalling the following open problem from [23].

Problem 4.2. Let s and t be two fixed vertices in an edge-colored complete
graph Kc

n. Does there exist a polynomial algorithm for finding the maximum
number of pairwise edge-disjoint s− t trails in Kc

n?
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