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Abstract

By extending Heider’s and Cartwright-Harary’s theory of balance in deterministic social structures,
we study the problem of balance in social structures where relations between individuals are random.
An appropriate model for representing such structures is the so called random signed graphs Gn,p,q

defined as follows. Given a set of n vertices and fixed numbers p and q, 0 < p+ q < 1, then, between
each pair of vertices, there exists either a positive edge with probability p, or a negative edge with
probability q, or there is no edge with probability 1− p− q.

We first show that, almost always (i.e. with probability tending to 1 as n −→ ∞), the random
signed graph Gn,p,q is unbalanced. Subsequently we estimate the maximum order of a balanced
induced subgraph in Gn,p,p, and show that its order achieves only a finite number of values. Next,
we study the asymptotic behavior of the degree of balance and give upper and lower bounds for
the line-index of balance. Finally, we study the threshold function of balance, e.g., a function p0(n)
such that if p ≫ p0(n), then almost always the random signed graph Gn,p,p is unbalanced, else it is
almost always balanced.

1 Introduction and terminology

Within the rapid growth of the Internet and the Web, and in the ease with which global
communication now takes place, connectedness took an important place in modern society.
Global phenomena, involving social networks, incencitives and the behavior of people based
on the links that connect us appear in a regular manner. Motivated by these developements,
there is a growing multidisciplinary interest to understand how highly connected systems
operate [3]. In our discussion here, we consider social networks settings with both positive
and negative effects. Some realtions are friendly, but others are antagonistic or hostile. In
such a context, let P define a population of n individuals. Given a symmetric relationship
between individuals in P , the simplest approach to study the behavior of such a population
is to consider a graph G in which the vertices represent the individuals, and there exists an
edge between two vertices x and y in G if and only if the corresponding individuals are in
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relation in P . In social sciences we often deal with relations of opposite content, e.g., “love”-
“hatred”, “likes”-“dislikes”, “tells truth to”-“lies to” etc. In common use opposite relations
are termed positive and negative relations. A signed graph is one in which relations between
entities may be of various types in contrast to an unsigned graph where all relations are of the
same type. In signed graphs edge-coloring provides an elegant and uniform representation
of the various types of relations where every type of relation is represented by a distinct
color.

In the case where precisely one relation and its opposite are under consideration, then
instead of two colors, the signs + and − are assigned to the edges of the corresponding
graph in order to distinguish a relation from its opposite. Formally, a signed graph is a
graph G = (V, E) together with a function f : E −→ {+,−}, which associates each edge
with the sign + or −. In such a signed graph, a subset H of E(G) is said to be positive if it
contains an even number of negative edges, otherwise is said to be negative. A signed graph
G is balanced if each cycle of G is positive. Otherwise it is unbalanced.

The theory of balance goes back to Heider (1946) [10] who asserted that a social system
is balanced if there is no tension and that unbalanced social structures exhibit a tension
resulting in a tendency to change in the direction of balance.

Since this first work of Heider, the notion of balance has been extensively studied by many
mathematicians and psychologists. For a survey see [15].

In 1956, Cartwright and Harary [2] provided a mathematical model for balance through
graphs. Their cornerstone result states that a signed graph is balanced if and only if in
each cycle the number of negative edges is even. The following theorem of Harary gives an
equivalent definition of a balanced signed graph.

Theorem 1.1 (Harary [7]). A signed graph is balanced if and only if its vertex set can be
partitioned into two classes (one of the two classes may be empty) so that every edge joining
vertices within a class is positive and every edge joining vertices between classes is negative.

In 1958, Morissette [12] introduced the notion of “degree of balance”, a measure of relative
balance by which one can decide whether one unbalanced structure is more balanced than
another one. Cartwright and Harary [2] suggested an approximation of the degree of balance
by studying the rather naive ratio ρ = X+/X of the number X+ of positive cycles to the
total number X of cycles. Clearly, ρ lies between 0 and 1. Later, Flament [5], Cartwright
and Harary [2], Taylor [16] and Norman-Roberts [13] observed that cycles of different lengths
contribute differently to balance, with longer cycles being less important than shorter ones.
Thus, one natural way to speak of relative m-balance is to use the ratio of the number of
positive cycles of length at most m to the total number of cycles of length at most m.
Norman and Roberts [13] proposed to study relative balance by using the ratio

∑

m≥3

f(m)X+
m

∑

m≥3

f(m)(X+
m +X−

m)
,

where X+
m (X−

m) denotes the number of positive (negative) cycles of length m and f(m) is a
monotone decreasing function which weights the relative importance of cycles of length m.

In another rather different approach, balance is measured by counting the smallest number
δ of edges whose inversion of signs would result in a balanced signed graph. The parameter δ
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is called the line-index of balance. An interesting result concerning the line-index of balance
can be found in [8], where the following result has been proved.

Theorem 1.2 (Harary [8]). The line-index δ of balance of a signed graph G is the
smallest number of edges whose removal from G results in balance.

For other results on this measure the reader is refereed to [9] and the survey paper of
Taylor [16].

In this work we deal with a probabilistic model where we assume that relations between
individuals are random (see also [6]). A good mathematical model for representing such
random social structures is the so called random signed graph Gn,p,q which we introduce
here as follows. Let p, q be fixed, 0 < p+ q < 1. Given a set of n vertices, V = {1, · · · , n},
between each pair of distinct vertices x and y there is either a positive edge with probability
p or a negative edge with probability q, or else there is no edge at all with probability
1− (p+ q). The edges between different pairs of vertices are chosen independently. Another
way to define the random signed graph Gn,p,q is as follows. Define first the random (non-

signed) graph G̃n,p,q (G̃n,p,q has the same probability distribution as the standard random
graph Gn,p+q with edge probability p+ q). Next, for any fixed pair {x, y} of vertices of V ,
assign

Pr
[

{x, y} is positive in Gn,p,q {x, y} ∈ E(G̃n,p,q)
]

=
p

p+ q

and
Pr

[

{x, y} is negative in Gn,p,q {x, y} ∈ E(G̃n,p,q)
]

=
q

p+ q
.

In other words, Gn,p,q can be considered as the random variable on the set of the signed
graphs on n vertices whose probability distribution is given by

Pr [Gn,p,q = G0] = pmqk(1− p− q)(
n

2)−m−k.

where G0 is a fixed signed graph with m positive edges and k negative edges.

Throughout this paper, if P is a graph property then the expression “almost always”
Gn,p,q satisfies P, means “ with probability tending to 1 as n −→ ∞”, Gn,p,q satisfies P.

In this work we study the aforementioned measures of balance in the case of random
signed graphs. In particular, in the next section we show that, almost always, the random
signed graph Gn,p,q is unbalanced. Then we estimate the maximum order β = β(Gn,p,p)
of a balanced induced subgraph in Gn,p,p, and show that, almost always, β achieves only a
finite number of values.

In Section 3, we study relative m-balance in Gn,p,p, and prove that for a fixed integer m,

the ratio
X+

m

X+
m +X−

m

tends to
1

2
with probability tending to 1 as n −→ ∞.

In Section 4, we derive estimates of the upper and lower bounds for the line-index of balance.

Finally, in Section 5 we study the threshold function of balance, that is a function p0(n)
such that if p ≫ p0(n), then almost no signed graph is balanced, and if p ≪ p0(n), then
almost every signed graph is balanced.

Throughout this paper we shall use the following notations and definitions. Let G =
G(V,E) be a signed graph with vertex set V and edge set E = E(G). We shall denote by
G̃ the underlying simple graph obtained from G by ignoring the signs of its edges.

Let Cm = Cm(Kn) denote the set of all possible cycles of length m in the complete graph

Kn on n vertices. Clearly |Cm| = (m−1)!
2

(

n
m

)

.
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If Cm is an element of Cm, then the notation G̃n,p,p ⊇ Cm means that the cycle Cm is

contained in G̃n,p,p. We let Xm denote the number of cycles of length m contained in the

random graph G̃n,p,p

Xm =
∑

Cm∈Cm

1{G̃n,p,p⊇Cm}.

Xm is also the total number of (positive and negative) cycles of length m in the random
signed graph Gn,p,p. Furthermore, X+

m (X−
m) denotes the number of positive (negative)

cycles of length m in Gn,p,p.

We observe that in our probabilistic model the random signed graph Gn,p,q is almost
always connected and it contains at least one cycle of an arbitrary length (see [14, page 14]).

2 The maximum order of a balanced induced subgraph

In view of Theorem 2.2 we prove the following lemma.

Lemma 2.1. Let H be a fixed set of h distinct pairs of vertices of Gn,p,q.

Pr
[

H is positive in Gn,p,q H ⊆ E(G̃n,p,q)
]

=
1

2

[

1 +

(

p− q

p+ q

)h
]

and

Pr
[

H is negative in Gn,p,q H ⊆ E(G̃n,p,q)
]

=
1

2

[

1−
(

p− q

p+ q

)h
]

.

Proof. Let H be a fixed set of h pairs of vertices. Then

p1 = Pr
[

H is positive in Gn,p,q H ⊆ E(G̃n,p,q)
]

=
∑

i even

Pr
[

|H−| = i
]

,

where |H−| is the number of negative edges in H. Thus

p1 =
1

(p+ q)h

∑

i even

(

h

i

)

qiph−i.

Similarly,

p2 = Pr[H is negative in Gn,p,q H ⊆ E(G̃n,p,q)] =
1

(p+ q)h

∑

i odd

(

h

i

)

qiph−i.

We obtain the following system of equations















p1 + p2 = 1

p1 − p2 =

[

p− q

p+ q

]h

.

By solving this system, we obtain the desired expressions for p1 and p2. 2
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Theorem 2.2. Let p and q be fixed positive real numbers, 0 < p+ q < 1. Then, almost
always, Gn,p,q is unbalanced.

Proof. Let T denote a maximum set of disjoint-edge triangles in the complete graph
Kn. To prove the theorem it suffices to show that, almost always, Gn,p,q contains a negative
triangle from T.

Clearly |T| ≥ ⌊n

3
⌋. Let T be a fixed element of T. We have

Pr [T ⊆ G̃n,p,q and T is negative] = Pr [ T is negative T ⊆ G̃n,p,q]×Pr [ T ⊆ G̃n,p,q]
Using Lemma 2.1, we get

Pr [T ⊆ E(G̃n,p,q) and T is negative] =
1

2

[

1−
(

p− q

p+ q

)3
]

(p+ q)3

=
1

2

[

(p+ q)3 − (p− q)3
]

Thus, the probability that Gn,p,q contains a negative triangle from T is at least

1−
(

1− 1

2

[

(p+ q)3 − (p− q)3
]

)⌊n
3 ⌋

.

As p and q are fixed, this last expression tends to 1 as n −→ ∞.
2

A natural problem which arises from this theorem is to derive estimates of the maximum
order, denoted by β = β(Gn,p,p), of a balanced induced subgraph in Gn,p,p where p is fixed.
The following theorem shows that, almost always, β achieves only a finite number of values.
More precisely, let d(n) be the function defined by

d(n) = 2 log 1
1−p

(n)− 2 log 1
1−p

log 1
1−p

(n) + 1 + 2 log 1
1−p

(
e

2
).

Theorem 2.3. Let ǫ > 0 be fixed. Let p be fixed, 0 < 2p < 1. Then

Pr
[

⌊d(n)− ǫ⌋ ≤ β(Gn,p,p) ≤ ⌊d(n) + 2 log 1
1−p

2 + ǫ⌋
]

−→ 1 as n −→ ∞.

Proof. Since each induced subgraph of Gn,p,p without negative edges is balanced, we
obviously have

β(Gn,p,p) ≥ α(Gn,p),

where α(Gn,p) denotes the independence number of the random graph Gn,p. Using the
following result due to Matula[11] (see also [1, page 251]

Pr [⌊d(n)− ǫ⌋ ≤ α(Gn,p) ≤ ⌊d(n) + ǫ⌋] −→ 1 as n −→ ∞.

we get the lower bound for β(Gn,p,p)

Pr [⌊d(n)− ǫ⌋ ≤ β(Gn,p,p)] −→ 1 as n −→ ∞.
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To conclude the proof, it remains to show that there exists no balanced induced subgraph
of order > ⌊d(n) + 2 log 1

1−p
2 + ǫ⌋; that is

Pr
[

β(Gn,p,p) > ⌊d(n) + 2 log 1
1−p

2 + ǫ⌋
]

−→ 0 as n −→ ∞.

Let Nr be the number of sets of r vertices whose induced subgraph is balanced. By using
Markov inequality

Pr [Nr ≥ 1] ≤ E(Nr),

it suffices to prove that, for r > d(n)+2 log 1
1−p

2+ǫ, E(Nr) −→ 0 as n −→ ∞, which implies

that Pr[Nr = 0] −→ 1 as n −→ ∞.

Let S be a fixed set of r vertices of Gn,p,p. By Theorem 1.1, the subgraph induced by S
is balanced if and only if S can be partitioned into two classes V1 and V2 such that

(i) the subgraph induced by V1 (resp. V2) contains no negative edge,

(ii) there is no positive edge between V1 and V2 .

The probability that a given bipartition {V1, V2} of S satisfies simultaneously conditions
(i) and (ii) is

(1− p)
r(r−1)

2 .

The probability that there exists a partition of S satisfying the above conditions is smaller
than

2r−1(1− p)
r(r−1)

2 .

Thus

E(Nr) ≤ 2r−1

(

n

r

)

(1− p)
r(r−1)

2 .

Using Stirling’s formula, we get

E(Nr) ≤
1

2
√
2πr





2en(1− p)
(r−1)

2

r





r

.

Hence, E(Nr) −→ 0 if, for large n, we have

2en(1− p)
(r−1)

2

r
≤ 1. (1)

Set

f(r) =
2en(1− p)

(r−1)
2

r
.

Let ǫ be a fixed real number ǫ > 0. Since f is a monotone decreasing function, inequality
(1) will certainly be true, for r > d(n) + 2 log 1

1−p
2 + ǫ, if

f
(

d(n) + 2 log 1
1−p

2 + ǫ
)

≤ 1. (2)

A straightforward computation shows that (2) is equivalent to
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2(1− p)
ǫ
2 log 1

1−p
(n)

d(n) + 2 log 1
1−p

2 + ǫ
≤ 1. (3)

On replacing d(n) + 2 log 1
1−p

2 + ǫ by its lower bound 2 log 1
1−p

(n) − 2 log 1
1−p

log 1
1−p

(n), we

see that (3) is satisfied if

2(1− p)
ǫ
2 log 1

1−p
(n)

2 log 1
1−p

(n)− 2 log 1
1−p

log 1
1−p

(n)
≤ 1.

It is not hard to see that the above condition is asymptotically true, since (1 − p)
ǫ
2 < 1.

This completes the proof. 2

3 The degree of balance

In Theorem 3.3 formulated later in this section, we study relative m-balance by using the
ratio δ = X+

m/Xm of the number X+
m of positive cycles of length m to the total number

Xm of cycles of length m in Gn,p,p. In view of the proof of Theorem 3.3, we first prove two
lemmas which could be interesting on their own.

Lemma 3.1. Let H1, H2, · · · , Ht be t fixed distinct sets of pairs of vertices, t ≥ 2. Let

H =
t
⋃

i=1

Hi. Then, the events

{ Hi is positive in Gn,p,p H ⊆ E(G̃n,p,p)}, for i = 1, · · · , t ,
are pairwise independent.

Proof. We denote by PH the conditional probability given {H ⊆ E(G̃n,p,q}. Let Hi

and Hj be two distinct elements of {H1, · · · , Ht}. We have to prove that

PH[Hi and Hj are both positive ] = PH[Hi is positive ]× PH[Hj is positive ].
Since, by Lemma 2.1, each probability in the right side of the above expression is equal to
1

2
, it suffices to show that

PH[Hi and Hj are both positive ] = 1

4
.

Observe first that the statement is trivially true when Hi and Hj are disjoint sets.

Suppose now that one of the two sets is contained in the other, for example Hi ⊂ Hj .
Then

PH[Hi and Hj are both positive ] =
PH[Hi is positive ]× PH[Hj \Hi is positive ] = 1

4
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Consider now the case where Hi ∩Hj 6= ∅, and none of the two sets is contained in the
other. Then, clearly Hi and Hj are both positive if and only if either each of Hi \Hj , Hi ∩
Hj , Hj \Hi is positive or each of Hi \Hj , Hi ∩Hj , Hj \Hi is negative. Thus

PH [Hi and Hj are both positive ]

= PH[Hi \Hj is positive]× PH[Hj \Hi is positive]× PH[Hi ∩Hj is positive]

+ PH[Hi \Hj is negative]× PH[Hj \Hi is negative]× PH[Hi ∩Hj is negative].
By Lemma 2.1, each probability in the right side of the above equality is equal to 1/2. Thus

PH[H1 and H2 are both positive] = 1

4
.

2

Lemma 3.2. Let m be a fixed integer, 0 ≤ m ≤ n. Let Xm denote the total number of
cycles of length m in Gn,p,p. Then, for any arbitrarily small ǫ > 0,

Pr [|Xm − E(Xm)| ≥ ǫE(Xm)] ≤ 4m2m+3

ǫ2n(2p)m
.

Proof.
Expectation of Xm

Clearly

E(Xm) =
(m− 1)!

2

(

n

m

)

(2p)m.

Since m is fixed, we have

(m− 1)!

2

(

n

m

)

∼ nm

2m
.

Thus

E(Xm) ∼ nm

2m
(2p)m. (4)

Variance of Xm

E(X2
m) = E

[

∑

Cm∈Cm

1{Gn,p,p ⊇ Cm }

]2

=
∑

Cm,C′

m∈Cm

Pr [Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′
m]

=
m
∑

k=0





∑

|Cm∩C′

m|=k

Pr [Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′
m]



 , (5)
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where, for a fixed k, the first sum is considered over all cycles having precisely k vertices in
common.

For k = 0,

∑

|Cm∩C′

m|=0

Pr [Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′
m]

=

[

(m− 1)!

2

]2 (
n

m

)(

n−m

m

)

(2p)2m

∼ n2m(2p)2m

4m2
. (6)

For k ≥ 1,

∑

|Cm∩C′

m|=k

Pr [Gn,p,p ⊇ Cm and Gn,p,p ⊇ C ′
m]

≤ (m!)2
(

n

m

)(

m

k

)(

n−m

m− k

)

(2p)2m−k

≤ m2kn2m−k(2p)2m−k . (7)

By (5), (6) and (7),

E(X2
m) ≤ n2m(2p)2m

4m2
+

m
∑

k=1

m2kn2m−k(2p)2m−k

≤ n2m(2p)2m

4m2
+

m
∑

k=1

m2mn2m−1(2p)m

≤ n2m(2p)2m

4m2
+m2m+1n2m−1(2p)m. (8)

From (4) and (8) we obtain

E(X2
m)

E2(Xm)
≤ 1 +

4m2m+3

n(2p)m
.

Thus
var(Xm)

E2(Xm)
≤ 4m2m+3

n(2p)m
.

Using Chebyshev’s inequality

Pr [|Xm − E(Xm)| ≥ ǫE(Xm)] ≤ var(Xm)

ǫ2E2(Xm)
,

we conclude the proof.

The following theorem concerns the relative m-balance in Gn,p,p. In order to formulate
it, let us define the random variable ρ(m) as follows
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ρ(m) =



















X+
m

Xm

if Xm 6= 0

1

2
if Xm = 0

Theorem 3.3. Let m be a fixed integer, 0 ≤ m ≤ n. Then, almost always in Gn,p,p, we

have ρ(m) −→ 1

2
.

Proof. Let Cm be, as defined in Section 1, the set of cycles each of length m in the

complete graph Kn on n vertices. Let k be a fixed integer, 0 ≤ k ≤ (m− 1)!

2

(

n

m

)

. Let

Cm,k be a fixed subset of Cm of cardinality k. We denote by X+
m,k the random variable X+

m

conditioned by the event {Cm(G̃n,p,p) = Cm,k},

X+
m,k ={X+

m Cm(G̃n,p,p) = Cm,k} ,

where Cm(G̃n,p,p) denotes the set of cycles of length m contained in G̃n,p,p. X+
m,k can be

expressed as follows

X+
m,k =

∑

Cm∈Cm,k

1{Cm is positive Cm(G̃n,p,p) = Cm,k}.

By Lemma 2.1, for each Cm ∈ Cm,k, we have

Pr
[

Cm is positive Cm(G̃n,p,p) = Cm,k

]

=
1

2
.

Thus

E(Xm,k) =
k

2
. (9)

Now, by Lemma 3.1, for Cm, C ′
m ∈ Cm, Cm 6= C ′

m, the events{Cm is positive Cm(G̃n,p,p) =

Cm,k} and {C ′
m is positive Cm(G̃n,p,p) = Cm,k} are independent. Thus

var(X+
m,k) =

k

4
. (10)

Expectation of ρ(m)

Since { Cm(G̃n,p,p) = Cm,k} ⊆ {Xm = k}, it follows that

E(X+
m | Xm = k) =

∑

Cm,k

E(X+
m,k)× Pr [Cm(G̃n,p,p) = Cm,k Xm = k] ,

where the sum is over all the subsets Cm,k of Cm. Using (9), we obtain

E(X+
m | Xm = k) =

k

2

∑

Cm,k

Pr [Cm(G̃n,p,p) = Cm,k Xm = k] ,
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Since the above sum is equal to 1, we get

E(X+
m | Xm = k) =

k

2
.

It follows that, for k ≥ 1, we have

E(ρ(m) | Xm = k) =
1

2
.

From the definition of ρ(m), we have, for k = 0

E(ρ(m) | Xm = 0) =
1

2
.

Thus

E(ρ(m)) =
1

2
.

Variance of ρ(m)

Using again the fact that { Cm(G̃n,p,p) = Cm,k} ⊆ {Xm = k}, we get

var(X+
m | Xm = k) =

∑

Cm,k

var(X+
m,k)× Pr [Cm(G̃n,p,p) = Cm,k Xm = k] .

Equality (10) gives

var[X+
m | Xm = k] = k

4
.

Hence, for 1 ≤ k ≤ (m− 1)!

2

(

n

m

)

,

var[ρ(m) | Xm = k] = 1

4k
,

and, from the definition of ρ(m), we have for k = 0

var[ρ(m) Xm = 0] = 0.

Thus,

var[ρ(m)] =

(m−1)!
2

(

n
m

)

∑

k=0

var[ρ(m) Xm = k]× Pr [Xm = k]

=

(m−1)!
2

(

n
m

)

∑

k=1

1

4k
Pr [Xm = k]. (11)

Let ǫ be arbitrarily small positive real number. Then
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Pr [Xm = k] =

Pr [Xm = k |Xm − E(Xm)| > ǫE(Xm)]× Pr [|Xm − E(Xm)| > ǫE(Xm)]

+ Pr [Xm = k |Xm − E(Xm)| ≤ ǫE(Xm)]× Pr [|Xm − E(Xm)| ≤ ǫE(Xm)].

Since
(m− 1)!

2

(

n

m

)

≤ nm, and by (11), we have

var[ρ(m)] ≤
[

nm

∑

k=0

1

4k

]

× Pr [|Xm − E(Xm)| > ǫE(Xm)]

+
∑

(1−ǫ)nm(2p)m

2m ≤ k ≤ (1+ǫ)nm(2p)m

2m

1

4k
.

Lemma 3.2 gives

var[ρ(m)] ≤
[

nm

∑

k=0

1

k

]

m2m+3

ǫ2n(2p)m
+

∑

(1−ǫ)nm(2p)m

2m ≤ k ≤ (1+ǫ)nm(2p)m

2m

2m

(1− ǫ)nm(2p)m
.

Since

[

nm

∑

k=0

1

k

]

= O(m log n),

var[ρ(m)] ≤ m2m+4

ǫ2n(2p)m
O(log n) +

2ǫ

1− ǫ

As ǫ is an arbitrary small positive number, by setting ǫ =
1

log n
in this last inequality, we

obtain

var[ρ(m)] = o(1).

The end of the proof follows from Chebyshev’s inequality. 2

4 The line-index of balance

Let us recall that, by Theorem 1.2, the line-index δ of a signed graph is the smallest number
of edges whose removal results in balance. In the next theorem we give estimates for the
upper and lower bounds of δ(Gn,p,p).

12



Theorem 4.1. Let ǫ be an arbitrarily small positive number. Then the line-index of
balance δ of Gn,p,p satisfies

Pr

[

(1− ǫ)
n2p

2
≤ δ ≤ (1 + ǫ)

n2p

2

]

−→ 1

as n −→ ∞.

Proof. Let {S, T} be a fixed partition of the vertex set of Gn,p,p. Set |S| = s and
|T | = t, where s+ t = n. Let YS,T be the random variable equal to the number |E+(S, T )| of
positive edges between S and T plus the number |E−(S)|of negative edges in the subgraph
induced by S and the number |E−(T )| of negative edges in the subgraph induced by T ,

YS,T = |E+(S, T )|+ |E−(S)|+ |E−(T )|.

It can be easily verified that YS,T has a binomial distribution with parameters
n(n− 1)

2
and

p. Thus

E(YS,T ) =
n(n− 1)p

2
∼ n2p

2
.

For any ǫ > 0, Chernoff’s bounds give

Pr

[

YS,T − n2p

2
>

ǫn2p

2

]

≤ exp

[

−ǫ2n2p

6

]

. (12)

In [4] it has been proved that

δ = min{S,T}YS,T ,

where the minimum is over all the partitions {S, T} of the vertex set of Gn,p,p.

Since

Pr

[

for all {S, T} , (1− ǫ)
n2p

2
≤ YS,T ≤ (1 + ǫ)

n2p

2

]

≤

Pr

[

(1− ǫ)
n2p

2
≤ δ ≤ (1 + ǫ)

n2p

2

]

,

it follows that

Pr

[

(1− ǫ)
n2p

2
≤ δ ≤ (1 + ǫ)

n2p

2

]

≥ 1− Pr

[

for some {S, T} , YS,T − n2p

2
>

ǫn2p

2

]

≥ 1− 2n Pr

[

YS,T − n2p

2
>

ǫn2p

2

]

.

Using (12) we obtain

Pr

[

(1− ǫ)
n2p

2
≤ δ ≤ (1 + ǫ)

n2p

2

]

≥ 1− 2n exp

[

−ǫ2n2p

6

]

.

The right side of the above inequality tends to 1 as n −→ ∞. 2
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5 The threshold function for balance

We suppose that p = p(n) depends on n. Since by Theorem 2.2, when p is fixed, the random
signed graph Gn,p,p is almost always unbalanced, the purpose of this section is to determine
a function p0(n) such that

(i) if p ≫ p0(n), then, almost always, Gn,p,p is unbalanced, while on the other hand,
(ii) if p ≪ p0(n), then, almost always, Gn,p,p is balanced.

Such a function p0(n) is called a threshold function for balance.

Theorem 5.1. If pn −→ 0, then, almost always, Gn,p,p is balanced. If p ≥ c

n
, where

c > 2 log 2 is a constant, then, almost always, Gn,p,p is not balanced.

Proof. Let X denote the total number of cycles in Gn,p,p. Clearly

E(X) =

n
∑

k=3

(

n

k

)

(k − 1)!

2
(2p)k.

Therefore,

E(X) ≤
n
∑

k=3

(2pn)k

2k
,

from which it follows that if pn −→ 0, so does E(X). From Markov’s inequality we conclude
that, almost always, Gn,p,p is acyclic, thus almost every signed graph is balanced.

Suppose now that p >
c

n
. With the notations introduced in the proof of Theorem 4.1, let

Z =
∑

{S,T}

1{YS,T=0},

where the sum is over all the bipartitions {S, T} of the vertex set of Gn,p,p. Since

Pr[YS,T = 0] = (1− p)
n(n−1)

2 ∼ (1− p)
n2

2 ,

E(Z) ∼ 2n (1− p)
n2

2 ∼ exp
[

n(log 2− pn

2
)
]

.

Thus
E(Z) ≤ exp

[

n(log 2− c

2
)
]

.

c > 2 log 2 implies that E(Z) = o(1), and by Markov inequality we conclude that P [Z =
0] −→ 1 as n −→ ∞, thus the end of the proof follows from Theorem 1.1. 2
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