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Introduction

• Neural networks are highly overparametrized.
• They systematically achieve nearly 0 training loss, yet generalise well

to unseen data [4],
• This suggests the complexity of the network automatically adapts to

the data
• This adaptivity is not captured by classical generalization bounds

[1, 2].
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Introduction

• Implicit biases present in the architecture, initialization and
optimization algorithm are essential to its good generalization.

• A framework for explaining this generalisation should be able to take
into account these biases
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Contributions

• Through the dynamical viewpoint, we highlight the low-energy bias of
residual networks.

• We formulate a Least Action Principle for the training of Neural
Networks.

• We prove existence and regularity results for networks with minimal
energy.

• We provide an algorithm for retrieving minimal energy networks
compatible with different architectures.

• We show on standard classification tasks that our approach leads to a
better generalization performance, without complexifying the
architecture and especially in low data regimes.
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Optimal transport



Optimal transport: Monge formulation

• The problem of moving mass from one configuration to another with
minimal total effort:

inf
T :X→Y

∫
X

c(x ,T (x))dµ(x)

subject to T#µ = ν

(1)

• We will consider ground costs c(x , y) = ‖x − y‖p with p > 1.
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Optimal transport: dynamical formulations

• Equivalently, the density obeys the continuity equation in time:

inf
v

∫ 1

0
‖vt‖p

Lp(µt )dt

subject to ∂tµt +∇ · (µtvt) = 0, µ0 = µ, µ1 = ν

(2)

• Or the points move along a velocity field:

inf
v

∫ 1

0
‖vt‖p

Lp((φt )#µ)dt

subject to ∂tφt(x) = vt(φt(x)), φ0 = id, (φ1)#µ = ν

(3)
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General setting



Decomposing a neural network

• A neural network f = F ◦ T ◦ ϕ is decomposed into 3 stages:
1. Dimensionality change: ϕ transforms the input distribution D over

Rn into distribution α = ϕ]D over Rd .
2. Data Transport: α is transformed through a mapping T : Rd → Rd ,

which we see as a transport map.
3. Task-specific final layers: F : Rd → Y is applied to T]α in order to

compute the loss L associated with the task at hand.

• Functions ϕ and F are often simple.
• If stages 1 and 2 are repeated many times, then many modern

networks such as Wide ResNets and ResNexts fit this description.
• [3] finds that models that preserve dimension remain competitive.
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Decomposing a neural network

• This leads us to define a set of admissible targets for the task:

SF ,L = {β ∈ P(Rd) | L(F , β) = 0} (4)

• The goal of the learning task can then be reformulated as:

Find (T ,F ) such that T]α ∈ SF ,L (5)
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Empirical analysis of transport
dynamics in residual networks



Residual networks

• A ResNet can be seen as a forward Euler scheme discretization of an
associated ordinary differential equation

xk+1 = xk + vk(xk) ←→ ∂txt = vt(xt)

• This allows to link ResNets to the optimal transport problem via
optimal transport’s dynamical formulation as a differential equation.

• If the data transport T is made up of residual blocks, then the
transport cost is C =

∑
k ‖vk(xk)‖p

10



Empirical observations on MNIST
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Empirical observations on CIFAR10
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Empirical observations in 2 dimensions
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Empirical observations in 2 dimensions

Figure 1: Transformed circles test set after each block after training
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Empirical observations in 2 dimensions

Figure 2: Transformed circles test set after each block after training with
N (0, 5) initialization
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Empirical observations in 2 dimensions

Figure 3: Transformed circles test set after each block after training with
N (0, 5) initialization and batch normalization
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Empirical observations in 2 dimensions

Figure 4: Transformed circles test set after each block after training with
N (0, 5) initialization, batch normalization and transport regularization
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Least action principle for training
neural networks



Least action networks: Formulation

• The empirical observations suggest trying to solve

inf
T ,F

C(T ) =
∫

Rd
c(x ,T (x))dα(x)

subject to T]α ∈ SF ,L

(6)

• The equivalent dynamical formulation for c(x , y) = ‖x − y‖p is

inf
v ,F

∫ 1

0
‖vt‖p

Lp((φ·
t )]α) dt

subject to ∂tφt(x) = vt(φt(x)), φ0 = id, (φ1)]α ∈ SF ,L

(7)
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Least action networks: Theoretical results

Existence

• Under compacity assumptions, minimal energy mappings exist for
both (6) and (7).

• In particular, for a minimizing (T ?,F ?), T ? is an OT map between α
and T ?

] α.
• Uniqueness does not hold in general (as this is not a standard OT

problem).
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Least action networks: Theoretical results

Using (relatively) recent regularity results of OT mappings, minimal energy
mappings inherit some regularity.

Let X , resp. Y , an open neighbourhood of the support of α, resp. T ?
] α.

Regularity

• T ? is α−ae differentiable.
• There exists A, resp. B, relatively closed in X , resp. Y , of null
Lebesgue measure and η > 0 such that T ? ∈ C0,η(X \ A,Y \ B).

• If α and T ?
] α are Ck,η then T ? ∈ Ck+1,η(X \ A,Y \ B).
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Least action networks: Discretization

• If we discretize the differential equation using an Euler scheme and
the integrals using empirical measures we get

min
θ

C(θ) =
∑
x∈X

K−1∑
k=0
‖vk(φx

k)‖p

subject to φx
k+1 = φx

k + vk(φx
k), φx

0 = x ,L(θ) = 0

(8)

where X is the set of data points and θ parametrizes vk and F .
• The first two conditions being trivially verified by a ResNet, the

problem is equivalent to

min
θ

max
λ>0

C(θ) + λ L(θ) (9)
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Least action networks: Algorithm

• We use an algorithm inspired by the method of Multipliers:θi+1 = arg min
θ
C(θ) + λi L(θ)

λi+1 = λi + τ L(θi+1)

• The minimization is done via SGD for a predefined number of steps,
starting from the previous parameter value θi .

• In practice, it is more stable to divide the objective by λi .
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Experiments



Results on MNIST

Training set size ResNet LAP-ResNet

500 90.8, [90.4, 91.2] 90.9, [90.7, 91.1]

400 88.4, [88.0, 88.8] 88.4, [88.0, 88.8]

300 83.5, [83.0, 84.1] 86.2, [85.8, 86.6]

200 74.9, [73.9, 75.9] 82.0, [81.5, 82.5]

100 56.4, [54.9, 58.0] 70.0, [69.0, 71.0]

Table 1: Average highest test accuracy and 95% confidence interval of ResNet9
over 50 instances on MNIST with training sets of different sizes.
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Results on CIFAR10

Training set size ResNet LAP-ResNet

50 000 91.49, [91.40, 91.59] 91.94, [91.84, 92.04]

30 000 88.61, [88.47, 88.75] 89.41, [89.31, 89.50]

20 000 85.73, [85.59, 85.87] 86.74, [86.61, 86.87]

10 000 79.25, [79.00, 79.49] 80.90, [80.74, 81.06]

5 000 70.32, [70.00, 70.63] 72.58, [72.36, 72.79]

4 000 67.80, [67.55, 68.07] 70.12, [69.81, 70.42]

Table 2: Average highest test accuracy and 95% confidence interval of ResNet9
over 20 instances on CIFAR10 with training sets of different sizes.
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Results on CIFAR10

Figure 5: Test accuracy and 95% confidence interval of ResNet models of
different depth without batch normalization on CIFAR10
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Results on CIFAR100

Training set size ResNeXt LAP-ResNeXt

50 000 72.97, [71.79, 74.14] 76.11, [75.32, 76.89]

25 000 62.55, [60.18, 64.92] 64.11, [62.25, 65.96]

12 500 45.90, [43.16, 48.67] 48.23, [46.39, 50.07]

Table 3: Average highest test accuracy and 95% confidence interval of
ResNeXt50 over 10 instances on CIFAR100 with training sets of different sizes.
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Results on CIFAR100

Figure 6: Test accuracy during training of ResNeXt50 models on CIFAR100. 27



Conclusion



Conclusion

• The least action principle improves test performance especially for
small datasets, bad initializations and large networks that overfit.

• It does this without complexifying the architecture or slowing down
the training.

• Linking this simple technique to optimal transport theory offers
existence and regularity results.

• This regularity is confirmed in practice by increased stability, as seen
in the narrower confidence intervals, but this remains to be explored
further.
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