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Outline

e Entropy Regularization in RL
o  Why itis important
o How to solve the regularized problem

e Application: Explainable RL
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RL in the Physical World

e Small number of parameters (<20)
e Open loop policy
e Black-box optimization

e Requires expert demonstrations

High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards
K. Ploeger, M. Lutter, J. Peters
CoRL20
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https://docs.google.com/file/d/1D7YMeqkr34i7yYYcqa3xXas_0YSIeFDJ/preview

Relative Entropy Policy Search (REPS)

e For Gaussian policies 7 (0) = N (0] uk, Xk)

s.it. KL (mg||me—1) <€

e Closed-form solution

T X TMEp—1 €XP (%)
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Outline

e Entropy Regularization in RL
o How to solve this regularized problem
m From black-box optimization
m To Reinforcement Learning
m ToDeepRL
m [0 convex optimization
o  Why itis important

e Application: Explainable RL
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Model-based REPS (MORE)

e For Gaussian policies 7T, (9) — N(

max Egor, [1%(9)]

s.it. KL (mg||mr—1) <€
H(mp—1) — H(mg) < B

lteration = 3 Ilteration = 6

e Closed-form solution in probability space

m oc ) exp (L)

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurlPS15
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Model-based REPS (MORE)

e For Gaussian policies 7T, (9) — N(

max Egor, [1%(9)]

s.it. KL (mg||mr—1) <€
H(mp—1) — H(mg) < B

‘e 18 y1oiussiaq

lteration = 3 Ilteration = 6

A

e Closed-form solution in probability space e Closed-form solution in parameter space for quad. R

R A
m oc ) exp (L)

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurlPS15
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Step-based MORE (MOTO)

e Forlinear-Gaussian policies W]i(at|5t == N(

m%X Eswpz_l,afvﬂ'z(.|8) |:th_1(8,@):|

Tk

s.t. ESNPZ_l [KL (WZ(|S)H7TZ_1(]3))] <e€
|

e Closed-form solution in probability space e Closed-form solution in parameter
O 1 (s.) space for quad. Q
mt(|s) oc wh_ (.]s)/ (1H@) exp =Ll N _
ntw e Additional Gaussian approx. of pt

Model-free Trajectory Optimization for Reinforcement Learning; R. Akrour, A. Abdolmaleki, H. Abdulsamad, G. Neumann; ICML16
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MOTO vs Black-box

No spin Spin (Noise at rebound)
20 20
e }f,—-' - —
/ c
£15 7 £ 15
35 / o
g "' 2 o A
o i o | ) /e )
w10 & o 10 - o~
o / ----—REPS+DMP )] g (5%
o ; ~ -~ MORE+DMP © i3 i
— - —~ -
e 4 MOTO v 27 p
> , . > Tl —-=-REPS+DMP
< 5p < 5 I /f"
1 ’ - - -MORE+DMP
ke MOTO
0 ‘ | ‘ | 0 : : ' )
0 50 100 150 200 50 100 150 200
Iteration Iteration

e Comparable to black-box methods with open-loop policies despite much larger search space

e Closed-loop policy adapts to changes in the environment

Model-free Trajectory Optimization for Reinforcement Learning; R. Akrour, A. Abdolmaleki, H. Abdulsamad, G. Neumann; ICML16
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https://docs.google.com/file/d/0B2-wuqQdDHxmTWZuR0xrV1RVYjQ/preview

MOTO vs trajectory optimization
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Iteration

e Back propagating approx. quad. Q functions > forward propagating approx. linear dynamics models

Model-free Trajectory Optimization for Reinforcement Learning; R. Akrour, A. Abdolmaleki, H. Abdulsamad, G. Neumann; ICML16
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https://docs.google.com/file/d/0B2-wuqQdDHxmR3RjdG9Mbm9oZmc/preview

Why does MOTO work?

e MOTO policy update

maX Eswpk pa~mh(.]s) |:Q/c 1(8 CL):|

”k

st Egope  [KL (m(]8)|lm_1(|s))] <

S~Pp

Eoopy , [H(m_1(]s)) — H(m(]s ))]

e Strict compliance with KL-divergence cst. important in practice... why?

e Objective and constraints expressed in terms of p | ... is it reasonable?
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Policy improvement

e IntabularRL, 7x(s) = argmax Qr_1(s,.)
o Take better action in all states
e Relaxation when using function approximators
o Tk =argmax Esmpi 1,amm(]s) [Qr—1(5,a)]

o Take better actions in average of previous state distribution

o  What about average under the current state distribution ]ESNphaNﬂ(_b) (Qr—1(s,a)]?
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Notation

° H matrix representation of policy 7T

o 11 matrix of size S| x |S]|A]

s, (s,0)) = 7(als) if s = s',0 else

\
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Notation

° H matrix representation of policy 7T

° P transition matrix

o P matrix of size IS||A| x |S]

P((s,a),s) = p(8']s,a)

\
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Notation

° H matrix representation of policy 7T

° P transition matrix

e Valuefunction V™ = 1IR + ~IIPVT™
o R matrix of size IS||A| x 1

R((s,a),1) = 7(8,0)

\
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Notation

° H matrix representation of policy 7T

° P transition matrix

—1
e Value function V7 = (I — ’yHP) IIR
e Policy induced state distribution
(I —~IIP),, (ss 27 IIP); )(s,57) *
S— = Z'ytPr(st = s'|sp = s;m),

t=0

o Wedefine II, = (I —~IIP)"~
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Notation

° H matrix representation of policy 7T

° P transition matrix

e Value function V'™ = HSHR

Entropy Regularization in RL through Interpolation Riad Akrour



Notation

° H matrix representation of policy 7T

P transition matrix

([ ]
e Value function V'™ = HSHR
e Policy return J(ﬂ') = ,uTV” for initial state distribution matrix [{
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Performance difference lemma

. VT VT =ILIIA™
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Performance difference lemma

. VT VT =ILIIA™

e Value difference
VT V™ =I(R+~yPV") - V"™,
—1I (R+7P (v7r NV V“')) —v,
S — ATIP (V“ . V”’) I (R + yPV“') _yr
=P (V7= v™) 41 — v,
=P (VT - V™) 1A,
= (I —~IIP) ' 114"
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Performance difference lemma

e VT VT =II,IIA™
= IIIIA™ + (I, — II’) ITA™
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Performance difference lemma

e VT VT =II,IIA™
= ILTIA™ + (II, — IT)

e State distribution difference
II, — H’s = ~IIPII, — ~IT PH;
= (I — I + H’) PII, — 71‘[’P1‘I"9
N = ~II'P(IT, — 11 + ~(IT — IT') P11,
= fyH/S(H — H’)PHS
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Performance difference lemma

e VT VT =1 IIA™
— I'TIA™ + (I, — IT.) IIA™
= II'IIA™ + ~IT. (II — IT') PII,ITA™
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Performance difference lemma

e VT V™ =IIIA™

— II'TIA™ + (I, — II.) ITA™

— ITI'TIA™ + ~IT, (Il — I') PIL,IIA™
e JT—J" =TI IA™ 4+ 4TI, (0 — 1) PILIIA™
e Expressed policy return as a function of old advantage under old state distribution

o +term small when new policy is close to old one
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Lower bounding the policy return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo
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Lower bounding the policy return

e Previous expression contains II, which is hard to quantify
o Prior work will mainly differ in bounding ||z" (ITy — IT)) ||

2
® CPI (akadeetaliomor): || (II; — II.) ||0o < %
-7

o  Where IT = oIlY — (1 — «)II’ mixes previous policy with policy maximizing old advantage
o Improvement of policy return can be guaranteed for small enough &

N 2
(MTH’SHQA” )

J*— JT >
= 8
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Lower bounding the policy return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo

200y
e CPI akadeetaliomo): || (IIy — 1) oo < sy
H e < oL
o  USPI (pirotta et al. IcML13): ||/LT (g —II) [|oo < i U 2 |[TT — IT'|| oo
-

o HH—H’

_ o
= max 3" [(als) — (als)
a€A

= 2maxTV(x(|s) | 7'(-]s))
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Lower bounding the policy return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo

200y
e CPI akadeetaliomo): || (IIy — 1) oo < sy
A A
o  USPI pirotactatiomsy: ||p? (II; — I [|oo < TEE rsrleagcTV(ﬂ(.\s) | 7' (.]s))
2y

° TRPO (Schulman et al. ICML15). H,U/T (Hs - H;) ||OO < (1 )2 )
— s€E

o  Pinsker's inequality: TV < |/1KL
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Lower bounding the policy return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo

200y
®  CPI (kakadeetal. icmion):  ||p? (T4 — ) oo < —
A
L USPI (Pirotta et al. ICML13). H,LLT (HS — H;) ||oo S m I'SrleagiTV(W(‘S) || 7'('/(‘8))
° TRPO (Schulman et al. ICML15). H:U/T (Hs — H,) ||oo < 27 max \/EKL(T((‘S) || 7-(-/(|5)>
sMlee = T2 TAF YV 5
2y

® CPO (achiametal. icmu17): ||t (g — I1%) || 0o < Esmrn [TV (7 (.|s) || 7' (.]5))]

(1—9)?
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Lower bounds for MOTQ'’s setting

e Continuous state/action spaces

e We want to exploit specific model assumptions (Quad. Q and Gaussian state distributions)
e Same order of magnitude in terms of KL and discount in the lower bound

e As with prior work, lower bound too pessimistic to be used in practice

o Despite using more specific assumptions on the MDP!

Model-Free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18
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Perspectives

e Progress can be made when bounding ‘ ’ (H — H/)P‘ |OO
o  Current work: same actions lead to same states
m If action not supported by previous policy = maximum penalty
o Transition function assumed completely unknown
Approach between optimal control and RL: P unknown but some of its property known
o  True for many physical systems (e.g. robots)
o Inject human knowledge to obtain more practical predictions of policy return

m Useful for safety guarantees
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Comparison to deep RL
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e Specialized models of MOTO work well on control problems

e What if the state is high dimensional?

Model-Free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18
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https://docs.google.com/file/d/0B2-wuqQdDHxmR3RjdG9Mbm9oZmc/preview

Entropy regularization in (deep) RL

SAC

Entropy PPO
bonus/constraint
KL/entropy
NAC
KL constraint
REPS

A3C
ACER KL constraint Entropy bonus

TRPO
ACKTR

KL constraint
KL constraint

e Can we transfer anything from the simpler setting of MOTO to deep RL?
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MOTO’s closed form solutions

e New policy 7} (als) = (a|FLs+ Ff, F(n* +w")),

o F=0" = Qu) L=0"S7 K 4 Qus,

F=0"S; ey + g Old policy

7TZ—1<CL|3) ~ (Kyis + ki, X¢)

Q function
QL_1(s,a) = 2aTQuea+ aT Quss + a¥'qq + q(s)

\
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MOTO’s closed form solutions

e New policy 7} (als) = (a|FLs+ Ff, F(n* +w")),

o F=0" = Qu) L=0"S7 K 4 Qus,
f - 77*2;1]{775 + QQ-

e Dual param. entropy cst. (™ : scale covariance matrix

Dual param. KL-divergence cst. ™ : interpolate params of policy and Q function

e Given an input covariance, can we compute in closed form the scaling satisfying an entropy constraint?
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Entropy projections

Hproj, Z:proj

(0:000)

Projected
action dist.

e Solvefor w, H (N (g, wX)) =p
e Solvefor 7, KL (N (nu+ (1 — ) pa—1,18 + (1 — ) Zg—1) IN (pg—1,Tp-1)) = ¢

e Closed form and differentiable solution => Use gradient descent to solve the policy update
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Entropy projections

e Can solve the entropy eq. in closed form
e No closed form solution for the KL (would require solving x + log x = a)
o Replace with an upper bound of the KL, quadratic in 7)

o  Similar approach for entropy/KL of soft-max distribution (discrete action space)

Projections for Approximate Policy Iteration Algorithms; R. Akrour, J. Pajarinen, G. Neumann, J. Peters; ICML19
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Entropy projections

e Can solve the entropy eq. in closed form

Algorithm 2 API linear-Gaussian policy projection
e No closed form solution for the KL (would require solving Input: A’, A, Aogr.diag» 4(-|5) = (A7 Wg(s), Zq), AT, 9,

€ and (3
o Replace with an upper bound of the KL, quadrati g;’gr’;téomplymg with KL

3 = Entropy_projection(\, Aoff_diag; 3)

o  Similar approach for entropy/KL of soft-ma if E;KL(\ (AITU)((A)) ¥) || q(.|s)) > € then
T’q — 6—171,(! . E)

=0+ (1 —ny)X,
end if
if E,KL(A (A T9(s),2) || q(.|s)) > ¢ then
S a = 5E||ATy(s) — ATy (s >||241
b= 5E,[(AT¢(s) — ATy(s))"
Zg" (ATUJ( ) — Aghq(s))]
e=my(A) 4 r4(2) +e(dl) —
_ —b+Vb2—ac

T = a
Projections for Approximate Policy Iteration Algorithms; R. Akrour, J. Pajarinen; end A"+ (L~ 11m)
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Results
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e Pros: entropy constraint (Gaussian and soft-max) very easy to implement and offers large gains

e Caveat: KL requires to store previous policies or only optimize last layer of the neural network

Projections for Approximate Policy Iteration Algorithms; R. Akrour, J. Pajarinen, G. Neumann, J. Peters; ICML19
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Projection...?

e General algorithm: upper bound KL/entropy with a function ‘simple’ in an interpolation parameter

o  Solve for the interpolation parameter and return a distribution complying with cst.

. . . Acti
e Isthis a projection?? State dist.
e What is the ‘error’ of the projection? o
e  Will gradient descent converge to a reasonable solution? Policy Prolected
action ist.
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Convergence on toy problem

#— Ours
—»— Projected gradient | °us
Objective function

0.8
0.6

0.

>

0.

N

Optimum \\}

0.0

0.0 0.2 0.4 0.6 0.8 1.0 olw oie2 oiss ofee od

e Problem max f(p)=c"p
pESimplex

st. Hp) =P
e Projection g(p): solve for 7)
H(np + (1 — n)Unif.) > nH(p) + (1 — n)H(Unif.) = B
log |A[ — 8

=T
log | A| — H(p)
Projections for Approximate Policy Iteration Algorithms; R. Akrour, J. Pajarinen, G. Neumann, J. Peters; ICML19
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Convergence on toy problem

#— Ours
—»— Projected gradient | o

-1.38

Objective function

0.8 -1.40

-1.42

0.6
-1.44

2piv(i)

-1.46
0.

>

=148 - ours

—— Projected gradient
—— Optimal

°
N

-1.50

Optimum \\}

0 1000 2000 3000 4000 5000
Iteration

0.0

0.0 0.2 0.4 0.6 0.8 1.0 olw oie ois o

e Problem max  f(p)=cTp \/ GD on composition pj1 = pr —aVfog(pk)

pesimplex o converges
st. Hp) =P
e Projection g(p): solve for 1) /< PGD pry1=g(px — aV [f(pk))
Hnp + (1 — n)Unif.) > nH(p) + (1 — n)YH(Unif.) = 3 o No convergence because not an
log |A| — 8 orthogonal projection

=T
log | A| — H(p)
Projections for Approximate Policy Iteration Algorithms; R. Akrour, J. Pajarinen, G. Neumann, J. Peters; ICML19
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Convergence in a convex optimization setting

e Problem: min f(z) = c’u,
rER4

s.t. h(x) <O0.

x if h(z) <0
Nex + (1 —ng)xo  else,

"with 1, = h(x}(l)ggﬁ)}z(@ and h(zg) <0

e Projection: g(x) = {

e Algorithm: 41 = z — aV f o g(z)) with gradient V£ o g(z) = m (Vf(g(xk)) + Vf(g(”“”“)}f;(j)(“)‘x")Vh(xk)>

1

e (Convergence rate O(—K) (interpolation is non-smooth)

Convex Optimization with an Interpolation-based Projection and its Application to Deep Learning; R. Akrour, A. Atamna, J. Peters; MACH (submitted)
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Applications of the interpolation projection

® o -y
e Applications: RL, inductive bias for learning dynamics, .. — , 7/ . .. /\/\/\ /\/\
6o &«%—»
A NS

t=1 =

@ @ @
o o ® o o o
Ground truth RNN + shape cst. RNN

® About x200 faster than Orthogonal prOjeCtion |ayerS (Differentiable Convex Optimization Layers; Agrawal et al.; NeurlPS19)

Convex Optimization with an Interpolation-based Projection and its Application to Deep Learning; R. Akrour, A. Atamna, J. Peters; MACH (submitted)
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Perspectives

e Noni.i.d. RL setting alternates data collection and model update
o Very important to update the policy gracefully
m Doable with linear policies, trees (MCTS), not so much with NNs
e Updating all NN params. at once not reasonable?
Incremental construction of the policy policy

o  Stack smaller policy ‘delta’ networks at each update

state action

m Easyto control KL/TV

o How to forget?

7

@(}é
0

Entropy Regularization in RL through Interpolation Riad Akrour



Examples of explainable RL policies

e Example of an interpretable policy: solving the Rubik’s cube
e Policy structure: IF State similar to Prototype DO Action

e Can we extract similar policies for other decision problems?
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Limits of differentiable programming?

e |F State similar to Prototype DO Action

e Naive approach: differentiable policy with

prototypical states = basis functions

e Hard to relate cluster centers and

behavior
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https://docs.google.com/file/d/1mnw4_s5gfHWTPgx3PdsiUFYujyWXqw8R/preview

Proposed solution

e Stay in the manifold of (interpretable) states

e Pick prototypes from trajectory data

(non-differentiable operation)

e Mixture of discrete optimization (search
heuristics) and continuous optimization

(gradient descent + interpolation projections)

Reinforcement Learning from a Mixture of Interpretable Experts; R. Akrour, D. Tateo, J. Peters; TPAMI (submitted)
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https://docs.google.com/file/d/1O_NWwiPfvogedyMW1YgUFiSTcwIhHTVf/preview

Perspectives

e Limitation: similarity to prototype based on Euclidean distance
o How to scale to more complex inputs and keep the similarity function interpretable?
Perspective 1: Ensure temporal coherency
o Higher similarity between states occurring closely after each other in the MDP

Perspective 2: Semantic understanding of the state (e.g. vision) + state factorization + simple distance

Entropy Regularization in RL through Interpolation Riad Akrour



