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Neural Timeseries ?

Electrical signals from the brain

o EEG, MEG, ECoG




Decoding brain signal

Predict the task/condition/stimulus from M/EEG Recording
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Context

Decoding brain signals :
@ Brain computer interfaces
o Medical diagnosis

@ Basic Science
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Context

Decoding brain signals :
@ Brain computer interfaces
o Medical diagnosis

@ Basic Science

We need better algorithms
@ Adapted to the nature of the signals
o Effective with a low number of examples

e Generalize across session / subjects
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EEG
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EEG

Sources Signal

x(t) = As(t)
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Example : Neural oscillations

Sources are the signal of interest : Example with Motor
execution

Left

Right

Sources power (variance) depend on the motor task



Feature Extraction pipeline

Build a pipeline to measure change in source signals :
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Feature Extraction pipeline

Build a pipeline to measure change in source signals :

EEG Cov
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Feature Extraction pipeline _

Build a pipeline to measure change in source signals :

EEG Cov "Source” Cov
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Feature Extraction pipeline _

Build a pipeline to measure change in source signals :

EEG Cov "Source” Cov log-variance
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Feature Extraction pipeline _

Build a pipeline to measure change in source signals :
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Feature Extraction pipeline

Build a pipeline to measure change in source signals :

EEG Cov "Source” Cov log-variance
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Features

We rely on feature engineering to build of measure of what happen

in the sources space.
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Limitation of this approach _

Problems with Source separation:
Hit or Miss

Robustness

]
@ Parameter estimation (consume data)
°

Change in mixing matrix A = Calibration
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Limitation

Is sources separation really necessary ?
@ For a classification problem, we don't need the sources
@ The Signal Covariance matrix X, contains all the information.

@ We only performed manipulation on X.

Let’s classify X, (or N(0,X) ) !
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© Information Geometry
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Classifying Covariance matrices

Option 1: vectorization
@ Ignore the SPD structure of the matrices.

@ Non-linear
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Classifying Covariance matrices

Option 1: vectorization
@ Ignore the SPD structure of the matrices.

@ Non-linear

Option 2: Kullback leibler divergence
@ Not a true metric.

@ limited to a few classification algorithm
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Classifying Covariance matrices

Option 1: vectorization
@ Ignore the SPD structure of the matrices.

@ Non-linear

Option 2: Kullback leibler divergence
@ Not a true metric.

@ limited to a few classification algorithm

Option 3: Information Geometry
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Information Geometry

Probability distributions :

@ Points of a Riemannian Manifold.
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Information Geometry

Probability distributions :

@ Points of a Riemannian Manifold.
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Riemannian Manifold
@ Topological space (curved)

@ Euclidean geometry only
valid locally

@ Has a metric



Information Geometry

Probability distributions :

@ Points of a Riemannian Manifold.

Riemannian Manifold
@ Topological space (curved)

@ Euclidean geometry only
valid locally

@ Has a metric

The Fisher information matrix is the ” Natural’ metric
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Multivariate Normal distribution

=

03- m mEw
Covariance matrices ? o -
AT "
A8
@ Multivariate Normal distribution 4

o N(0,X) 1 ‘n!f

@ Manifold dimension : C(C +1)/2
o Metric : 3Tr (Z*l%zfl%>

from the metric :

@ Distance, geodesic, mean, median, tangent space, gradient



Riemannian Distance

Riemannian Distance

c 1/2
OR (1, T2) = |log (£, 2L, 7 |l = lz log? Ac]
c=1

Key property :
e Invariance by affine transformation, i.e, VA € GI(C)

Or(Z1, X)) = Sr(AX;AT AX,AT).
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Information Geometry and Source separation

@ linear mixing model + invariance:
x(t) = As(t) = X, = AX AT

@ The Riemannian distances in the sensor space and in the
source space are equall!

OR(Ex1, Ex2) = 0r(Xs 1, Xs2).
@ Uncorrelated sources :

OR(Zx1, Xx2) = || log(os,1) — log(os,2) |2

The Riemannian distance measure change in sources
log-variance
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How to use it 7

Distance Based classification
o k-NN
@ Nearest centroid

@ k-Means

Tangent Space classification
o Logistic Regression
e SVM

@ Neural Networks
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Benefits of Riemannian Geometry

Benefits:
@ Measure sources variance without source separation.
@ No assumption about the sources covariance.

@ Better generalization between subjects and sessions.
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Benefits of Riemannian Geometry

Benefits:
@ Measure sources variance without source separation.
@ No assumption about the sources covariance.

@ Better generalization between subjects and sessions.

Inconvenient:
e Computational cost

@ Numerical issue for high dimension
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© Example of applications : Classification
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Motor imagery classification

Classification of Imagined movement

Preprocessing :

C

17/30

Dataset Tasks # subjects  # channels
D1 left hand, right hand 9 22
D2 feet, right hand 14 15
D3 feet, right hand 9 3
D4 feet, right hand 12 13
D5 left hand, right hand 109 64
D6 right hand, feet 8 16
D7 right hand, left hand 14 11
D8 right hand, left hand 52 64
D9 right hand, left hand 29 30

lassification :

BP filter, 7-35 Hz.

Q@ CSP + LDA.

@ Cov + Tangent Space + Logistic Regression.



Motor Imagery Classification

Results
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ERP Covariance Matrix (ER_

Event Related Potential ?
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ERP Covariance Matrix (ERPCov)

Event Related Potential ?
@ Covariance estimation independent of the waveform

Evoked Potential Covariance matrix

0 200 400 600 800 1000 5 10 15
Time (ms)

Evoked Potential - Permuted time sample

0 200 400 600 800 1000
Time (ms)
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ERP Covariance Matrix (ERPCov)

Event Related Potential ?
@ Covariance estimation independent of the waveform

Super covariance matrix

0 200 600 800

400
Time (ms) 15 20 25 30
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Time (ms) 10 15 20 25 30
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ERPCov

An indirect measure of correlation with a prototype in the
source space :

@ One prototype for each class
e Independent of the reprensentation basis (Sensor / Sources)

@ Prototype can be reused across session, subject or dataset.



ERPCov

An indirect measure of correlation with a prototype in the
source space :

@ One prototype for each class
e Independent of the reprensentation basis (Sensor / Sources)

@ Prototype can be reused across session, subject or dataset.

Encoding a prior about the shape of the ERP

@ Reduce the number of training data



Dataset

Multi-dataset ERP benchmark :

Dataset Type # subjects  # channels
BI_1 P300, Brain invaders 93 16 (dry)
BI_2 P300, Brain invaders 24 16
BI_3 P300, Brain invaders 38 32
SPELL_ALS* P300, Speller, ALS 8 8
SPELL_1* P300, Speller 8 16
SPELL_2* P300, Speller 10 8
ErrP_1* Error P, Speller 26 56
ErrP_2%* Error P, Speller 6 64

Preprocessing : BP filter, 1-20 Hz. 0.8 second epoch
Classification :

@ Vectorized epoch + I1 Logistic Regression.

@ ERPCov + Tangent Space + Logistic Regression.



ERP Classification - Within subjects

Results
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ERP Classification - Between subjects

Transfer between subject (dataset BI_1 + Bl_2)
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ERP Classification - Between subjects

Transfer between subject (dataset BI_1 + BI_2)
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ERP Classification - Between subjects

Transfer between subject (dataset BI_1 + BI_2)
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ERP Classification - Between subjects

Transfer between subject (dataset BI_1 + BI_2)
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@ Example of applications : Visualization & Stats
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Dataset Visualization with tSNE

Visualize clusters in a dataset with tSNE!:

Euclidean Metric Riemannian Metric
20 30
15
20
5 X 10 o7
§ 0 & %
w X Classes w 0 Classes
Z -5 3 - P4
%} o 1 7} e 1
-10 x X 4 -10 x 4
-15
-20
-20
-25 -30
30 -20 -10 0 10 20 30 30 -20 -10 0 10 20 30
tSNE #1 tSNE #1

t-distributed stochastic neighbor embedding
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Dataset Visualization with tSNE

Visualize clusters in a dataset with tSNE!:

Euclidean Metric Riemannian Metric
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Statistics

Riemannian Distance based permutation-test :

Count

25/30

e Equivalent to a Manova in the source space
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Statistics

Riemannian Distance based permutation-test :

e Equivalent to a Manova in the source space

Euclid Log-Var Euclid Cov Riemann Cov
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Pattern Extraction

Find EEG sources that varies jointly with EMG sources?

EEG Signal EEG Sources

EMG Sources

Tangent
Space

EMG Signal

Example : Motor patterns

(A) Spatial Pattern (B) Signal Power
AN

—— EMG Power
EEG Power

1460 1480 1500 1520 1540 1560
Time (s)

2A. Barachant et. al. Extraction of motor patterns from joint EEG/EMG
recording: A Riemannian Geometry approach., BCl Meeting 2016
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© Conclusion
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Conclusion

Covariances matrices as features

e Efficient representation of M/EEG data
o Covariance estimation adapted to each problem
- Sample Cov, ERP Cov, Filter Bank, Hankel



Conclusion

Covariances matrices as features

e Efficient representation of M/EEG data
o Covariance estimation adapted to each problem
- Sample Cov, ERP Cov, Filter Bank, Hankel

Riemannian Geometry
e A simple way to manipulate covariance matrices

@ Powerful invariance properties



Conclusion

Covariance Matrices + Riemannian Geometry : A winning
combination !
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Conclusion

Covariance Matrices + Riemannian Geometry : A winning
combination !

ML Azure 2016

DecMEG 2014 BCIGNER 2015  Grasp&Lift 2015

Q0

o |
o
a
]
]
E
u
@
a 3

DecMEG 2016
=P

BlOMAGEOIé

28/30



pyRiemann

APl Gallery Site~ Page~

pyRiel

pyRiemann: Biosignals classification with Riemannian Geometry

pyRiemann is a Python machine learning library based on scikit-learn APL. It provides a high-level interface for classification :
and manipulation of multivariate signal through Riemannian Geometry of covariance matrices. Documentation
« Introduction to pyRiemann
 What's new in the package

* Installing pyRiemann
For a brief introduction to the ideas behind the package, you can read the introductory notes. More practical information s on « Examples Gallery

the installation page. You may also want to browse the example gallery to get a sense for what you can do with pyRiemann and « APIreference
then check out the tutorial and API reference to find out how.

pyRiemann aim at being a generic package for multivariate signal classification but has been designed around applications of
biosignal (M/EEG, EMG, etc) classification.

Tosee the code or report a bug, please visit the github repository.

@ Covariance estimation @ Channel selection

@ Classification and clustering @ Spatial filtering (Multiclass CSP, Xdawn)
@ Artifact detection @ Joint diagonalization (Jade, uWedge, ...)
@ Permutation test o
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Contact

Thank you !

Contact
@ email : alexandre.barachant@gmail.com

@ website : alexandre.barachant.org

Code
@ github : https://github.com/alexandrebarachant/

@ pyriemann : https://github.com/alexandrebarachant/pyRiemann

Reference

@ "Riemannian geometry for EEG-based brain-computer interfaces; a
primer and a review, Brain-Computer Interfaces, 2017
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