Information Geometry: A framework for manipulation and classification of Neural Timeseries

Alexandre Barachant

June 29, 2017

- Information Geometry
- 3 Example of applications : Classification
- 4 Example of applications : Visualization & Stats
- 5 Conclusion

Neural Timeseries ?

Electrical signals from the brain

• EEG, MEG, ECoG

Decoding brain signal

Predict the task/condition/stimulus from M/EEG Recording

Context

Decoding brain signals :

- Brain computer interfaces
- Medical diagnosis
- Basic Science

Context

Decoding brain signals :

- Brain computer interfaces
- Medical diagnosis
- Basic Science

We need better algorithms

- Adapted to the nature of the signals
- Effective with a low number of examples
- Generalize across session / subjects

EEG model

$$\mathbf{x}(t) = \mathbf{As}(t)$$

Example : Neural oscillations

Sources are the signal of interest : Example with Motor execution

Sources power (variance) depend on the motor task

Build a pipeline to measure change in source signals :

Build a pipeline to measure change in source signals :

EEG Cov

$$\mathbf{\Sigma}_{x} = rac{1}{N} \mathbf{X} \mathbf{X}^{7}$$

Build a pipeline to measure change in source signals :

EEG Cov

$$\mathbf{\Sigma}_{x} = \frac{1}{N} \mathbf{X} \mathbf{X}^{T} \qquad \mathbf{\Sigma}_{s} = \mathbf{V} \mathbf{\Sigma}_{x} \mathbf{V}^{T} \\ \mathbf{V} \approx \mathbf{A}^{-1}$$

Build a pipeline to measure change in source signals :

log-variance "Source" Cov EEG Cov $egin{aligned} \mathbf{\Sigma}_{s} &= \mathbf{V}\mathbf{\Sigma}_{x}\mathbf{V}^{\mathcal{T}}, \ \mathbf{V} &\approx \mathbf{A}^{-1} \end{aligned}$ $\mathbf{\Sigma}_{x} = \frac{1}{N} \mathbf{X} \mathbf{X}^{T}$ $\log(diag(\mathbf{\Sigma}_s)),$

Build a pipeline to measure change in source signals :

Build a pipeline to measure change in source signals :

We rely on feature engineering to build of measure of what happen in the sources space.

Limitation of this approach

Problems with Source separation:

- Hit or Miss
- Robustness
- Parameter estimation (consume data)
- Change in mixing matrix $\mathbf{A} \Rightarrow$ Calibration

Is sources separation really necessary ?

- For a classification problem, we don't need the sources
- The Signal Covariance matrix $\mathbf{\Sigma}_{x}$ contains all the information.
- We only performed manipulation on Σ_{x} .

Let's classify Σ_x (or $\mathcal{N}(\mathbf{0}, \Sigma_x)$)!

3 Example of applications : Classification

4 Example of applications : Visualization & Stats

5 Conclusion

Classifying Covariance matrices

Option 1: vectorization

- Ignore the SPD structure of the matrices.
- Non-linear

Classifying Covariance matrices

Option 1: vectorization

- Ignore the SPD structure of the matrices.
- Non-linear

Option 2: Kullback leibler divergence

- Not a true metric.
- limited to a few classification algorithm

Classifying Covariance matrices

Option 1: vectorization

- Ignore the SPD structure of the matrices.
- Non-linear

Option 2: Kullback leibler divergence

- Not a true metric.
- limited to a few classification algorithm

Option 3: Information Geometry

Probability distributions :

• Points of a Riemannian Manifold.

Probability distributions :

• Points of a Riemannian Manifold.

Riemannian Manifold

- Topological space (curved)
- Euclidean geometry only valid locally
- Has a metric

Probability distributions :

• Points of a Riemannian Manifold.

Riemannian Manifold

- Topological space (curved)
- Euclidean geometry only valid locally
- Has a metric

The Fisher information matrix is the "Natural" metric

Multivariate Normal distribution

Covariance matrices ?

- Multivariate Normal distribution
- *N*(0, Σ)

• Manifold dimension : C(C+1)/2• Metric : $\frac{1}{2}$ Tr $\left(\Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_i} \Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_j} \right)$

from the metric :

• Distance, geodesic, mean, median, tangent space, gradient

Riemannian Distance

$$\delta_R(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \|\log\left(\boldsymbol{\Sigma}_1^{-1/2} \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_1^{-1/2}\right)\|_F = \left[\sum_{c=1}^C \log^2 \lambda_c\right]^{1/2}$$

Key property :

• Invariance by affine transformation, i.e, $\forall \mathbf{A} \in \mathcal{G}I(C)$

$$\delta_R(\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2) = \delta_R(\boldsymbol{\mathsf{A}}\boldsymbol{\Sigma}_1 \boldsymbol{\mathsf{A}}^{\mathsf{T}}, \boldsymbol{\mathsf{A}}\boldsymbol{\Sigma}_2 \boldsymbol{\mathsf{A}}^{\mathsf{T}}).$$

Information Geometry and Source separation

• linear mixing model + invariance:

$$\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t) \Longrightarrow \mathbf{\Sigma}_{\mathsf{X}} = \mathbf{A}\mathbf{\Sigma}_{\mathsf{S}}\mathbf{A}^{\mathsf{T}}$$

• The Riemannian distances in the sensor space and in the source space are equal!

$$\delta_R(\mathbf{\Sigma}_{x,1},\mathbf{\Sigma}_{x,2}) = \delta_R(\mathbf{\Sigma}_{s,1},\mathbf{\Sigma}_{s,2}).$$

• Uncorrelated sources :

$$\delta_R(\boldsymbol{\Sigma}_{x,1},\boldsymbol{\Sigma}_{x,2}) = \|\log(\sigma_{s,1}) - \log(\sigma_{s,2})\|_2$$

The Riemannian distance measure change in sources log-variance

How to use it ?

Distance Based classification

- k-NN
- Nearest centroid
- k-Means

Tangent Space classification

- Logistic Regression
- SVM
- Neural Networks

Benefits:

- Measure sources variance without source separation.
- No assumption about the sources covariance.
- Better generalization between subjects and sessions.

Benefits:

- Measure sources variance without source separation.
- No assumption about the sources covariance.
- Better generalization between subjects and sessions.

Inconvenient:

- Computational cost
- Numerical issue for high dimension

3 Example of applications : Classification

4 Example of applications : Visualization & Stats

5 Conclusion

Motor imagery classification

Classification of Imagined movement

Dataset	Tasks	# subjects	# channels
D1	left hand, right hand	9	22
D2	feet, right hand	14	15
D3	feet, right hand	9	3
D4	feet, right hand	12	13
D5	left hand, right hand	109	64
D6	right hand, feet	8	16
D7	right hand, left hand	14	11
D8	right hand, left hand	52	64
D9	right hand, left hand	29	30

Preprocessing : BP filter, 7-35 Hz. **Classification :**

CSP + LDA.

2 Cov + Tangent Space + Logistic Regression.

Results

ERP Covariance Matrix (ERPCov)

Event Related Potential ?

ERP Covariance Matrix (ERPCov)

Event Related Potential ?

• Covariance estimation independent of the waveform

ERP Covariance Matrix (ERPCov)

Event Related Potential ?

• Covariance estimation independent of the waveform

$$\tilde{\mathbf{X}}_i = \left[\begin{array}{c} \mathbf{P} \\ \mathbf{X}_i \end{array} \right]$$

$$\tilde{\boldsymbol{\Sigma}}_i = \begin{bmatrix} \boldsymbol{\Sigma}_P & \boldsymbol{\mathsf{C}}_{P,X_i}^T \\ \boldsymbol{\mathsf{C}}_{P,X_i} & \boldsymbol{\Sigma}_i \end{bmatrix}$$

An indirect measure of correlation with a prototype in the source space :

- One prototype for each class
- Independent of the reprensentation basis (Sensor / Sources)
- Prototype can be reused across session, subject or dataset.

An indirect measure of correlation with a prototype in the source space :

- One prototype for each class
- Independent of the reprensentation basis (Sensor / Sources)
- Prototype can be reused across session, subject or dataset.

Encoding a prior about the shape of the ERP

• Reduce the number of training data

Multi-dataset ERP benchmark :

Dataset	Туре	# subjects	# channels
BI_1	P300, Brain invaders	93	16 (dry)
BI_2	P300, Brain invaders	24	16
BI_3	P300, Brain invaders	38	32
SPELL_ALS*	P300, Speller, ALS	8	8
SPELL_1*	P300, Speller	8	16
SPELL_2*	P300, Speller	10	8
ErrP_1*	Error P, Speller	26	56
ErrP_2*	Error P, Speller	6	64

Preprocessing : BP filter, 1-20 Hz. 0.8 second epoch

Classification :

- Vectorized epoch + I1 Logistic Regression.
- ERPCov + Tangent Space + Logistic Regression.

ERP Classification - Within subjects

Results

3 Example of applications : Classification

Example of applications : Visualization & Stats

Visualize clusters in a dataset with tSNE¹:

¹t-distributed stochastic neighbor embedding

Visualize clusters in a dataset with tSNE¹:

¹t-distributed stochastic neighbor embedding

Statistics

Riemannian Distance based permutation-test :

• Equivalent to a Manova in the source space

Statistics

Riemannian Distance based permutation-test :

• Equivalent to a Manova in the source space

Pattern Extraction

Find EEG sources that varies jointly with EMG sources²

Example : Motor patterns

²A. Barachant et. al. *Extraction of motor patterns from joint EEG/EMG recording: A Riemannian Geometry approach.*, BCI Meeting 2016

1 Introduction

2 Information Geometry

3 Example of applications : Classification

4 Example of applications : Visualization & Stats

5 Conclusion

Covariances matrices as features

- Efficient representation of M/EEG data
- Covariance estimation adapted to each problem
 - Sample Cov, ERP Cov, Filter Bank, Hankel

Covariances matrices as features

- Efficient representation of M/EEG data
- Covariance estimation adapted to each problem
 - Sample Cov, ERP Cov, Filter Bank, Hankel

Riemannian Geometry

- A simple way to manipulate covariance matrices
- Powerful invariance properties

DecMEG 2014

DecMEG 2014 BCI@NER 2015

DecMEG 2014 BCI@NER 2015

DecMEG 2014 BCI@NER 2015

ML Azure 2016

DecMEG 2014 BCI@NER 2015

Grasp&Lift 2015

ML Azure 2016

DecMEG 2016

28/30

DecMEG 2014 BCI@NER 2015

ML Azure 2016

DecMEG 2016

NIH Seizure 2016

28/30

pyRiemann

pyRiemann 0.2.3 API Gallery Site - Page -

Search

pyRiemann: Biosignals classification with Riemannian Geometry

pyRiemann is a Python machine learning library based on scikit-learn API. It provides a high-level interface for classification and manipulation of multivariate signal through Riemannian Geometry of covariance matrices.

pyRiemann aim at being a generic package for multivariate signal classification but has been designed around applications of biosignal (M/EEG, EMG, etc) classification.

For a brief introduction to the ideas behind the package, you can read the introductory notes. More practical information is on the installation page. You may also want to browse the example gallery to get a sense for what you can do with pyRiemann and then check out the tutorial and API reference to find out how.

Documentation

- Introduction to pyRiemann
- · What's new in the package
- Installing pyRiemann
- Examples Gallery
- API reference

To see the code or report a bug, please visit the github repository.

- Covariance estimation
- Classification and clustering
- Artifact detection
- Permutation test

- Channel selection
- Spatial filtering (Multiclass CSP, Xdawn)
- Joint diagonalization (Jade, uWedge, ...)
- Ο...

Contact

Thank you !

Contact

- email : alexandre.barachant@gmail.com
- website : alexandre.barachant.org

Code

- github : https://github.com/alexandrebarachant/
- pyriemann : https://github.com/alexandrebarachant/pyRiemann

Reference

• "Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review, Brain-Computer Interfaces, 2017