
Information Geometry: A framework for
manipulation and classification of Neural

Timeseries

Alexandre Barachant

June 29, 2017



1 Introduction

2 Information Geometry

3 Example of applications : Classification

4 Example of applications : Visualization & Stats

5 Conclusion

1/30



Neural Timeseries ?

Electrical signals from the brain

EEG, MEG, ECoG
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Decoding brain signal

Predict the task/condition/stimulus from M/EEG Recording
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Context

Decoding brain signals :

Brain computer interfaces

Medical diagnosis

Basic Science

We need better algorithms

Adapted to the nature of the signals

Effective with a low number of examples

Generalize across session / subjects
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EEG
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EEG

EEG model

x(t) = As(t)
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Example : Neural oscillations

Sources are the signal of interest : Example with Motor
execution

Sources power (variance) depend on the motor task
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Feature Extraction pipeline

Build a pipeline to measure change in source signals :

EEG Cov

Σx = 1
N XXT

”Source” Cov

Σs = VΣxVT ,
V ≈ A−1

log-variance

log(diag(Σs)),

Features

We rely on feature engineering to build of measure of what happen
in the sources space.
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Limitation of this approach

Problems with Source separation:

Hit or Miss

Robustness

Parameter estimation (consume data)

Change in mixing matrix A ⇒ Calibration
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Limitation

Is sources separation really necessary ?

For a classification problem, we don’t need the sources

The Signal Covariance matrix Σx contains all the information.

We only performed manipulation on Σx .

Let’s classify Σx (or N (0,Σx) ) !
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Classifying Covariance matrices

Option 1: vectorization

Ignore the SPD structure of the matrices.

Non-linear

Option 2: Kullback leibler divergence

Not a true metric.

limited to a few classification algorithm

Option 3: Information Geometry
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Information Geometry

Probability distributions :

Points of a Riemannian Manifold.

Riemannian Manifold

Topological space (curved)

Euclidean geometry only
valid locally

Has a metric

The Fisher information matrix is the ”Natural” metric
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Multivariate Normal distribution

Covariance matrices ?

Multivariate Normal distribution

N (0,Σ)

Manifold dimension : C (C + 1)/2

Metric : 1
2 Tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)

from the metric :

Distance, geodesic, mean, median, tangent space, gradient
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Riemannian Distance

Riemannian Distance

δR(Σ1,Σ2) = ‖log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

)
‖F =

[
C∑

c=1

log2 λc

]1/2

Key property :

Invariance by affine transformation, i.e, ∀ A ∈ Gl(C )

δR(Σ1,Σ2) = δR(AΣ1AT ,AΣ2AT ).
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Information Geometry and Source separation

linear mixing model + invariance:

x(t) = As(t) =⇒ Σx = AΣsA
T

The Riemannian distances in the sensor space and in the
source space are equal!

δR(Σx ,1,Σx ,2) = δR(Σs,1,Σs,2).

Uncorrelated sources :

δR(Σx ,1,Σx ,2) = ‖ log(σs,1)− log(σs,2)‖2

The Riemannian distance measure change in sources
log-variance
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How to use it ?

Distance Based classification

k-NN

Nearest centroid

k-Means

Tangent Space classification

Logistic Regression

SVM

Neural Networks
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Benefits of Riemannian Geometry

Benefits:

Measure sources variance without source separation.

No assumption about the sources covariance.

Better generalization between subjects and sessions.

Inconvenient:

Computational cost

Numerical issue for high dimension
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Motor imagery classification

Classification of Imagined movement

Dataset Tasks # subjects # channels
D1 left hand, right hand 9 22
D2 feet, right hand 14 15
D3 feet, right hand 9 3
D4 feet, right hand 12 13
D5 left hand, right hand 109 64
D6 right hand, feet 8 16
D7 right hand, left hand 14 11
D8 right hand, left hand 52 64
D9 right hand, left hand 29 30

Preprocessing : BP filter, 7-35 Hz.

Classification :

1 CSP + LDA.

2 Cov + Tangent Space + Logistic Regression.
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Motor Imagery Classification

Results
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ERP Covariance Matrix (ERPCov)

Event Related Potential ?

Covariance estimation independent of the waveform

19/30



ERP Covariance Matrix (ERPCov)

Event Related Potential ?

Covariance estimation independent of the waveform

0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

Time (ms)

Evoked Potential Covariance matrix

5 10 15

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

Time (ms)

Evoked Potential − Permuted time sample Covariance matrix

5 10 15

2

4

6

8

10

12

14

16

19/30



ERP Covariance Matrix (ERPCov)

Event Related Potential ?

Covariance estimation independent of the waveform
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ERPCov

An indirect measure of correlation with a prototype in the
source space :

One prototype for each class

Independent of the reprensentation basis (Sensor / Sources)

Prototype can be reused across session, subject or dataset.

Encoding a prior about the shape of the ERP

Reduce the number of training data
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Dataset

Multi-dataset ERP benchmark :

Dataset Type # subjects # channels
BI 1 P300, Brain invaders 93 16 (dry)
BI 2 P300, Brain invaders 24 16
BI 3 P300, Brain invaders 38 32
SPELL ALS* P300, Speller, ALS 8 8
SPELL 1* P300, Speller 8 16
SPELL 2* P300, Speller 10 8
ErrP 1* Error P, Speller 26 56
ErrP 2* Error P, Speller 6 64

Preprocessing : BP filter, 1-20 Hz. 0.8 second epoch

Classification :

1 Vectorized epoch + l1 Logistic Regression.

2 ERPCov + Tangent Space + Logistic Regression.
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ERP Classification - Within subjects

Results
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ERP Classification - Between subjects

Transfer between subject (dataset BI 1 + BI 2)
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Dataset Visualization with tSNE

Visualize clusters in a dataset with tSNE1:

Euclidean Metric Riemannian Metric

1t-distributed stochastic neighbor embedding
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Statistics

Riemannian Distance based permutation-test :

Equivalent to a Manova in the source space

Frequency of interest Time window
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Pattern Extraction

Find EEG sources that varies jointly with EMG sources2

Example : Motor patterns

(A) Spatial Pattern 

1460 1480 1500 1520 1540 1560
Time (s)

(B) Signal Power

EMG Power
EEG Power

2A. Barachant et. al. Extraction of motor patterns from joint EEG/EMG
recording: A Riemannian Geometry approach., BCI Meeting 2016
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Conclusion

Covariances matrices as features

Efficient representation of M/EEG data

Covariance estimation adapted to each problem

- Sample Cov, ERP Cov, Filter Bank, Hankel

Riemannian Geometry

A simple way to manipulate covariance matrices

Powerful invariance properties
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Conclusion

Covariance Matrices + Riemannian Geometry : A winning
combination !

DecMEG 2014 BCI@NER 2015 Grasp&Lift 2015
ML Azure 2016

DecMEG 2016
NIH Seizure 2016
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pyRiemann

Covariance estimation

Classification and clustering

Artifact detection

Permutation test

Channel selection

Spatial filtering (Multiclass CSP, Xdawn)

Joint diagonalization (Jade, uWedge, ...)

...
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Contact

Thank you !

Contact

email : alexandre.barachant@gmail.com

website : alexandre.barachant.org

Code

github : https://github.com/alexandrebarachant/

pyriemann : https://github.com/alexandrebarachant/pyRiemann

Reference

”Riemannian geometry for EEG-based brain-computer interfaces; a
primer and a review, Brain-Computer Interfaces, 2017
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