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Outline
A couple recent topics from my research as a PhD.
A little excursus on bridging deep and probabilistic models to leverage both exact and
efficient probabilistic inference and rich and compositional representations
towards automating density estimation over hybrid domains .

Focusing on Sum-Product Networks (SPNs) [Poon and Domingos 2011] as they can be
pivotal for both. Talking about what SPNs can offer, how they can be exploited and
why you may want to use them.

Density estimation >

Tractable Probabilistic Models >

Sum-Product Networks >

Sum-Product Autoencoding >

Automating density estimation >

Mixed Sum-Product Networks >

Exploiting MSPNs >



Learn once, exploitmore than once
The challenges in the arms race to deeply make sense of data lie into the ability to
effectively make use of unlabeled data and to efficiently reason about it, i.e. to make
inference about their configurations and relationships

⇒ e.g., how to understand the flow of traffic in a city from historical records,
traffic light sensors and camera recordings?

Density estimation is the unsupervised task of learning an estimator for the joint
probability distribution p(X) from i.i.d. samplesD = {xi}mi=1 over random variables
(RVs)X Given such an estimator, answer a wide range of probabilistic queries:

⇒ e.g., complete evidence (EVA),marginals (MAR), conditionals (CON),
Most Probable Explanaition (MPE) and MAP assignments,…

Learn once, exploit it several times philosophy to density estimation: learn one
tractable probabilistic model in an unsupervised way from data, then:

⊕ perform (several kinds of) inference ad libitum
⊕ exploit it for predictive tasks later, without training again



The density estimation pipeline

1. decide a parametric form for the estimator

⊗ a parametric form for individual RVs (e.g., are counts of vehicles poisson distributed?)
⊗ the dependency structure parametric form (e.g., are jams influenced by salary growth?)

2. fit the estimator to the data (e.g., optimize data likelihood)

⊗ fit model structure
⊗ fit model parameters

3. perform inference ad libitum

⊗ several kinds of probabilistic queries (e.g., how likely is to see ?)
⊗ compute statistics, metrics, descriptors (e.g., mutual information)
⊗ make sense of the data and the model (interpretability) (e.g., what has been learned?)
⊗ …

4. (re-)use knowledge in other tasks (e.g., can representations learned for traffic counts be
used to predict where to build a city mall?)



Tractable Probabilistic Models (TPMs)
Classical Probabilistic Graphical Models (PGMs) like Bayesian Networks (BNs) and
Markov Networks (MNs) are highly expressive but exact inference is in general NP-hard.

Tractable Probabilistic Models (TPMs) are density estimators for which some kind of
inference is exact and tractable , i.e. polynomial in the number of RVs:

→ e.g., bounded tree-width PGMs , computational graphs and neural autoregressive models
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Sum-Product Networks (SPNs)
A Sum-Product Network S over RVsX is defined via rooted weighted DAG consisting of
distribution leaves (network inputs), sum and product nodes (inner nodes).

Each sub-network Sn defines an unnormalized probability distribution over the subset
of RVs appearing in it, sc(n) ⊆ X.

⊕ A leaf n defines a tractable distribution

ϕn(x) = p(x|sc(n))

⊕ a product node n represents a factorization
over independent components

Sn(x) =
∏

c∈ch(n) Sc(x)

⊕ a sum node n denotes amixture over its
children distributions

Sn(x) =
∑

c∈ch(n) wncSc(x)

× ×

× ×× ×
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SPNs: exact and tractable inferences

Let S⊕ (resp. S⊗) be the set of all sum (resp. product) nodes in an SPN S, then

⊕ S is complete iff ∀n ∈ S⊕, ∀c1, c2 ∈ ch(n) : sc(c1) = sc(c2)

⊕ S is decomposable iff ∀n ∈ S⊗, ∀c1, c2 ∈ ch(n) : sc(c1) ∩ sc(c2) = ∅

If S is complete and decomposable, then it is valid and allows for the efficient
computation of a network polynomial: ⇒ evidence,marginals, Z in time linear to |S|12

An SPN S is selective 3, iff
∀xi ∼ X,∀n ∈ S⊕ : |{c | c ∈ ch(n) : Sc(x

i) > 0}| ≤ 1

⇒MPE inference, assignments in time linear to |S|4

1Darwiche,Modeling and Reasoning with Bayesian Networks, 2009
2Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
3Peharz, Gens, et al., “Learning Selective Sum-Product Networks”, 2014
4Choi and Darwiche, “On Relaxing Determinism in Arithmetic Circuits”, 2017



Building SPNs…
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Learning both structure and parameters of SPNs with algorithmic variants of LearnSPN

Vergari, Di Mauro, et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”, 2015

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013



Building SPNs…
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

X4X3X2X1 X5

Looking for sub-population in the data— clustering —to introduce sum nodes…

Vergari, Di Mauro, et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”, 2015

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013



Building SPNs…
X4X3X2X1 X5

X4X3X2X1 X5

X4X3X2X1 X5

X4X3X2X1 X5

…seeking statistical independence among RVs to factorize into product nodes

Vergari, Di Mauro, et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”, 2015

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013



Building SPNs…
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

X4X3X2X1 X5

…learning smaller estimators as a a recursive data crawler

Vergari, Di Mauro, et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”, 2015

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013



…and building upon SPNs
SPNs as recursive hierarchical decomposition of larger models into smaller ones.
Tackling inference and learning complexity by pushing it down towards the leaves

⇒ computing mode , mean, variance,…efficiently
5

⇒ delegating encoding and decoding to leaf distributions
6

The Sum-Product Theorem 7 hints at generalizations over other semi-rings
⇒ e.g., composing kernel machines

8

SPNs as divide-et-imperamachines gluing and orchestrating inference among
different (possibly heterogeneous) models.

⇒ performing MPE inference over autoencoders from different domains
9

5Vergari, Di Mauro, et al., “Visualizing and Understanding Sum-Product Networks”, 2016
6Vergari, Peharz, et al., “Sum-Product Autoencoding: Encoding and Decoding Representations using Sum-Product

Networks”, 2017
7Friesen and Domingos, “The Sum-Product Theorem: A Foundation for Learning Tractable Models”, 2016
8Gens and Domingos, “Compositional Kernel Machines”, 2017
9Molina, Vergari, et al., “Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains”, 2017



Exploiting SPNsmore than once
Learn one SPN S generatively from data {xi ∼ X}mi=1 to estimate p(X) and then
exploit it—without retraining it—by interpreting it as a neural network :

⊕ as a feature extractor for Representation Learning (RL)

⇒ sum, product nodes or scope aggregations as filters 10

⊕ as an autoencoder mapping back and forth embeddings

⇒ Sum-Product Autoencoding 11

⊕ understanding learned representations

⇒ visualizing filters in the input space

Moreover the interpretation of SPNs as NNs enables

⊕ efficient implementations running on GPUs

⊕ structure learning as a constrained optimization problem

10Vergari, Di Mauro, et al., “Visualizing and Understanding Sum-Product Networks”, 2016
11Vergari, Peharz, et al., “Sum-Product Autoencoding: Encoding and Decoding Representations using Sum-Product

Networks”, 2017



MPE inference with SPNs
ExactMPE inference, e.g. computing for RVsQ,O ⊂ X,Q ∪O = X,Q ∩O = ∅

argmaxq∼Q p(q|O)

is NP-hard for a general SPN S overX but can be approximated in linear time in |S| by
theMaxProdMPE algorithm (but exact for selective SPNs)

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011

Vergari, Peharz, et al., “Sum-Product Autoencoding: Encoding and Decoding Representations using Sum-Product
Networks”, 2017



MPE inference with SPNs
ExactMPE inference, e.g. computing for RVsQ,O ⊂ X,Q ∪O = X,Q ∩O = ∅

argmaxq∼Q p(q|O)

is NP-hard for a general SPN S overX but can be approximated in linear time in |S| by
theMaxProdMPE algorithm (but exact for selective SPNs)
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E.g. to compute the MPE state of RVs Q =
{X1, X3} givenO = {X2, X4}

argmaxq∼Q pS(q, X2 = 1, X4 = 0),

MaxProdMPE first turns S into a
Max-Product Network (MPN) M , by replacing
sum nodes with max nodes and leaf distributions
withmaximizing distributions

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011

Vergari, Peharz, et al., “Sum-Product Autoencoding: Encoding and Decoding Representations using Sum-Product
Networks”, 2017



MPE inference with SPNs
ExactMPE inference, e.g. computing for RVsQ,O ⊂ X,Q ∪O = X,Q ∩O = ∅

argmaxq∼Q p(q|O)

is NP-hard for a general SPN S overX but can be approximated in linear time in |S| by
theMaxProdMPE algorithm (but exact for selective SPNs)
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…then M is evaluated bottom-up to compute

M(O) by propagating evidence from children to
parents and marginalizing over query RVsQ

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011

Vergari, Peharz, et al., “Sum-Product Autoencoding: Encoding and Decoding Representations using Sum-Product
Networks”, 2017



MPE inference with SPNs
ExactMPE inference, e.g. computing for RVsQ,O ⊂ X,Q ∪O = X,Q ∩O = ∅

argmaxq∼Q p(q|O)

is NP-hard for a general SPN S overX but can be approximated in linear time in |S| by
theMaxProdMPE algorithm (but exact for selective SPNs)
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A Viterbi-style step retrieves the query assignments
to Q growing a tree path top-down , starting from
the root:

⊕ following only the maximum activation
children for a max node

⊕ following all child branches for product nodes

⊕ maximizing on leaf distributions overQ

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011

Vergari, Peharz, et al., “Sum-Product Autoencoding: Encoding and Decoding Representations using Sum-Product
Networks”, 2017



Sum-Product Autoencoding (SPAE)
Given an SPN S—unsupervisedly learned to estimate p(X) we want to encode a
sample xi ∼ X as an embedding ei in a new d-dimensional spaceEX ⊆ Rd

ei = fS(x
i).

For decoding, on the other hand, we seek an inverse function g : EX → X such that

gS(e
i) = x̃i ≈ xi.

Embeddings overX can be later used in predictive tasks as features
⇒ e.g. to predict a RV Y

or as the output of a predictive model p whose target space isEX

⇒ e.g. to disentangle label dependenciesY in MLC

We equip S with fS and gS by exploiting MPE inference routines

⇒ dealing with categorical and continuous representations

⇒ dealing with partial embeddings



CAT embeddings (I)
Given an SPN S overX, to each sum node n ∈ S⊕ is associated a categorical latent
variable (LV)Zn having values zn ∈ {0, . . . , |ch(n)| − 1}.

It would be natural to encode xi through the LVs in S, i.e. EX = ZS (d = |S⊕|):

fS(x
i) = fCAT(x

i) ≜ z̃i = argmaxzi p(z
i |xi), (1)

i.e. xi is encoded as the categorical vector z̃i comprising the MPE state forZS .

Analogously, the decoding of z̃i through gS can be defined as:

gS(z̃
i) = gCAT(z̃

i) ≜ x̃i = argmaxxi p(x
i | z̃i). (2)

However, this requires performing MPE inference over the
joint probability distribution overV = (X,ZS)

⇒ we need to deal with an augmented SPN a S overV

aPeharz, Gens, et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



CAT embeddings (II)
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(e)

To solve both Eq. (1) and Eq. (2), has to be runMaxProdMPE twice on the augmented
MPNM . Since each application ofMaxProdMPE involves a bottom-up and a
backtracking pass, we need in total 4 passes overM .

⇒M is selective, hence MPE inference is exact!

MaterializingM scales quadratically, thus we directly useM , evaluatingM(xi) in a
bottom-up pass once and then growing a tree path θ while collecting the states:

zij = argmaxk∈{0,...,|ch(nj)|} wnjckMck (x
i), (3)

for eachZj ∈ Zθ
S , whereZ

θ
S are the LVs associated only to the max nodes in θ.

⇒ CAT embeddings are very sparse !



CAT embeddings (III)
CAT embeddings are compact and linear representations of trees , the induced

trees in S 12.

We can interpret the semantics of CAT embeddings by visualizing
the latent factors of variations encoded inZS through the clusters of samples

sharing the same representations 13.

For an SPN learned on MNIST, samples sharing the same CAT encoding—even if
belonging to different classes, clearly share stylistic aspects like orientation and stroke.

12Zhao, Melibari, et al., “On the Relationship between Sum-Product Networks and Bayesian Networks”, 2015
13Vergari, Di Mauro, et al., “Visualizing and Understanding Sum-Product Networks”, 2016



ACT embeddings (I)
SPNs be interpreted as deep neural networks with sparse constrained topology in
which neurons labeled by the scope function sc—enabling a direct encoding of the

input—retaining a fully probabilistic semantics 14.
⇒ each neuron activation, i.e. Sn(x), is a valid probability

Therefore, neuron ACTivations can be used as features to build embeddings, as it is
common practice for neural networks and autoencoders [Marlin, Swersky, et al. 2010;
Rifai, Vincent, et al. 2011]

⇒ however representations are not arranged layer-wise !

LetN = {nj}dj=1 ⊆ M be a set of nodes in an MPNM , by a certain criterion. A
sample xi is encoded into a d-dimensional continuous embedding
fS(x

i) = ei ∈ EX ⊆ Rd by collecting the activations of nodes inN, i.e.

eij = Mnj (x
i)

.

14Vergari, Di Mauro, et al., “Visualizing and Understanding Sum-Product Networks”, 2016



ACT embeddings (II)
We can note how ACT embeddings implicitly encode an induced tree : node

activations ei
M are sufficient to determine which max node child branch to follow,

according to Eq. 3—recompute each hard decision again.

Therefore, we can build a decoder gACT thatmimicks only the top-down pass of
MaxProdMPE: growing the induced tree from the root by following the max sum
node child branches—all product child nodes are followed as usual.

Given an SPN S overX—equipped with (fCAT, gCAT) and (fACT, gACT)—and a
sample xi ∼ X, it holds that:

gACT(fACT(x
i)) = gCAT(fCAT(x

i)). (4)

⇒ different embeddings, but equivalent reconstructions !



ACT embeddings (III)
Since ACT embeddings are points in the space induced by a collection of distributions,
SPN nodes are part-based filters operating over different sub-spaces of RVs.

For an SPN S we can visualize the filter encoded by sub-network Sn rooted at node n
by computing the mode of the distribution pSn :

x∗
|sc(n) = argmax

x
Sn(x|sc(n);w)

E.g., on MNIST, differently complex local patterns emerge e.g. from small blobs to shape
contours and finally full digits

⇒ a hierarchy of representations structured at levels of abstraction!



CAT vs ACT embeddings
Even if one can demonstrate that CAT and ACT embeddings can lead to the same
reconstructions (see Eq. 4), however, they act differently when plugged in predictive
tasks (both as feature and target representation spaces).

⇒ exhaustive empirical evaluation for MLC

When employed as features for a predictor (its input) ACT embeddings perform

better than CAT ones due to their greater information content .

⇒ CAT embeddings are shared more frequently among samples

Conversely, when employed to encode target RVs (a predictor’s output)
classification for the CAT case is easier than regression with ACT embeddings.

⇒ simpler prediction task due to the sparsity



Partial embedding decoding
Up to now we have considered only fully decodable embeddings, i.e. embeddings
comprising all the information required to materialize a complete and well-formed tree
necessary to decode e into x̃.
In some real cases, however, only incomplete or partial embeddings are available:
some values ej are corrupted, invalid or just missing.

⇒ e.g., data compression

SPAE routines offer a natural and efficient way to deal with such cases: MPE inference.
⇒ treat missing embedding components as missing values

In practice, if for an ACT (resp. CAT) embedding the component eij /∈ ei (resp.
zij /∈ zi) corresponds to a node nj activation (resp. LVZj state), then it can be
imputed by employingMaxProdMPE on the sub-networkMnj .

⇒ imputation for all missing components in one single pass



MLC prediction tasks (I)
Evaluating SPAE onMulti-Label Classification (MLC): predicting the target
labels—binary arrays—yi ∼ Y associated to sample xi ∼ X.

Evaluating four different learning scenarios:

⊕ no embedding at all (baseline)

X
p
=⇒ Y

⊕ when embedding only input RVsX

(X
fr−−→ EX)

LR
=⇒ Y

⊕ when embedding only target RVsY (requires decoding!)

(X
p
=⇒ (Y

ft−→ EY))
gt−→ Y

⊕ when embedding both RV setsX,Y

((X
fr−−→ EX)

p
=⇒ (Y

ft−→ EY))
gt−→ Y



MLC prediction tasks (II)
ba

se
lin

e X
p
=⇒ Y JAC EXA

p : LR 0.00 0.00
p : CRFSSVM +15.83 +103.90

sc
en

ar
io

I r : RBMh∈{500,1000,5000} +1.46 -1.62
r : MADEh∈{500,1000} +2.57 +2.99
r : CAEγ∈{0.7,0.8,0.9} -0.15 +4.13
r : DAEγ∈{0.7,0.8,0.9} +0.70 +4.17
r : SPAEACT +3.54 +17.18
r : SPAECAT -11.90 -11.53

sc
en

ar
io

II t : MADEh∈{200,500}, p : RR -30.42 -28.02
t : SAEγ∈{0.7,0.8,0.9}, p : RR +5.96 +95.78
t : CAEγ∈{0.7,0.8,0.9}, p : RR +7.60 +78.81
t : DAEγ∈{0.7,0.8,0.9}, p : RR +13.39 +102.22
t : SPAEACT, p : RR +15.19 +98.58
t : SPAECAT, p : LR +24.07 +141.81

sc
en

ar
io

III r, t : MADE, p : RR -27.15 -25.14
r, t : CAEγ∈{0.7,0.8,0.9}, p : RR +5.21 +79.20
r, t : DAEγ∈{0.7,0.8,0.9}, p : RR +13.97 +98.25
r : SPAEACT, t : SPAEACT, p : RR +15.98 +106.65
r : SPAECAT, t : SPAECAT, p : LR +13.73 +107.05
r : SPAEACT, t : SPAECAT, p : LR +25.47 +144.78

Measuring the average relative improvement
for for the JACcard, HAMming and EXAct
match scores over 10 standard MLC
benchmark datasets.

In all scenarios we employ a linear predictor:
a logistic (LR) or ridge regressor (RR) for
classification or regression, respectively.

BothACT and CAT are competitive, in all
scenarios—for all scores—against:

⊕ RBMs

⊕ probabilistic autoencoders (MADEs)

⊕ deep stacked autoencoders (SAEs)

⊕ contractive autoencoders (CAEs)

⊕ denoising autoencoders (DAEs)



Why SPAE works for RL…
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

X4X3X2X1 X5

remember SPNs are built via hierarchical co-clustering, learning features as recursive
data crawlers!

Vergari, Di Mauro, et al., “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”, 2015

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013



Automating density estimation

1. decide a parametric form for the estimator

⊗ a parametric form for individual RVs
⊗ the dependency structure parametric form ⇒ SPN structure

2. fit the estimator to the data ⇒ LearnSPN

⊗ fit model structure
⊗ fit model parameters

3. perform inference ad libitum

⊗ several kinds of probabilistic queries ⇒ EVI, MAR, CON,…
⊗ compute statistics, metrics, descriptors
⊗ make sense of the data and the model (interpretability) ⇒ visualizing filters
⊗ …

4. (re-)use knowledge in other tasks ⇒ SPAE embeddings and routines



Mixed Sum-Product Networks (MSPNs)
Relieving practitioners from imposing parametric forms for RVs and their interactions

⇒ general strong assumptions—e.g., gaussianity—may not hold in practice

⇒ specific knowledge over hybrid domains is often beyond users’ possibilities

LearnSPN and its variants are tailored towards specific parametric
assumptions—gaussian 15, multinomial 16 or poisson data 17

Mixed Sum-Product Networks (MSPNs) combine SPNs with piecewise polynomial
approximations to provide a density estimator without making parametric form
assumptions when

⊕ seeking RV dependencies (column splits)

⊕ determining instance clustering (row splits)

⊕ modeling univariate distributions (leaf growing)

15 Jaini, Rashwan, et al., “Online Algorithms for Sum-Product Networks with Continuous Variables”, 2016
16Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013
17Molina, Natarajan, et al., “Poisson Sum-Product Networks: A Deep Architecture for Tractable Multivariate Poisson

Distributions”, 2017



LearnMSPN: decomposing RVs I
Looking for RV dependency through an empirical estimator for Rényi’s Maximum
Correlation Coefficient [Rényi 1959], the Randomized Dependency Coefficient
(RDC) [Lopez-Paz, Hennig, et al. 2013].

RVsXi andXj are independent iff for two samplesDXi = {xm
i |xm

i ∼ Xi}Mm=1

andDXj = {xm
j |xm

j ∼ Xj}Mm=1 RDC(DXi ,DXj ) ≈ 0.

I. Preserve marginal structure by going through the empirical cdf :

CXi =

{
1

M

∑M

r=1
1{vri ≤ vmi }

∣∣∣∣vmi ∈ DXi

}M

m=1

II. Randomly project to a k-dimensional gaussian space , and then apply a

non-linearity σ.

ϕ(CXi) = σ(w · CT
Xi

+ b), (w, b) ∼ N (0k, sIk×k)

Molina, Vergari, et al., “Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains”, 2017



LearnMSPN: decomposing RVs II
III. The RDC is the largest canonical correlation analysis (CCA) coefficient

RDC(DXi ,DXj ) = supβ,γ ρ(βTϕ(CXi),γ
Tϕ(CXj )).

where ρ2 is the solution of the eigenproblem for the CCA over ϕ(CXi) and ϕ(CXj ):(
0 Σ−1

ii Σij

Σ−1
jj Σji 0

)(
β
γ

)
= ρ2

(
β
γ

)
,

where the covariance block matrices involved are:

Σij = cov(ϕ(CXi), ϕ(CXj )),Σji = cov(ϕ(CXj ), ϕ(CXi)),

Σii = cov(ϕ(CXi), ϕ(CXi)),Σjj = cov(ϕ(CXj ), ϕ(CXj )).

Molina, Vergari, et al., “Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains”, 2017



LearnMSPN: clustering
Clustering hybrid data highly depends on the metric space employed:

⇒ e.g. K-Means relies on gaussianity

We employ the RDC pipeline to project into a homogeneous space in which clusters may
be more easily separable.
Given a samplesDX over RVsX we:

1. compute E = {C(DXi)|DXi}ni=1. via the empirical copula transform

2. then project all features into a new k-dimensional non-linear space

3. finally, we apply clustering—e.g. safely K-Means—to obtain c clusters

⇒ c = 2 for deeper SPNs [Vergari, Di Mauro, et al. 2015]

Comparable to employing the Gower distance—if one can make parametric
assumptions
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LearnMSPN: leaf distribution modeling
Approximate univariate leaf probability mass or density functions with piecewise
polynomials ⇒ unwrapping the whole MSPN polynomial for symbolic evaluation

0 500 1000 1500 20000.000

0.002

0.004
PWL, =0.1
PWL, =1.0
PWL, =5.0
Gaussian

0 10 20 300.00
0.05
0.10
0.15
0.20

Degree 0 approximations : piecewise constants, i.e. histograms

⇒ adaptive bins by fitting an irregular histogram by optimizing a penalized
log-likelihood [Rozenholc, Mildenberger, et al. 2010]

Degree 1 approximations : piecewise linear

⇒ reframing it into a supervised task, fitting a piecewise linear model
via unimodal isotonic regression [Frisen 1986]
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MSPNs: inference over hybrid domains
Toy symbol grounding with MSPN: embed MNIST digits into a 16-d continuous spaceX
and augment them with binary codesY for semantic features:

(i) a vertical stroke, (ii) a circle, (iii) a left curvy stroke,
(iv) a right curvy stroke, (v) a horizontal stroke, (vi) a double curve stroke

⇒ the code for 3 is therefore: y3 = (0, 0, 1, 0, 1, 1)
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Model p(X,Yc, c) with an MSPN and perform: Easily performMPE and conditional
sampling from p(X|yc) over existing class codes yc and invented ones .
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MSPNs: privileged information learning
Efficient marginalization in MSPNs allows to leverage additional RVs at training time as
privileged information
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Randomly increasing the semantic codesYc helps modeling both the
marginal likelihood p(X) and the predictive accuracy on the class c at test time

⇒ towards stacking density estimators
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MSPNs: orchestrating inference
Split RVs into two halves—Xl,Xr ,Xu, andXd—and learn one autoencoder f on
each RV set independently. They act as different domains.

Learn one MSPNMud to model P (fu(Xu), fd(Xd)) (resp. Mlr and
P (fl(Xl), fr(Xr))).
Given one half test image, predict the other half.

⇒Mud fills and glues the embedding spaces of fu and fd

Molina, Vergari, et al., “Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains”, 2017



MSPNs: hybrid measures computation
Recall, an MSPN encodes a polynomial over leaf piecewise polynomials.

⇒ managing complexity by divide-et-impera representations!

Employing a symbolic solver to evaluate the overall network polynomial to easily
compute information-theoretic measures for hybrid domains,
e.g. hybrid mutual information

Satisfaction Treatment

Satisfaction Work

Age

Success selfrating

Satisfaction Medication

Age diagnosis

IQ

No of unfinished Educations
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Automating density estimation

1. decide a parametric form for the estimator ⇒ MSPN

⊗ a parametric form for individual RVs
⊗ the dependency structure parametric form

2. fit the estimator to the data ⇒ LearnMSPN

⊗ fit model structure
⊗ fit model parameters

3. perform inference ad libitum

⊗ several kinds of probabilistic queries ⇒ EVI, MAR, CON, hybrid queries

⊗ compute statistics, metrics, descriptors ⇒ hybrid MI

⊗ make sense of the data and the model (interpretability) ⇒ visualizing filters
⊗ …

4. (re-)use knowledge in other tasks ⇒ SPAE embeddings privileged information,



What is still missing?
Points from 1 to possibly 4 are just the inner loop of optimization!
Still many hyperparameter to tune and value choices to automatize

⇒ e.g., dependency threshold, smoothing factor, …

Proposal: automating hyperparameter selection a-là gray-box AutoML
⇒ CV grid search, bayesian optimization, …

With SPNs we can learn the structure, but also we have to learn the structure!
Learn(M)SPN is too greedy and requires a top structure to be learned before leaf models

⇒ no end-to-end joint learning of structures …

Proposal: reframe structure learning as constrained optimization and use sgd

While piecewise polynomials are flexible enough to approximate several distributions,
they may lack the interpretability of known parametric forms.
Proposal: also infer the parametric form of marginal distributions ex-post

⇒ is it gaussian, logit, poisson? …



In a nutshell
SPNs as deep tractable probabilistic models can be effectively learned as accurate and
flexible density estimators—even on mixed domains—and at the same time being
exploited to provide new feature representations for predictive tasks.

…additional future works
⊕ Bayesian Sum-Product Networks

⊕ SPNify other (non-probabilistic) models: autoencoders, Gibbs samplers, GPs,…

⊕ demistify some folklore: “SPNs are not NNs”, “SPNs are not as expressive as NNs”,…

awesome-spns
Star or fork on github for more references to the SPN literature:

https://github.com/arranger1044/awesome-spn

https://github.com/arranger1044/awesome-spn
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SPNs as NNs
SPNs as sparse, constrained NNs with a fully probabilistic semantics and allowing for
direct encoding through the scope function.
A classic MLP hidden layer computes first a linear and then a non-linear mapping:

h(x) = σ(Wx+ b)

SPNs can be reframed as DAGs of MLPs, each sum layer of s nodes computing:

S⊕(x) = log(Wx)

and similarly for product layers:

S⊗(x) = exp(Px)

whereW ∈ Rs×r
+ andP ∈ {0, 1}s×r are the weight connection matrices:

W(ij) =

{
wij if i → j

0 otherwise
P(ij) =

{
1 if i → j

0 otherwise

Vergari, Di Mauro, et al., “Visualizing and Understanding Sum-Product Networks”, 2016



Structure learning as optimization I
Representing topological constraints as completeness and decomposability in matrix
formalism. Representing a layer scope information through a scope matrix
C ∈ {0, 1}s×|X| where:

C(ij) =

{
1 ifXj ∈ scope(ni)

0 otherwise

Each scope matrix for a layer l can be computed by considering the previous layer l− 1:

Cl = WlCl−1

Then it holds that:
a sum layer is complete iffCl = WlCl−1 is a binary matrix
a product layer is decomposable iffCl = PlCl−1 is a binary matrix



Structure learning as optimization II
Structure learning for a layered SPN S ofL layers as an optimization problem
constrained over scope relationships , weight normalization and

layer connectivity :

find C = {Cl}L−1
l=1 ,

W = {Wl}l=2,4,...,L,

P = {Pl}l=1,3,...,L−1

by solving argmax
∑

x∼X S(x;W,P)
subject to CL = 1|X|

(WlCl−1)2 −WlCl−1 = 1s×|X|, l = 2, 3, . . . , L− 1

Wl · 1r = 1s, l = 2, 4, . . . , L

(Pl)2 −Pl = 1s×r, l = 1, 3, . . . , L− 1


