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Batch Learning in a Nutshell

Collect a sample Dn = (Xi ,Yi )
n
i=1 of i.i.d replications of some

random variable (X,Y) ∈ X× Y.

Goal: use Dn to build up φ̂ such that φ̂(X) is an "acceptable"
prediction of Y.

For some loss function `, let

R : φ̂ 7→ E`
(
φ̂(X),Y

)
and Rn : φ̂ 7→ 1

n

n∑
i=1

`
(
φ̂(Xi ),Yi

)
denote the risk and empirical risk, respectively.
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The quasi-Bayesian approach

Set of candidates F equipped with a probability measure π (prior).

For some (inverse temperature) parameter λ > 0, quasi-posterior

ρ̂λ(·) ∝ exp (−λRn(·))π(·).

In general, exp (−λRn(·)) is not a likelihood (hence the term
quasi-Bayesian).
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A variational perspective

With the classical quadratic loss ` : (a, b) 7→ (a − b)2,

ρ̂λ ∈ arg inf
ρ�π

{∫
F

Rn(φ)ρ(dφ) +
K(ρ, π)

λ

}
,

where K is the Kullback-Leibler divergence

K(ρ, π) =

{∫
F

log
(

dρ
dπ

)
dρ when ρ� π,

+∞ otherwise.
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Typical quasi-Bayesian estimators

MAQP
φ̂λ ∈ arg max

φ∈F
ρ̂λ(φ).

Mean
φ̂λ = Eρ̂λφ =

∫
F

φρ̂λ(dφ).

Realization
φ̂λ ∼ ρ̂λ.

And so on.
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Statistical aggregation revisited

Assume that F is finite.

The mean of the quasi-posterior ρ̂λ amounts to the celebrated
exponentially weighted aggregate (EWA)

φ̂λ = Eρ̂λφ =

#F∑
i=1

ωλ,iφi

where
ωλ,i =

exp(−λRn(φi ))π(φi )∑#F
j=1 exp(−λRn(φj))π(φj)

.

� G. (2013). Agrégation d’estimateurs et de classificateurs : théorie et méthodes, Ph.D. thesis, Université Pierre

& Marie Curie
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Probably Approximately Correct (PAC) oracle inequalities

Let R? denote the Bayes risk and set λ ∝ n. For any ε > 0,

P
(

R
(
φ̂λ

)
− R? ≤ ♠ inf

φ∈F

{
R(φ)− R? +

∆(φ, ε)

nα

})
≥ 1− ε,

where ♠ ≥ 1.

Key argument: concentration inequalities (e.g., Bernstein) +
duality formula (Csiszár, Catoni).

Typical regimes in the literature
I α = 1

2 (slow rate)
I α = 1 (fast rate)

d := dim(X)

I ∆(φ, ε) ∝ d + log 1
ε

I ∆(φ, ε) ∝ log d + log 1
ε
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Lemma (Catoni, 2004)
Let (A,A) be a measurable space. For any probability µ on (A,A)
and any measurable function h : A→ R such that∫

(exp ◦ h)dµ <∞,

log

∫
(exp ◦ h)dµ = sup

m∈Mπ(A,A)

{∫
hdm −K(m, µ)

}
,

with the convention ∞−∞ = −∞. Moreover, as soon as h is
upper-bounded on the support of µ, the supremum with respect to
m on the right-hand side is reached for the Gibbs distribution g
given by

dg
dµ

(a) =
exp ◦h(a)∫
(exp ◦ h)dµ

, a ∈ A.
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The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such
as quasi-Bayesian) estimators.

� Shawe-Taylor and Williamson (1997). A PAC analysis of a Bayes estimator, COLT

� McAllester (1998). Some PAC-Bayesian theorems, COLT

� McAllester (1999). PAC-Bayesian model averaging, COLT

� Catoni (2004). Statistical Learning Theory and Stochastic Optimization, Springer

� Audibert (2004). Une approche PAC-bayésienne de la théorie statistique de l’apprentissage, Ph.D. thesis,

Université Pierre & Marie Curie

� Catoni (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning, IMS

� Dalalyan and Tsybakov (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity,

Machine Learning
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A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature
� Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

� Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,

IEEE Transactions on Information Theory

� Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

� G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal

of Statistics

� G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

� Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

� Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

Towards (almost) no assumptions to derive powerful results
� Bégin, Germain, Laviolette and Roy (2016). PAC-Bayesian bounds based on the Rényi divergence, AISTATS

� Alquier and G. (2016). Simpler PAC-Bayesian bounds for hostile data, arXiv preprint

(PAC inequalities for heavy-tailed time series)
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In practice...

Previous instantiations of φ̂λ are not tractable.

Instead of an infinite-dimensional functional space F, we often
resort to some projection onto Rd .

Sampling from a d-dimensional non-standard distribution is still an
algorithmic challenge.
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Existing implementation

I (Transdimensional) MCMC
� G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic

Journal of Statistics

� Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

� G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

� Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

I Stochastic optimization
� Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

I Variational Bayes
� Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs

posteriors, Journal of Machine Learning Research
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Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of ρ̂λ (echoes the
celebrated statistical / computational tradeoff).

Let ρ̃λ denote a VB approximation of ρ̂λ. The rate of convergence
in PAC inequalities is of analogous magnitude for ρ̃λ and ρ̂λ.
� Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors,

Journal of Machine Learning Research

MCMC for online (sequential) quasi-Bayesian learning: the
stationary distribution of the Markov Chain is indeed ρ̂λ.
� Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint
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Quasi-Bayesian
Non-Negative Matrix Factorization
Alquier and G. (2017)
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix
Factorization
Mathematical Methods of Statistics



NMF
NMF amounts to decompose an m1 ×m2 matrix M as a product
of two low rank matrices with non-negative entries.

M ' UV>,

where U is m1 × K and V is m2 × K , and K � m1 ∧m2.
M·,j '

∑K
`=1 Vj,`U·,`.
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Wide range of applications (image processing, separation of
sources in audio and video files, topics extraction in text,
recommender systems...)

Separation of audio sources [Demo, courtesy of C. Févotte]
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https://youtu.be/b07t-y1jNcs


Setting

We observe an m1 ×m2 matrix Y and we assume

Y = M + E

with E(E) = 0 and V(E) = σ2Id.

Our goal is to find a "good" factorization of M.
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Notation

Frobenius norm
‖A‖F =

√
〈A,A〉F ,

〈A,B〉F = Tr(AB>) =

p∑
i=1

q∑
j=1

Ai ,jBi ,j .

For any r ∈ {1, . . . ,K}, Mr (L) is the set of matrices U0 with
non-negative entries bounded by L such that

U0 =

 U0
11 . . . U0

1r 0 . . . 0
... . . . ...

... . . . ...
U0

m11 . . . U0
m1r 0 . . . 0



TAU - 18



Assumption

The entries of E are i.i.d and EEi ,j = 0. Let m(x) = E[Ei ,j1Ei,j≤x ]
and F (x) = P(Ei ,j ≤ x).

There exists a nonnegative and bounded function g such that
‖g‖∞ ≤ 1 and ∫ v

u
m(x)dx =

∫ v

u
g(x)dF (x).

This assumption is met whenever Ei ,j ∼ N(0, σ2) (‖g‖∞ = σ2) or
Ei ,j ∼ U(−b, b) (‖g‖∞ = b2/2).
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Prior

For any a, x > 0, ga(x) = 1
a f
( x

a
)
.

∀` = 1, . . . ,K , γ`
ind.∼ h,

∀i = 1, . . . ,m1, j = 1, . . . ,m2, Ui ,`,Vj,`
ind.∼ gγ` ,

π(U,V , γ) =
K∏
`=1

(m1∏
i=1

gγ`(Ui ,`)

)m2∏
j=1

gγ`(Vj,`)

 h(γ`),

and
π(U,V ) =

∫
RK

+

π(U,V , γ)dγ.
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Prior (continued)

The idea behind this prior is that under h, many γ` should be small
and lead to non-significant columns U·,` and V·,` (sufficient
probability mass for h, around zero and elsewhere).

This is achieved by assuming1

1. ∃ 0 < α < 1, β ≥ 0 and δ > 0 such that for any
0 < ε ≤ 1

2
√
2Sf

,

∫ ε

0
h(x)dx ≥ αεβ and

∫ 2

1
h(x)dx ≥ δ.

2. ∃ a non-increasing density f̃ and C > 0 such that for any
x > 0, f (x) ≥ Cf̃ (x).

1Sf := max
(
1,
∫∞
0 x2f (x)dx

)
TAU - 21



Popular choices for f :
1. Exponential prior f (x) = exp(−x).
2. Truncated Gaussian prior f (x) ∝ exp(2ax − x2) with a ∈ R.
3. Heavy-tailed prior f (x) ∝ 1

(1+x)ζ
with ζ > 1.

The heavier the tails, the better the performance of QBNMF. But
computational cost arises!

Popular choices for h:
1. Uniform distribution on [0, c].
2. Inverse gamma prior h(x) = ba

Γ(a)
1

xa+1 exp
(
−b

x
)
.

3. Gamme Γ(a, b) prior for a, b > 0.
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Quasi-Bayesian estimator

ρ̂λ(U,V , γ) =
1
Z exp

[
−λ‖Y − UV>‖2F

]
π(U,V , γ),

where

Z :=

∫
exp

[
−λ‖Y − UV>‖2F

]
π(U,V , γ)d(U,V , γ).

M̂λ = Eρ̂λUV T =

∫
UV T ρ̂λ(U,V , γ)d(U,V , γ).
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Bayesian ⊂ Quasi-Bayesian (⊂ PAC-Bayesian)

The specific choice Ei ,j ∼ N(0, 1/(2λ)) (or rather, Ei ,j ∼ N(0, σ2)
and λ = 1/(2σ2)) turns our procedure fully Bayesian!

In this case the likelihood is written with the Frobenius norm,
acting as a fitting criterion (other choices in the literature: Poisson
likelihood, Itakura-Saito divergence).
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Main result: sharp oracle inequality (simplified)
Fix λ = 1/4.

E
(
‖M̂λ −M‖2F

)
≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr (L)

{
‖U0V 0> −M‖2F

+ r
[
8(m1 ∨m2) log

(
2(L + 1)2m1m2

Cf̃ (L + 1)

)
+ 8 + log

1
δ

]

+ K
[
4β log

(
2Sf (L + 1)2m1m2

)
+ 4 log

1
α

]}
+ 4 log 4.

r(m1∨m2) log

(
L2m1m2

Cf̃ (L + 1)

)
=


r(m1 ∨m2) log(m1m2) if L2 = O(1),

r(m1 ∨m2)L2 log(Lm1m2) if f (x) ∝ exp(2ax − x2)

r(m1 ∨m2)(ζ + 2) log(Lm1m2) if f (x) ∝ (1 + x)−ζ
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Gibbs sampler

Input Y , λ.
Initialization U(0), V (0), γ(0).

For k = 1, . . . ,N:

For i = 1, . . . ,m1: draw
U(k)

i ,· ∼ ρ̂λ(Ui ,·|V (k−1), γ(k−1),Y ).
For j = 1, . . . ,m2: draw

V (k)
j,· ∼ ρ̂λ(Vj,·|U(k), γ(k−1),Y ).

For ` = 1, . . . ,K : draw
γ

(k)
` ∼ ρ̂λ(γ`|U(k),V (k),Y ).

For the exponential prior, ρ̂λ(Ui ,·|V , γ,Y ) amounts to a truncated
Gaussian distribution.
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For ` = 1, . . . ,K : draw

γ
(k)
` ∼ ρ̂λ(γ`|U(k),V (k),Y ).

For the exponential prior, ρ̂λ(Ui ,·|V , γ,Y ) amounts to a truncated
Gaussian distribution.
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Block coordinate descent
Input Y , λ.

Initialization U(0), V (0), γ(0).
While not converged, k := k + 1:

U(k) := argmin
U

{
λ‖Y − U(V (k−1))>‖2F −

m1∑
i=1

K∑
`=1

log[g
γ

(k−1)
`

(Ui,`)]

}

V (k) := argmin
V

{
λ‖Y − U(k)V>‖2F −

m2∑
j=1

K∑
`=1

log[g
γ

(k−1)
`

(Vj,`)]

}

γ(k) := argmin
γ

K∑
`=1

{
−

m1∑
i=1

log[gγ`(U
(k)
i,` )]−

m2∑
j=1

log[gγ`(V
(k)
j,` )]

− log[h(γ`)]
}

Public python library + demo USPS data (LeCun et al., 1990)
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Take-home messages

I {Quasi,PAC}-Bayesian learning is a flexible and powerful
machinery.

I First sharp oracle inequality in the literature for (QB-)NMF,
showing adaptation to the rank.
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Shameless self-promotion

What this talk could have been about: online clustering,
high-dimensional ranking, PAC-Bayesian bounds for hostile data,
stability, sequential principal curves...
Ongoing projects:
{active, agnostic/objective, deep, representation} learning
(mostly with some PAC-Bayes)

https://bguedj.github.io

https://bguedj.github.io/nips2017/50shadesbayesian.html
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