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Batch Learning in a Nutshell

Collect a sample D, = (X;,Y;)"_; of i.i.d replications of some
random variable (X,Y) € X x Y.

Goal: use D, to build up qg such that gZ(X) is an "acceptable"
prediction of Y.

For some loss function ¢, let
~ ~ ~ 1< ~
R: & Y <¢(X),Y) and Ry s nge (¢(X,~),Y,->

denote the risk and empirical risk, respectively.
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The quasi-Bayesian approach

Set of candidates F equipped with a probability measure = (prior).

For some (inverse temperature) parameter A > 0, quasi-posterior

() o< exp (=ARa(:)) ().

In general, exp (—ARn(+)) is not a likelihood (hence the term
quasi-Bayesian).
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A variational perspective

With the classical quadratic loss £: (a, b) +— (a — b)?,

px € arginf {/g Ra(¢)p(d¢) + K(i’”) } ’

p<LT

where X is the Kullback-Leibler divergence

J5log < ) dp  when p <,

+00 otherwise.

K(p,m) = {
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Typical quasi-Bayesian estimators

MAQP
x € argmax p(9).
PpeF
Mean
01 = Bpo = [ omn(ao).
Realization

Gx ~ P

And so on.
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Statistical aggregation revisited

Assume that J is finite.
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Statistical aggregation revisited

Assume that F is finite.

The mean of the quasi-posterior p) amounts to the celebrated
exponentially weighted aggregate (EWA)

#TF
o =Fpo=> wridi
i=1

where
o EB(AR(@))T(6)
A0

T exp(—AR(6))m(0)

& G. (2013). Agrégation d'estimateurs et de classificateurs : théorie et méthodes, Ph.D. thesis, Université Pierre

& Marie Curie
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Probably Approximately Correct (PAC) oracle inequalities
Let R* denote the Bayes risk and set A «c n. For any ¢ > 0,
o * : * A((Zs, 6)
_ < _ —_\n ) >1_
P <R (@) R* < & inf {R(d)) R4+ = }) >1—e
where & > 1.

Key argument: concentration inequalities (e.g., Bernstein) +
duality formula (Csiszar, Catoni).
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Probably Approximately Correct (PAC) oracle inequalities
Let R* denote the Bayes risk and set A «c n. For any ¢ > 0,
o * : * A(q&, 6)
_ < _ —_\n ) >1_
P <R (@) R* < & inf {R(d)) R4+ = }) >1—e
where & > 1.

Key argument: concentration inequalities (e.g., Bernstein) +
duality formula (Csiszar, Catoni).

Typical regimes in the literature d :=dim(X)
> a =1 (slow rate) » Ap,€) x d+ Iog%
» o =1 (fast rate) > A(¢,€) xlogd + log 2
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Lemma (Catoni, 2004)

Let (A, A) be a measurable space. For any probability 1 on (A, A)
and any measurable function h : A — R such that

[(expoh)du < oo,

Iog/(expoh)d,u: sup {/hdm—ﬂc(m, u)},

meM, (A,A)
with the convention co — co = —oo. Moreover, as soon as h is
upper-bounded on the support of 1, the supremum with respect to
m on the right-hand side is reached for the Gibbs distribution g
given by
d h
dg )= _expohla)
du [(expo h)du
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The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such
as quasi-Bayesian) estimators.
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The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such
as quasi-Bayesian) estimators.

& Shawe-Taylor and Williamson (1997). A PAC analysis of a Bayes estimator, COLT

& McAllester (1998). Some PAC-Bayesian theorems, COLT

& McAllester (1999). PAC-Bayesian model averaging, COLT

& Catoni (2004). Statistical Learning Theory and Stochastic Optimization, Springer

& Audibert (2004). Une approche PAC-bayésienne de la théorie statistique de |'apprentissage, Ph.D. thesis,
Université Pierre & Marie Curie

& Catoni (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning, IMS

& Dalalyan and Tsybakov (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity,

Machine Learning
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A flexible and powerful framework
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A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature

& Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

& Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,
IEEE Transactions on Information Theory

& Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

& G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal
of Statistics

& G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

& Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

& Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics
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A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature

& Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

& Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,
IEEE Transactions on Information Theory

& Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

& G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal
of Statistics

& G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

& Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

& Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

Towards (almost) no assumptions to derive powerful results
& Bégin, Germain, Laviolette and Roy (2016). PAC-Bayesian bounds based on the Rényi divergence, AISTATS
& Alquier and G. (2016). Simpler PAC-Bayesian bounds for hostile data, arXiv preprint

(PAC inequalities for heavy-tailed time series)
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In practice...

Previous instantiations of ¢, are not tractable.

Instead of an infinite-dimensional functional space &, we often
resort to some projection onto R,

Sampling from a d-dimensional non-standard distribution is still an
algorithmic challenge.

TAU -
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Existing implementation

» (Transdimensional) MCMC

& G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic

Journal of Statistics
& Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research
& G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

& Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint
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» Stochastic optimization

& Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics
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Existing implementation

» (Transdimensional) MCMC

& G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic
Journal of Statistics

& Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

& G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

& Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

» Stochastic optimization
& Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

» Variational Bayes
& Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs

posteriors, Journal of Machine Learning Research
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Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of p) (echoes the
celebrated statistical / computational tradeoff).
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Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of p) (echoes the
celebrated statistical / computational tradeoff).

Let p) denote a VB approximation of py. The rate of convergence
in PAC inequalities is of analogous magnitude for py and p).
& Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors,

Journal of Machine Learning Research
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Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of p) (echoes the
celebrated statistical / computational tradeoff).

Let p) denote a VB approximation of py. The rate of convergence
in PAC inequalities is of analogous magnitude for py and p).
& Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors,

Journal of Machine Learning Research

MCMC for online (sequential) quasi-Bayesian learning: the
stationary distribution of the Markov Chain is indeed p).

& Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

TAU -
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Quasi-Bayesian
Non-Negative Matrix Factorization

Alquier and G. (2017)
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix
Factorization

Mathematical Methods of Statistics
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NMF

NMF amounts to decompose an m; X mp matrix M as a product
of two low rank matrices with non-negative entries.

M~ UVT,
where U is my x K and V is my x K, and K < my A mo.

M. S5 ViU

u
X
el |
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Wide range of applications (image processing, separation of
sources in audio and video files, topics extraction in text,

recommender systems...)

Original

NMF
13 =1 e

£ “—‘ 4
-'"3“5:_-;11’." -l

Separation of audio sources [Demo, courtesy of C. Févotte]
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https://youtu.be/b07t-y1jNcs

Setting

We observe an m; x mp matrix Y and we assume

Y=M+¢
with E(€) = 0 and V(&) = o21d.

Our goal is to find a "good" factorization of M.
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Notation

Frobenius norm

[AllF = /(A A)E,

(A B)p=Ti(AB")=> > Ay B,
i=1 j=1

Forany r € {1,..., K}, M,(L) is the set of matrices U° with
non-negative entries bounded by L such that

v, ... U8 0 ... 0
U° = : . : o
Ui - Uy, 0 .00
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Assumption

The entries of € are i.i.d and E€;; = 0. Let m(x) = E[€;;1¢, <]
and F(x) =P(&;; < x).

There exists a nonnegative and bounded function g such that
18lloc <1 and

/u " m(x)dx = / " g(x)AF(x).
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Assumption

The entries of € are i.i.d and E€;; = 0. Let m(x) = E[€;;1¢, <]
and F(x) =P(&;; < x).

There exists a nonnegative and bounded function g such that
18lloc <1 and

/u " m(x)dx = / " g(x)AF(x).

This assumption is met whenever &; ; ~ N(0, 0?) (||g]|occ = 0°) or
Eij ~ U(=b,b) (llgllec = b°/2).
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Prior

For any a, x > 0, ga(x):%f(g).
ind.
Vi=1,...,K, v ~ h,

. . ind.
VI:].,...,ml,j:l,...,mg, U,',e,\/_,',g’vgw,

K m myp
(U, V,v) :H (ng(Ui,z)) ng(vj,f) h(e),
1 \i=1 j=1

=

and

(U, V) = /RK (U, V,~)dy.
+
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Prior (continued)

The idea behind this prior is that under h, many , should be small
and lead to non-significant columns U., and V., (sufficient
probability mass for h, around zero and elsewhere).

This is achieved by assuming!

1. 30<a <1, 8>0and d > 0 such that for any

1
0<e= 37z

€ 2
/ h(x)dx > ae® and / h(x)dx > o.
0 1

2. 3 a non-increasing density f and C > 0 such that for any
x>0, f(x) > Cf(x).

1S = max (1, [;° x*f(x)dx)
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Popular choices for f:
1. Exponential prior f(x) = exp(—x).
2. Truncated Gaussian prior f(x) ox exp(2ax — x2) with a € R.
3. Heavy-tailed prior f(x) o ﬁ with ¢ > 1.
The heavier the tails, the better the performance of QBNMF. But
computational cost arises!

Popular choices for h:
1. Uniform distribution on [0, c].
2. Inverse gamma prior h(x) = %Xa—lﬂ exp (—g).

3. Gamme ['(a, b) prior for a, b > 0.
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Quasi-Bayesian estimator
. 1
AU, V.7) = S exp [AIlY = UVT ] =(U. V. 9),

where

Z:= /exp {—)\HY - UVTHﬂ (U, V,7)d(U, V,7).
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Quasi-Bayesian estimator

. 1
AU, V.7) = S exp [AIlY = UVT ] =(U. V. 9),

where

Z:= /exp {—)\HY - UVTHﬂ (U, V,7)d(U, V,7).

i =B, UVT = [ UVTR(U, Vo)AV, Vo).
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Bayesian C Quasi-Bayesian (C PAC-Bayesian)
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Bayesian C Quasi-Bayesian (C PAC-Bayesian)

The specific choice &;; ~ N(0,1/(2X)) (or rather, &;; ~ N(0,02)
and \ = 1/(20?)) turns our procedure fully Bayesian!

In this case the likelihood is written with the Frobenius norm,
acting as a fitting criterion (other choices in the literature: Poisson
likelihood, Itakura-Saito divergence).
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Main result: sharp oracle inequality (simplified)
Fix A = 1/4.

o > - - 0,,0T 2
£ (HMA - MHF) < (uo,vé?ém,(L){HU Ve - M

2
8(m1 vV my) log (2(L—|—1)mlmg> + 8 + log (15]

+r =
CF(L+1)

+K [46 log (25f(L + 1)2m1m2) +4log ;] } +4log4.
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Main result: sharp oracle inequality (simplified)
Fix A = 1/4.

o > - - 0,,0T 2
£ (HMA - MHF) < (uo,vé?ém,(L){HU Ve - M

2
8(m1 vV my) log (2(L—|—1)mlmz> + 8 + log (15]

+r =
CF(L+1)

+K [46 log (25f(L + 1)2m1m2) +4log ;] } +4log4.

[2me m r(my vV my) log(myimo) if L2=0(1),
r(miVmy) log ( — T ) =< r(my vV m) L2 log(Lmymy) if f(x) oc exp(2ax — x?)
Cf(L+1) r(my vV m2)(¢ + 2) log(Lmimo) if £(x) o< (14 x)~¢
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Gibbs sampler
Input Y, A

Initialization U©), v(0), 7(0).
For k=1,...,N:
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Gibbs sampler

Input Y, A
Initialization U(©), v(0) ~(0),
For k=1,...,N:
For i=1,...,my: draw

U,.(”f) ~ (U] \/(k—l)ﬁ(k—l), Y).

For j=1,...,my: draw
Vjsk) ~ :/O\A(Vj,'|U(k)”7(k_1)7 Y)
For £=1,...,K: draw
k) o~
1~ Ba(el UR, V), ),
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Gibbs sampler

Input Y, A\
Initialization U©), v(0), 7(0).
For k=1,...,N:

For i=1,...,my: draw
UY) ~ 5A(Ur VD A1)y,
For j=1,...,mp: draw

Vjsk) ~ :/O\A(Vj,'|U(k)”7(k_1)7 Y)
For £=1,...,K: draw
1~ (el UB, VR, ),

For the exponential prior, p\(U;.|V,~, Y) amounts to a truncated
Gaussian distribution.
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Block coordinate descent

Input Y, A
Initialization U(O), V(O), 7(0).
While not converged, k := k + 1:
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Block coordinate descent

Input Y, A
Initialization U(O), V(O), 7(0).
While not converged, k := k + 1:

vk = argmin{/\|Y u(vT2 ZZIOg[g (k= ]}

i=1 ¢=1

Ve = argmm{w UOVTIE 303 togle s Jz)]}
j=1 ¢=1

K my
“) .= arg min Z{ > loglgy, (U] - Z loglg-, (V{)]
R =1 i=1 j=1

- |Og[h(w)]}
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Block coordinate descent

Input Y, A
Initialization U(O), V(O), 7(0).
While not converged, k := k + 1:

m K
(k) ._ ; _ (k=T 2 _ .
Ut = arg min {/\|Y u(v TR ZZIog[gn({kl)(U,,e)]}

i=1 ¢=1
m K
v .= arg min {/\| YUV IR =3"% Iog[gwékn(vj,z)]}
v -
Jj=1 ¢=1
K my . my *)
k .
+¥ = arg min E{ > " loglgy, (U] =S loglgy, (V)]
R =1 i=1 j=1
- Iog[h(w)]}

Public python library + demo USPS data (LeCun et al., 1990)
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Take-home messages

» {Quasi,PAC}-Bayesian learning is a flexible and powerful
machinery.
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Take-home messages

» {Quasi,PAC}-Bayesian learning is a flexible and powerful
machinery.

» First sharp oracle inequality in the literature for (QB-)NMF,
showing adaptation to the rank.
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Shameless self-promotion
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https://bguedj.github.io
https://bguedj.github.io/nips2017/50shadesbayesian.html

Shameless self-promotion
NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California

December 9, 2017
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https://bguedj.github.io
https://bguedj.github.io/nips2017/50shadesbayesian.html

Shameless self-promotion
NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California
December 9, 2017

What this talk could have been about: online clustering,
high-dimensional ranking, PAC-Bayesian bounds for hostile data,
stability, sequential principal curves...
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Shameless self-promotion
NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California
December 9, 2017

What this talk could have been about: online clustering,
high-dimensional ranking, PAC-Bayesian bounds for hostile data,
stability, sequential principal curves...

Ongoing projects:

{active, agnostic/objective, deep, representation} learning
(mostly with some PAC-Bayes)

https://bguedj.github.io
https://bguedj.github.io/nips2017 /50shadesbayesian.html
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