

Quasi-Bayesian Learning An application to NMF

Benjamin Guedj

https://bguedj.github.io Inria Lille - Nord Europe

Batch Learning in a Nutshell

Collect a sample $\mathcal{D}_n = (\mathbf{X}_i, \mathbf{Y}_i)_{i=1}^n$ of i.i.d replications of some random variable $(\mathbf{X}, \mathbf{Y}) \in \mathcal{X} \times \mathcal{Y}$.

Goal: use \mathcal{D}_n to build up $\widehat{\phi}$ such that $\widehat{\phi}(\mathbf{X})$ is an "acceptable" prediction of \mathbf{Y} .

For some loss function ℓ , let

$$R \colon \widehat{\phi} \mapsto \mathbb{E}\ell\left(\widehat{\phi}(\mathbf{X}), \mathbf{Y}\right) \quad \text{and} \quad R_n \colon \widehat{\phi} \mapsto \frac{1}{n} \sum_{i=1}^n \ell\left(\widehat{\phi}(\mathbf{X}_i), \mathbf{Y}_i\right)$$

denote the risk and empirical risk, respectively.

Set of candidates \mathcal{F} equipped with a probability measure π (prior).

Set of candidates \mathcal{F} equipped with a probability measure π (prior).

For some (inverse temperature) parameter $\lambda > 0$, quasi-posterior

$$\widehat{\rho}_{\lambda}(\cdot) \propto \exp\left(-\lambda R_n(\cdot)\right) \pi(\cdot).$$

Set of candidates \mathcal{F} equipped with a probability measure π (prior).

For some (inverse temperature) parameter $\lambda > 0$, quasi-posterior

$$\widehat{\rho}_{\lambda}(\cdot) \propto \exp\left(-\lambda R_n(\cdot)\right) \pi(\cdot).$$

In general, $\exp(-\lambda R_n(\cdot))$ is not a likelihood (hence the term quasi-Bayesian).

A variational perspective

With the classical quadratic loss $\ell \colon (a,b) \mapsto (a-b)^2$,

$$\widehat{\rho}_{\lambda} \in \operatorname*{arg inf}_{\rho \ll \pi} \left\{ \int_{\mathcal{F}} R_n(\phi) \rho(\mathrm{d}\phi) + \frac{\mathcal{K}(\rho,\pi)}{\lambda} \right\},$$

where $\ensuremath{\mathcal{K}}$ is the Kullback-Leibler divergence

$$\mathcal{K}(
ho,\pi) = egin{cases} \int_{\mathcal{F}} \log\left(rac{\mathrm{d}
ho}{\mathrm{d}\pi}
ight) \mathrm{d}
ho & \quad ext{when }
ho \ll \pi \ +\infty & \quad ext{otherwise.} \end{cases}$$

Typical quasi-Bayesian estimators

MAQP

$$\widehat{\phi}_{\lambda}\in rgmax_{\phi\in \mathfrak{F}} \widehat{
ho}_{\lambda}(\phi).$$

Mean

$$\widehat{\phi}_{\lambda} = \mathbb{E}_{\widehat{\rho}_{\lambda}} \phi = \int_{\mathcal{F}} \phi \widehat{\rho}_{\lambda} (\mathrm{d}\phi).$$

Realization

$$\widehat{\phi}_{\lambda} \sim \widehat{\rho}_{\lambda}.$$

And so on.

Statistical aggregation revisited

Assume that $\ensuremath{\mathfrak{F}}$ is finite.

Statistical aggregation revisited

Assume that \mathcal{F} is finite.

The mean of the quasi-posterior $\hat{\rho}_{\lambda}$ amounts to the celebrated exponentially weighted aggregate (EWA)

$$\widehat{\phi}_{\lambda} = \mathbb{E}_{\widehat{\rho}_{\lambda}} \phi = \sum_{i=1}^{\#\mathcal{F}} \omega_{\lambda,i} \phi_i$$

where

$$\omega_{\lambda,i} = \frac{\exp(-\lambda R_n(\phi_i))\pi(\phi_i)}{\sum_{j=1}^{\#\mathcal{F}} \exp(-\lambda R_n(\phi_j))\pi(\phi_j)}.$$

G. (2013). Agrégation d'estimateurs et de classificateurs : théorie et méthodes, Ph.D. thesis, Université Pierre
 & Marie Curie

Probably Approximately Correct (PAC) oracle inequalities

Let R^{\star} denote the Bayes risk and set $\lambda \propto n$. For any $\epsilon > 0$,

$$\mathbb{P}\left(R\left(\widehat{\phi}_{\lambda}\right)-R^{\star}\leq \oint\inf_{\phi\in\mathcal{F}}\left\{R(\phi)-R^{\star}+\frac{\Delta(\phi,\epsilon)}{n^{\alpha}}\right\}\right)\geq 1-\epsilon,$$

where $\blacklozenge \geq 1$.

Key argument: concentration inequalities (*e.g.*, Bernstein) + duality formula (Csiszár, Catoni).

Probably Approximately Correct (PAC) oracle inequalities

Let R^{\star} denote the Bayes risk and set $\lambda \propto n$. For any $\epsilon > 0$,

$$\mathbb{P}\left(R\left(\widehat{\phi}_{\lambda}\right) - R^{\star} \leq \spadesuit \inf_{\phi \in \mathcal{F}} \left\{R(\phi) - R^{\star} + \frac{\Delta(\phi, \epsilon)}{n^{\alpha}}\right\}\right) \geq 1 - \epsilon,$$

where $\spadesuit > 1.$

Key argument: concentration inequalities (*e.g.*, Bernstein) + duality formula (Csiszár, Catoni).

Typical regimes in the literature

•
$$\alpha = \frac{1}{2}$$
 (slow rate)

•
$$\alpha = 1$$
 (fast rate)

 $d := \dim(\mathcal{X})$ $\blacktriangleright \Delta(\phi, \epsilon) \propto d + \log \frac{1}{\epsilon}$ $\vdash \Delta(\phi, \epsilon) \propto \log d + \log \frac{1}{\epsilon}$

Lemma (Catoni, 2004)

Let (A, A) be a measurable space. For any probability μ on (A, A)and any measurable function $h : A \to \mathbb{R}$ such that $\int (\exp \circ h) d\mu < \infty$,

$$\log \int (\exp \circ h) d\mu = \sup_{m \in \mathcal{M}_{\pi}(\mathcal{A},\mathcal{A})} \left\{ \int h dm - \mathcal{K}(m,\mu) \right\},$$

with the convention $\infty - \infty = -\infty$. Moreover, as soon as h is upper-bounded on the support of μ , the supremum with respect to m on the right-hand side is reached for the Gibbs distribution g given by

$$\frac{\mathrm{d}g}{\mathrm{d}\mu}(a) = \frac{\exp \circ h(a)}{\int (\exp \circ h) \mathrm{d}\mu}, \quad a \in A$$

The PAC-Bayesian theory

The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such as quasi-Bayesian) estimators.

The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such as quasi-Bayesian) estimators.

Shawe-Taylor and Williamson (1997). A PAC analysis of a Bayes estimator, COLT

McAllester (1998). Some PAC-Bayesian theorems, COLT

McAllester (1999). PAC-Bayesian model averaging, COLT

Catoni (2004). Statistical Learning Theory and Stochastic Optimization, Springer

Audibert (2004). Une approche PAC-bayésienne de la théorie statistique de l'apprentissage, Ph.D. thesis,

Université Pierre & Marie Curie

🛢 Catoni (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning, IMS

Dalalyan and Tsybakov (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity, Machine Learning

A flexible and powerful framework

A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature

🛢 Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

🛢 Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,

IEEE Transactions on Information Theory

Description Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics

G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

- Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint
- Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature

Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli

🛢 Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,

IEEE Transactions on Information Theory

Description Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics

G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

Towards (almost) no assumptions to derive powerful results

🛢 Bégin, Germain, Laviolette and Roy (2016). PAC-Bayesian bounds based on the Rényi divergence, AISTATS

Alquier and G. (2016). Simpler PAC-Bayesian bounds for hostile data, arXiv preprint

(PAC inequalities for heavy-tailed time series)

Previous instantiations of $\widehat{\phi}_{\lambda}$ are not tractable.

Instead of an infinite-dimensional functional space \mathcal{F} , we often resort to some projection onto \mathbb{R}^d .

Sampling from a *d*-dimensional non-standard distribution is still an algorithmic challenge.

Existing implementation

(Transdimensional) MCMC

G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, *Electronic Journal of Statistics*

D Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

- B G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint
- Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Existing implementation

(Transdimensional) MCMC

G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, *Electronic Journal of Statistics*

Description Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Stochastic optimization

Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization, Mathematical Methods of Statistics

Existing implementation

(Transdimensional) MCMC

G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, *Electronic Journal of Statistics*

Description Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research

B G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Stochastic optimization

Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization, Mathematical Methods of Statistics

Variational Bayes

Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research

Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of $\hat{\rho}_{\lambda}$ (echoes the celebrated statistical / computational tradeoff).

Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of $\hat{\rho}_{\lambda}$ (echoes the celebrated statistical / computational tradeoff).

Let $\tilde{\rho}_{\lambda}$ denote a VB approximation of $\hat{\rho}_{\lambda}$. The rate of convergence in PAC inequalities is of analogous magnitude for $\tilde{\rho}_{\lambda}$ and $\hat{\rho}_{\lambda}$.

Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research

Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of $\hat{\rho}_{\lambda}$ (echoes the celebrated statistical / computational tradeoff).

Let $\tilde{\rho}_{\lambda}$ denote a VB approximation of $\hat{\rho}_{\lambda}$. The rate of convergence in PAC inequalities is of analogous magnitude for $\tilde{\rho}_{\lambda}$ and $\hat{\rho}_{\lambda}$.

Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research

MCMC for online (sequential) quasi-Bayesian learning: the stationary distribution of the Markov Chain is indeed $\hat{\rho}_{\lambda}$.

Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Quasi-Bayesian Non-Negative Matrix Factorization

Alquier and G. (2017) An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization Mathematical Methods of Statistics

nala

NMF

NMF amounts to decompose an $m_1 \times m_2$ matrix M as a product of two low rank matrices with non-negative entries.

 $M\simeq UV^{\top},$

where U is $m_1 \times K$ and V is $m_2 \times K$, and $K \ll m_1 \wedge m_2$. $M_{\cdot,j} \simeq \sum_{\ell=1}^{K} V_{j,\ell} U_{\cdot,\ell}$.

Wide range of applications (image processing, separation of sources in audio and video files, topics extraction in text, recommender systems...)

Separation of audio sources [Demo, courtesy of C. Févotte]

Setting

We observe an $m_1 \times m_2$ matrix Y and we assume

 $Y = M + \mathcal{E}$

with $\mathbb{E}(\mathcal{E}) = 0$ and $\mathbb{V}(\mathcal{E}) = \sigma^2 \mathrm{Id}$.

Our goal is to find a "good" factorization of M.

Notation

Frobenius norm

$$\|A\|_F = \sqrt{\langle A, A
angle_F},$$

$$\langle A, B \rangle_F = \operatorname{Tr}(AB^{\top}) = \sum_{i=1}^p \sum_{j=1}^q A_{i,j} B_{i,j}.$$

For any $r \in \{1, ..., K\}$, $\mathfrak{M}_r(L)$ is the set of matrices U^0 with non-negative entries bounded by L such that

$$U^{0} = \begin{pmatrix} U_{11}^{0} & \dots & U_{1r}^{0} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ U_{m_{1}1}^{0} & \dots & U_{m_{1}r}^{0} & 0 & \dots & 0 \end{pmatrix}$$

Assumption

The entries of \mathcal{E} are i.i.d and $\mathbb{E}\mathcal{E}_{i,j} = 0$. Let $m(x) = \mathbb{E}[\mathcal{E}_{i,j} \mathbb{1}_{\mathcal{E}_{i,j} \leq x}]$ and $F(x) = \mathbb{P}(\mathcal{E}_{i,j} \leq x)$.

There exists a nonnegative and bounded function g such that $\|g\|_{\infty} \leq 1$ and

$$\int_{u}^{v} m(x) \mathrm{d}x = \int_{u}^{v} g(x) \mathrm{d}F(x).$$

Assumption

The entries of \mathcal{E} are i.i.d and $\mathbb{E}\mathcal{E}_{i,j} = 0$. Let $m(x) = \mathbb{E}[\mathcal{E}_{i,j}\mathbb{1}_{\mathcal{E}_{i,j} \leq x}]$ and $F(x) = \mathbb{P}(\mathcal{E}_{i,j} \leq x)$.

There exists a nonnegative and bounded function g such that $\|g\|_{\infty} \leq 1$ and

$$\int_u^v m(x) \mathrm{d}x = \int_u^v g(x) \mathrm{d}F(x).$$

This assumption is met whenever $\mathcal{E}_{i,j} \sim \mathcal{N}(0, \sigma^2)$ ($||g||_{\infty} = \sigma^2$) or $\mathcal{E}_{i,j} \sim \mathcal{U}(-b, b)$ ($||g||_{\infty} = b^2/2$).

Prior

For any
$$a, x > 0, g_a(x) = \frac{1}{a}f\left(\frac{x}{a}\right)$$
.
 $\forall \ell = 1, \dots, K, \quad \gamma_\ell \stackrel{\text{ind.}}{\sim} h,$
 $\forall i = 1, \dots, m_1, j = 1, \dots, m_2, \quad U_{i,\ell}, V_{j,\ell} \stackrel{\text{ind.}}{\sim} g_{\gamma_\ell},$
 $\pi(U, V, \gamma) = \prod_{\ell=1}^K \left(\prod_{i=1}^{m_1} g_{\gamma_\ell}(U_{i,\ell})\right) \left(\prod_{j=1}^{m_2} g_{\gamma_\ell}(V_{j,\ell})\right) h(\gamma_\ell),$
and
 $\pi(U, V) = \int_{\mathbb{R}^K_+} \pi(U, V, \gamma) d\gamma.$

Prior (continued)

The idea behind this prior is that under h, many γ_{ℓ} should be small and lead to non-significant columns $U_{\cdot,\ell}$ and $V_{\cdot,\ell}$ (sufficient probability mass for h, around zero and elsewhere).

This is achieved by assuming¹

1.
$$\exists \ 0 < \alpha < 1, \ \beta \ge 0$$
 and $\delta > 0$ such that for any
 $0 < \epsilon \le \frac{1}{2\sqrt{2}S_f},$
 $\int_0^{\epsilon} h(x) dx \ge \alpha \epsilon^{\beta}$ and $\int_1^2 h(x) dx \ge \delta.$

2. \exists a non-increasing density \tilde{f} and C > 0 such that for any x > 0, $f(x) \ge C\tilde{f}(x)$.

$${}^{1}S_{f} := \max\left(1, \int_{0}^{\infty} x^{2}f(x) \mathrm{d}x\right)$$

Popular choices for *f* :

- 1. Exponential prior $f(x) = \exp(-x)$.
- 2. Truncated Gaussian prior $f(x) \propto \exp(2ax x^2)$ with $a \in \mathbb{R}$.
- 3. Heavy-tailed prior $f(x) \propto \frac{1}{(1+x)^{\zeta}}$ with $\zeta > 1$.

The heavier the tails, the better the performance of QBNMF. But computational cost arises!

Popular choices for *h*:

- 1. Uniform distribution on [0, c].
- 2. Inverse gamma prior $h(x) = \frac{b^a}{\Gamma(a)} \frac{1}{x^{a+1}} \exp\left(-\frac{b}{x}\right)$.
- 3. Gamme $\Gamma(a, b)$ prior for a, b > 0.

Quasi-Bayesian estimator

$$\widehat{\rho}_{\lambda}(U, V, \gamma) = rac{1}{Z} \exp\left[-\lambda \|Y - UV^{\top}\|_{F}^{2}
ight] \pi(U, V, \gamma),$$

where

$$Z := \int \exp\left[-\lambda \|Y - UV^{\top}\|_F^2\right] \pi(U, V, \gamma) \mathrm{d}(U, V, \gamma).$$

Quasi-Bayesian estimator

$$\widehat{\rho}_{\lambda}(U, V, \gamma) = rac{1}{Z} \exp\left[-\lambda \|Y - UV^{\top}\|_{F}^{2}
ight] \pi(U, V, \gamma),$$

where

$$Z := \int \exp\left[-\lambda \|Y - UV^{\top}\|_F^2\right] \pi(U, V, \gamma) \mathrm{d}(U, V, \gamma).$$

$$\widehat{M}_{\lambda} = \mathbb{E}_{\widehat{\rho}_{\lambda}} UV^{\mathsf{T}} = \int UV^{\mathsf{T}} \widehat{\rho}_{\lambda}(U, V, \gamma) \mathrm{d}(U, V, \gamma).$$

Bayesian \subset Quasi-Bayesian (\subset PAC-Bayesian)

Bayesian \subset Quasi-Bayesian (\subset PAC-Bayesian)

The specific choice $\mathcal{E}_{i,j} \sim \mathcal{N}(0, 1/(2\lambda))$ (or rather, $\mathcal{E}_{i,j} \sim \mathcal{N}(0, \sigma^2)$ and $\lambda = 1/(2\sigma^2)$) turns our procedure fully Bayesian!

In this case the likelihood is written with the Frobenius norm, acting as a fitting criterion (other choices in the literature: Poisson likelihood, Itakura-Saito divergence).

Main result: sharp oracle inequality (simplified) Fix $\lambda = 1/4$.

$$\mathbb{E}\left(\|\widehat{M}_{\lambda} - M\|_{F}^{2}\right) \leq \inf_{1 \leq r \leq K} \inf_{(U^{0}, V^{0}) \in \mathcal{M}_{r}(L)} \left\{ \|U^{0}V^{0\top} - M\|_{F}^{2} + r\left[8(m_{1} \vee m_{2})\log\left(\frac{2(L+1)^{2}m_{1}m_{2}}{C\widetilde{f}(L+1)}\right) + 8 + \log\frac{1}{\delta}\right] + K\left[4\beta \log\left(2S_{f}(L+1)^{2}m_{1}m_{2}\right) + 4\log\frac{1}{\alpha}\right]\right\} + 4\log 4.$$

Main result: sharp oracle inequality (simplified) Fix $\lambda = 1/4$.

$$\begin{split} \mathbb{E}\left(\|\widehat{M}_{\lambda}-M\|_{F}^{2}\right) &\leq \inf_{1\leq r\leq K} \inf_{(U^{0},V^{0})\in\mathcal{M}_{r}(L)} \left\{\|U^{0}V^{0\top}-M\|_{F}^{2}\right.\\ &+ r\left[8(m_{1}\vee m_{2})\log\left(\frac{2(L+1)^{2}m_{1}m_{2}}{\widetilde{Cf}(L+1)}\right)+8+\log\frac{1}{\delta}\right] \\ &+ K\left[4\beta\log\left(2S_{f}(L+1)^{2}m_{1}m_{2}\right)+4\log\frac{1}{\alpha}\right]\right\}+4\log 4. \end{split}$$

$$r(m_1 \vee m_2) \log \left(\frac{L^2 m_1 m_2}{C\tilde{f}(L+1)}\right) = \begin{cases} r(m_1 \vee m_2) \log(m_1 m_2) & \text{if } L^2 = \mathcal{O}(1), \\ r(m_1 \vee m_2) L^2 \log(L m_1 m_2) & \text{if } f(x) \propto \exp(2ax - x^2) \\ r(m_1 \vee m_2)(\zeta+2) \log(L m_1 m_2) & \text{if } f(x) \propto (1+x)^{-\zeta} \end{cases}$$

Gibbs sampler

Input Y, λ . Initialization $U^{(0)}$, $V^{(0)}$, $\gamma^{(0)}$. For $k = 1, \dots, N$:

Gibbs sampler

Input Y, λ . Initialization $U^{(0)}$, $V^{(0)}$, $\gamma^{(0)}$. For k = 1, ..., N: For $i = 1, ..., m_1$: draw $U_{i,\cdot}^{(k)} \sim \widehat{\rho}_{\lambda}(U_{i,\cdot}|V^{(k-1)}, \gamma^{(k-1)}, Y)$. For $j = 1, ..., m_2$: draw $V_{j,\cdot}^{(k)} \sim \widehat{\rho}_{\lambda}(V_{j,\cdot}|U^{(k)}, \gamma^{(k-1)}, Y)$. For $\ell = 1, ..., K$: draw $\gamma_{\ell}^{(k)} \sim \widehat{\rho}_{\lambda}(\gamma_{\ell}|U^{(k)}, V^{(k)}, Y)$.

Gibbs sampler

Input Y, λ . Initialization $U^{(0)}$, $V^{(0)}$, $\gamma^{(0)}$. For k = 1, ..., N: For $i = 1, ..., m_1$: draw $U_{i,\cdot}^{(k)} \sim \widehat{\rho}_{\lambda}(U_{i,\cdot}|V^{(k-1)}, \gamma^{(k-1)}, Y)$. For $j = 1, ..., m_2$: draw $V_{j,\cdot}^{(k)} \sim \widehat{\rho}_{\lambda}(V_{j,\cdot}|U^{(k)}, \gamma^{(k-1)}, Y)$. For $\ell = 1, ..., K$: draw $\gamma_{\ell}^{(k)} \sim \widehat{\rho}_{\lambda}(\gamma_{\ell}|U^{(k)}, V^{(k)}, Y)$.

For the exponential prior, $\hat{\rho}_{\lambda}(U_{i,\cdot}|V,\gamma,Y)$ amounts to a truncated Gaussian distribution.

Block coordinate descent

Input Y, λ . Initialization $U^{(0)}$, $V^{(0)}$, $\gamma^{(0)}$. While not converged, k := k + 1: Block coordinate descent

Input Y, λ . Initialization $U^{(0)}$, $V^{(0)}$, $\gamma^{(0)}$. While not converged, k := k + 1:

$$U^{(k)} := \arg\min_{U} \left\{ \lambda \| Y - U(V^{(k-1)})^{\top} \|_{F}^{2} - \sum_{i=1}^{m_{1}} \sum_{\ell=1}^{K} \log[g_{\gamma_{\ell}^{(k-1)}}(U_{i,\ell})] \right\}$$
$$V^{(k)} := \arg\min_{V} \left\{ \lambda \| Y - U^{(k)}V^{\top} \|_{F}^{2} - \sum_{j=1}^{m_{2}} \sum_{\ell=1}^{K} \log[g_{\gamma_{\ell}^{(k-1)}}(V_{j,\ell})] \right\}$$
$$\gamma^{(k)} := \arg\min_{\gamma} \sum_{\ell=1}^{K} \left\{ -\sum_{i=1}^{m_{1}} \log[g_{\gamma_{\ell}}(U_{i,\ell}^{(k)})] - \sum_{j=1}^{m_{2}} \log[g_{\gamma_{\ell}}(V_{j,\ell}^{(k)})] - \log[h(\gamma_{\ell})] \right\}$$

Block coordinate descent

Input Y, λ . Initialization $U^{(0)}$, $V^{(0)}$, $\gamma^{(0)}$. While not converged, k := k + 1:

$$U^{(k)} := \arg\min_{U} \left\{ \lambda \| Y - U(V^{(k-1)})^{\top} \|_{F}^{2} - \sum_{i=1}^{m_{1}} \sum_{\ell=1}^{K} \log[g_{\gamma_{\ell}^{(k-1)}}(U_{i,\ell})] \right\}$$
$$V^{(k)} := \arg\min_{V} \left\{ \lambda \| Y - U^{(k)}V^{\top} \|_{F}^{2} - \sum_{j=1}^{m_{2}} \sum_{\ell=1}^{K} \log[g_{\gamma_{\ell}^{(k-1)}}(V_{j,\ell})] \right\}$$
$$\gamma^{(k)} := \arg\min_{\gamma} \sum_{\ell=1}^{K} \left\{ -\sum_{i=1}^{m_{1}} \log[g_{\gamma_{\ell}}(U_{i,\ell}^{(k)})] - \sum_{j=1}^{m_{2}} \log[g_{\gamma_{\ell}}(V_{j,\ell}^{(k)})] - \log[h(\gamma_{\ell})] \right\}$$

Public python library + demo USPS data (LeCun et al., 1990)

Take-home messages

 {Quasi,PAC}-Bayesian learning is a flexible and powerful machinery.

Take-home messages

 {Quasi,PAC}-Bayesian learning is a flexible and powerful machinery.

 First sharp oracle inequality in the literature for (QB-)NMF, showing adaptation to the rank.

NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California December 9, 2017

NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California December 9, 2017

What this talk could have been about: online clustering, high-dimensional ranking, PAC-Bayesian bounds for hostile data, stability, sequential principal curves...

NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California December 9, 2017

What this talk could have been about: online clustering, high-dimensional ranking, PAC-Bayesian bounds for hostile data, stability, sequential principal curves...

Ongoing projects:

{active, agnostic/objective, deep, representation} learning (mostly with some PAC-Bayes)

https://bguedj.github.io

https://bguedj.github.io/nips2017/50 shades bayesian.html