Quasi-Bayesian Learning An application to NMF

Benjamin Guedj

https://bguedj.github.io
Inria Lille - Nord Europe

Batch Learning in a Nutshell

Collect a sample $\mathcal{D}_{n}=\left(\mathbf{X}_{i}, \mathbf{Y}_{i}\right)_{i=1}^{n}$ of i.i.d replications of some random variable $(\mathbf{X}, \mathbf{Y}) \in \mathcal{X} \times \mathcal{Y}$.

Goal: use \mathcal{D}_{n} to build up $\widehat{\phi}$ such that $\widehat{\phi}(\mathbf{X})$ is an "acceptable" prediction of \mathbf{Y}.

For some loss function ℓ, let

$$
R: \widehat{\phi} \mapsto \mathbb{E} \ell(\widehat{\phi}(\mathbf{X}), \mathbf{Y}) \quad \text { and } \quad R_{n}: \widehat{\phi} \mapsto \frac{1}{n} \sum_{i=1}^{n} \ell\left(\widehat{\phi}\left(\mathbf{X}_{i}\right), \mathbf{Y}_{i}\right)
$$

denote the risk and empirical risk, respectively.

The quasi-Bayesian approach

The quasi-Bayesian approach

Set of candidates \mathcal{F} equipped with a probability measure π (prior).

The quasi-Bayesian approach

Set of candidates \mathcal{F} equipped with a probability measure π (prior).

For some (inverse temperature) parameter $\lambda>0$, quasi-posterior

$$
\widehat{\rho}_{\lambda}(\cdot) \propto \exp \left(-\lambda R_{n}(\cdot)\right) \pi(\cdot)
$$

The quasi-Bayesian approach

Set of candidates \mathcal{F} equipped with a probability measure π (prior).

For some (inverse temperature) parameter $\lambda>0$, quasi-posterior

$$
\widehat{\rho}_{\lambda}(\cdot) \propto \exp \left(-\lambda R_{n}(\cdot)\right) \pi(\cdot)
$$

In general, $\exp \left(-\lambda R_{n}(\cdot)\right)$ is not a likelihood (hence the term quasi-Bayesian).

A variational perspective

With the classical quadratic loss $\ell:(a, b) \mapsto(a-b)^{2}$,

$$
\widehat{\rho}_{\lambda} \in \underset{\rho \ll \pi}{\arg \inf }\left\{\int_{\mathcal{F}} R_{n}(\phi) \rho(\mathrm{d} \phi)+\frac{\mathcal{K}(\rho, \pi)}{\lambda}\right\},
$$

where \mathcal{K} is the Kullback-Leibler divergence

$$
\mathcal{K}(\rho, \pi)= \begin{cases}\int_{\mathcal{F}} \log \left(\frac{\mathrm{d} \rho}{\mathrm{~d} \pi}\right) \mathrm{d} \rho & \text { when } \rho \ll \pi \\ +\infty & \text { otherwise }\end{cases}
$$

Typical quasi-Bayesian estimators

MAQP

$$
\widehat{\phi}_{\lambda} \in \underset{\phi \in \mathcal{F}}{\arg \max } \widehat{\rho}_{\lambda}(\phi) .
$$

Mean

$$
\widehat{\phi}_{\lambda}=\mathbb{E}_{\widehat{\rho}_{\lambda}} \phi=\int_{\mathcal{F}} \phi \widehat{\rho}_{\lambda}(\mathrm{d} \phi) .
$$

Realization

$$
\widehat{\phi}_{\lambda} \sim \widehat{\rho}_{\lambda}
$$

And so on.

Statistical aggregation revisited

Assume that \mathcal{F} is finite.

Statistical aggregation revisited

Assume that \mathcal{F} is finite.

The mean of the quasi-posterior $\widehat{\rho}_{\lambda}$ amounts to the celebrated exponentially weighted aggregate (EWA)

$$
\widehat{\phi}_{\lambda}=\mathbb{E}_{\widehat{\rho}_{\lambda}} \phi=\sum_{i=1}^{\# \mathcal{F}} \omega_{\lambda, i} \phi_{i}
$$

where

$$
\omega_{\lambda, i}=\frac{\exp \left(-\lambda R_{n}\left(\phi_{i}\right)\right) \pi\left(\phi_{i}\right)}{\sum_{j=1}^{\# \mathcal{F}} \exp \left(-\lambda R_{n}\left(\phi_{j}\right)\right) \pi\left(\phi_{j}\right)}
$$

E G. (2013). Agrégation d'estimateurs et de classificateurs : théorie et méthodes, Ph.D. thesis, Université Pierre \& Marie Curie

Probably Approximately Correct (PAC) oracle inequalities

Let R^{\star} denote the Bayes risk and set $\lambda \propto n$. For any $\epsilon>0$,

$$
\mathbb{P}\left(R\left(\widehat{\phi}_{\lambda}\right)-R^{\star} \leq \boldsymbol{\oplus} \inf _{\phi \in \mathcal{F}}\left\{R(\phi)-R^{\star}+\frac{\Delta(\phi, \epsilon)}{n^{\alpha}}\right\}\right) \geq 1-\epsilon,
$$

where $\boldsymbol{A} \geq 1$.

Key argument: concentration inequalities (e.g., Bernstein) + duality formula (Csiszár, Catoni).

Probably Approximately Correct (PAC) oracle inequalities

Let R^{\star} denote the Bayes risk and set $\lambda \propto n$. For any $\epsilon>0$,

$$
\mathbb{P}\left(R\left(\widehat{\phi}_{\lambda}\right)-R^{\star} \leq \boldsymbol{\operatorname { \phi }} \inf _{\phi \in \mathcal{F}}\left\{R(\phi)-R^{\star}+\frac{\Delta(\phi, \epsilon)}{n^{\alpha}}\right\}\right) \geq 1-\epsilon,
$$

where $\boldsymbol{\oplus} \geq 1$.

Key argument: concentration inequalities (e.g., Bernstein) + duality formula (Csiszár, Catoni).

Typical regimes in the literature

- $\alpha=\frac{1}{2}$ (slow rate)
- $\alpha=1$ (fast rate)

$$
\begin{aligned}
d & :=\operatorname{dim}(X) \\
& \bullet \Delta(\phi, \epsilon) \propto d+\log \frac{1}{\epsilon} \\
& \bullet \Delta(\phi, \epsilon) \propto \log d+\log \frac{1}{\epsilon}
\end{aligned}
$$

Lemma (Catoni, 2004)

Let (A, \mathcal{A}) be a measurable space. For any probability μ on (A, \mathcal{A}) and any measurable function $h: A \rightarrow \mathbb{R}$ such that $\int(\exp \circ h) \mathrm{d} \mu<\infty$,

$$
\log \int(\exp \circ h) \mathrm{d} \mu=\sup _{m \in \mathcal{M}_{\pi}(A, \mathcal{A})}\left\{\int h \mathrm{~d} m-\mathcal{K}(m, \mu)\right\}
$$

with the convention $\infty-\infty=-\infty$. Moreover, as soon as h is upper-bounded on the support of μ, the supremum with respect to m on the right-hand side is reached for the Gibbs distribution g given by

$$
\frac{\mathrm{d} g}{\mathrm{~d} \mu}(a)=\frac{\exp \circ h(a)}{\int(\exp \circ h) \mathrm{d} \mu}, \quad a \in A
$$

The PAC-Bayesian theory

The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such as quasi-Bayesian) estimators.

The PAC-Bayesian theory

...consists in producing PAC inequalities of Bayesian-flavored (such as quasi-Bayesian) estimators.

E Shawe-Taylor and Williamson (1997). A PAC analysis of a Bayes estimator, COLT
E McAllester (1998). Some PAC-Bayesian theorems, COLT
E McAllester (1999). PAC-Bayesian model averaging, COLT
Elatoni (2004). Statistical Learning Theory and Stochastic Optimization, Springer
E) Audibert (2004). Une approche PAC-bayésienne de la théorie statistique de l'apprentissage, Ph.D. thesis, Université Pierre \& Marie Curie

E Catoni (2007). PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning, IMS
E Dalalyan and Tsybakov (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity, Machine Learning

A flexible and powerful framework

A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature

El Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli
E Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,
IEEE Transactions on Information Theory
E Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research
E G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics
E. G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

E Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint
E Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,
Mathematical Methods of Statistics

A flexible and powerful framework

Numerous models addressed by the PAC-Bayes literature

E Alquier and Wintenberger (2012). Model selection for weakly dependent time series forecasting, Bernoulli
E Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer (2012). PAC-Bayesian inequalities for martingales,
IEEE Transactions on Information Theory
Elquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research
E G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics
E. G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint

E Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint
E Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,
Mathematical Methods of Statistics

Towards (almost) no assumptions to derive powerful results

E Bégin, Germain, Laviolette and Roy (2016). PAC-Bayesian bounds based on the Rényi divergence, AISTATS
E) Alquier and G. (2016). Simpler PAC-Bayesian bounds for hostile data, arXiv preprint
(PAC inequalities for heavy-tailed time series)

In practice...

Previous instantiations of $\widehat{\phi}_{\lambda}$ are not tractable.

Instead of an infinite-dimensional functional space \mathcal{F}, we often resort to some projection onto \mathbb{R}^{d}.

Sampling from a d-dimensional non-standard distribution is still an algorithmic challenge.

Existing implementation

- (Transdimensional) MCMC

E G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics

E Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research
E G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint
E Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Existing implementation

- (Transdimensional) MCMC

E G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics

E Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research
E G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint
E Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

- Stochastic optimization
E) Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

Existing implementation

- (Transdimensional) MCMC

E/ G. and Alquier (2013). PAC-Bayesian Estimation and Prediction in Sparse Additive Models, Electronic Journal of Statistics

E Alquier and Biau (2013). Sparse Single-Index Model, Journal of Machine Learning Research
E G. and Robbiano (2015). PAC-Bayesian High Dimensional Bipartite Ranking, arXiv preprint
E Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

- Stochastic optimization
E) Alquier and G. (2017). An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization,

Mathematical Methods of Statistics

- Variational Bayes

E Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research

Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of $\widehat{\rho}_{\lambda}$ (echoes the celebrated statistical / computational tradeoff).

Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of $\widehat{\rho}_{\lambda}$ (echoes the celebrated statistical / computational tradeoff).

Let $\widetilde{\rho}_{\lambda}$ denote a VB approximation of $\widehat{\rho}_{\lambda}$. The rate of convergence in PAC inequalities is of analogous magnitude for $\widetilde{\rho}_{\lambda}$ and $\widehat{\rho}_{\lambda}$.

E Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research

Bridging the gap between theory and implementation

Goal: PAC oracle inequalities for approximations of $\widehat{\rho}_{\lambda}$ (echoes the celebrated statistical / computational tradeoff).

Let $\widetilde{\rho}_{\lambda}$ denote a VB approximation of $\widehat{\rho}_{\lambda}$. The rate of convergence in PAC inequalities is of analogous magnitude for $\widetilde{\rho}_{\lambda}$ and $\widehat{\rho}_{\lambda}$.

E Alquier, Ridgway and Chopin (2016). On the properties of variational approximations of Gibbs posteriors, Journal of Machine Learning Research

MCMC for online (sequential) quasi-Bayesian learning: the stationary distribution of the Markov Chain is indeed $\widehat{\rho}_{\lambda}$.

E Li, G. and Loustau (2016). A Quasi-Bayesian perspective to Online Clustering, arXiv preprint

Quasi-Bayesian Non-Negative Matrix Factorization

Alquier and G. (2017)
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization
Mathematical Methods of Statistics

NMF

NMF amounts to decompose an $m_{1} \times m_{2}$ matrix M as a product of two low rank matrices with non-negative entries.

$$
M \simeq U V^{\top}
$$

where U is $m_{1} \times K$ and V is $m_{2} \times K$, and $K \ll m_{1} \wedge m_{2}$.
$M_{\cdot, j} \simeq \sum_{\ell=1}^{K} V_{j, \ell} U_{\cdot, \ell}$.

Wide range of applications (image processing, separation of sources in audio and video files, topics extraction in text, recommender systems...)

Separation of audio sources [Demo, courtesy of C. Févotte]

Setting

We observe an $m_{1} \times m_{2}$ matrix Y and we assume

$$
Y=M+\varepsilon
$$

with $\mathbb{E}(\mathcal{E})=0$ and $\mathbb{V}(\mathcal{E})=\sigma^{2} \mathrm{Id}$.

Our goal is to find a "good" factorization of M.

Notation

Frobenius norm

$$
\begin{gathered}
\|A\|_{F}=\sqrt{\langle A, A\rangle_{F}} \\
\langle A, B\rangle_{F}=\operatorname{Tr}\left(A B^{\top}\right)=\sum_{i=1}^{p} \sum_{j=1}^{q} A_{i, j} B_{i, j} .
\end{gathered}
$$

For any $r \in\{1, \ldots, K\}, \mathcal{M}_{r}(L)$ is the set of matrices U^{0} with non-negative entries bounded by L such that

$$
U^{0}=\left(\begin{array}{cccccc}
U_{11}^{0} & \ldots & U_{1 r}^{0} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
U_{m_{1} 1}^{0} & \ldots & U_{m_{1} r}^{0} & 0 & \ldots & 0
\end{array}\right)
$$

Assumption

The entries of \mathcal{E} are i.i.d and $\mathbb{E} \mathcal{E}_{i, j}=0$. Let $m(x)=\mathbb{E}\left[\mathcal{E}_{i, j} \mathbb{1}_{\varepsilon_{i, j} \leq x}\right]$ and $F(x)=\mathbb{P}\left(\mathcal{E}_{i, j} \leq x\right)$.

There exists a nonnegative and bounded function g such that $\|g\|_{\infty} \leq 1$ and

$$
\int_{u}^{v} m(x) \mathrm{d} x=\int_{u}^{v} g(x) \mathrm{d} F(x)
$$

Assumption

The entries of \mathcal{E} are i.i.d and $\mathbb{E} \mathcal{E}_{i, j}=0$. Let $m(x)=\mathbb{E}\left[\mathcal{E}_{i, j} \mathbb{1}_{\varepsilon_{i, j} \leq x}\right]$ and $F(x)=\mathbb{P}\left(\mathcal{E}_{i, j} \leq x\right)$.

There exists a nonnegative and bounded function g such that $\|g\|_{\infty} \leq 1$ and

$$
\int_{u}^{v} m(x) \mathrm{d} x=\int_{u}^{v} g(x) \mathrm{d} F(x)
$$

This assumption is met whenever $\mathcal{E}_{i, j} \sim \mathcal{N}\left(0, \sigma^{2}\right)\left(\|g\|_{\infty}=\sigma^{2}\right)$ or $\mathcal{E}_{i, j} \sim \mathcal{U}(-b, b)\left(\|g\|_{\infty}=b^{2} / 2\right)$.

Prior

For any $a, x>0, g_{a}(x)=\frac{1}{a} f\left(\frac{x}{a}\right)$.

$$
\begin{gathered}
\forall \ell=1, \ldots, K, \quad \gamma \stackrel{\text { ind. }}{\sim} h, \\
\forall i=1, \ldots, m_{1}, j=1, \ldots, m_{2}, \quad U_{i, \ell}, V_{j, \ell} \stackrel{\text { ind. }}{\sim} g_{\gamma_{\ell}}, \\
\pi(U, V, \gamma)=\prod_{\ell=1}^{K}\left(\prod_{i=1}^{m_{1}} g_{\gamma_{\ell}}\left(U_{i, \ell}\right)\right)\left(\prod_{j=1}^{m_{2}} g_{\gamma_{\ell}}\left(V_{j, \ell}\right)\right) h\left(\gamma_{\ell}\right),
\end{gathered}
$$

and

$$
\pi(U, V)=\int_{\mathbb{R}_{+}^{K}} \pi(U, V, \gamma) \mathrm{d} \gamma
$$

Prior (continued)

The idea behind this prior is that under h, many γ_{ℓ} should be small and lead to non-significant columns $U_{\cdot, \ell}$ and $V_{\cdot, \ell}$ (sufficient probability mass for h, around zero and elsewhere).
This is achieved by assuming ${ }^{1}$

1. $\exists 0<\alpha<1, \beta \geq 0$ and $\delta>0$ such that for any

$$
\begin{aligned}
0<\epsilon \leq & \frac{1}{2 \sqrt{2} S_{f}} \\
& \int_{0}^{\epsilon} h(x) \mathrm{d} x \geq \alpha \epsilon^{\beta} \quad \text { and } \quad \int_{1}^{2} h(x) \mathrm{d} x \geq \delta .
\end{aligned}
$$

2. \exists a non-increasing density \widetilde{f} and $C>0$ such that for any $x>0, f(x) \geq \widetilde{f}(x)$.

$$
{ }^{1} S_{f}:=\max \left(1, \int_{0}^{\infty} x^{2} f(x) \mathrm{d} x\right)
$$

Popular choices for f :

1. Exponential prior $f(x)=\exp (-x)$.
2. Truncated Gaussian prior $f(x) \propto \exp \left(2 a x-x^{2}\right)$ with $a \in \mathbb{R}$.
3. Heavy-tailed prior $f(x) \propto \frac{1}{(1+x)^{\zeta}}$ with $\zeta>1$.

The heavier the tails, the better the performance of QBNMF. But computational cost arises!

Popular choices for h :

1. Uniform distribution on $[0, c]$.
2. Inverse gamma prior $h(x)=\frac{b^{a}}{\Gamma(a)} \frac{1}{x^{a+1}} \exp \left(-\frac{b}{x}\right)$.
3. Gamme $\Gamma(a, b)$ prior for $a, b>0$.

Quasi-Bayesian estimator

$$
\widehat{\rho}_{\lambda}(U, V, \gamma)=\frac{1}{Z} \exp \left[-\lambda\left\|Y-U V^{\top}\right\|_{F}^{2}\right] \pi(U, V, \gamma)
$$

where

$$
Z:=\int \exp \left[-\lambda\left\|Y-U V^{\top}\right\|_{F}^{2}\right] \pi(U, V, \gamma) \mathrm{d}(U, V, \gamma)
$$

Quasi-Bayesian estimator

$$
\widehat{\rho}_{\lambda}(U, V, \gamma)=\frac{1}{Z} \exp \left[-\lambda\left\|Y-U V^{\top}\right\|_{F}^{2}\right] \pi(U, V, \gamma)
$$

where

$$
Z:=\int \exp \left[-\lambda\left\|Y-U V^{\top}\right\|_{F}^{2}\right] \pi(U, V, \gamma) \mathrm{d}(U, V, \gamma)
$$

$$
\widehat{M}_{\lambda}=\mathbb{E}_{\widehat{\rho}_{\lambda}} U V^{T}=\int U V^{T} \widehat{\rho}_{\lambda}(U, V, \gamma) \mathrm{d}(U, V, \gamma)
$$

Bayesian \subset Quasi-Bayesian $(\subset$ PAC-Bayesian)

Bayesian \subset Quasi-Bayesian $(\subset$ PAC-Bayesian $)$

The specific choice $\mathcal{E}_{i, j} \sim \mathcal{N}(0,1 /(2 \lambda))$ (or rather, $\mathcal{E}_{i, j} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $\left.\lambda=1 /\left(2 \sigma^{2}\right)\right)$ turns our procedure fully Bayesian!

In this case the likelihood is written with the Frobenius norm, acting as a fitting criterion (other choices in the literature: Poisson likelihood, Itakura-Saito divergence).

Main result: sharp oracle inequality (simplified)

Fix $\lambda=1 / 4$.

$$
\begin{aligned}
& \mathbb{E}\left(\left\|\widehat{M}_{\lambda}-M\right\|_{F}^{2}\right) \leq \inf _{1 \leq r \leq K} \inf _{\left(U^{0}, V^{0}\right) \in \mathcal{M}_{r}(L)}\left\{\left\|U^{0} V^{0 \top}-M\right\|_{F}^{2}\right. \\
& \quad+r\left[8\left(m_{1} \vee m_{2}\right) \log \left(\frac{2(L+1)^{2} m_{1} m_{2}}{C \widetilde{f}(L+1)}\right)+8+\log \frac{1}{\delta}\right] \\
& \left.\quad+K\left[4 \beta \log \left(2 S_{f}(L+1)^{2} m_{1} m_{2}\right)+4 \log \frac{1}{\alpha}\right]\right\}+4 \log 4
\end{aligned}
$$

Main result: sharp oracle inequality (simplified)

$\operatorname{Fix} \lambda=1 / 4$.

$$
\begin{aligned}
& \mathbb{E}\left(\left\|\widehat{M}_{\lambda}-M\right\|_{F}^{2}\right) \leq \inf _{1 \leq r \leq K} \inf _{\left(U^{0}, V^{0}\right) \in \mathcal{M}_{r}(L)}\left\{\left\|U^{0} V^{0 \top}-M\right\|_{F}^{2}\right. \\
& +r\left[8\left(m_{1} \vee m_{2}\right) \log \left(\frac{2(L+1)^{2} m_{1} m_{2}}{C \widetilde{f}(L+1)}\right)+8+\log \frac{1}{\delta}\right] \\
& \left.+K\left[4 \beta \log \left(2 S_{f}(L+1)^{2} m_{1} m_{2}\right)+4 \log \frac{1}{\alpha}\right]\right\}+4 \log 4 .
\end{aligned}
$$

Gibbs sampler

$$
\begin{gathered}
\text { Input } Y, \lambda . \\
\text { Initialization } U^{(0)}, V^{(0)}, \gamma^{(0)} . \\
\text { For } k=1, \ldots, N \text { : }
\end{gathered}
$$

Gibbs sampler

$$
\text { Input } Y, \lambda
$$

Initialization $U^{(0)}, V^{(0)}, \gamma^{(0)}$.
For $k=1, \ldots, N$:
For $i=1, \ldots, m_{1}$: draw

$$
U_{i, \cdot}^{(k)} \sim \widehat{\rho}_{\lambda}\left(U_{i, \cdot} \mid V^{(k-1)}, \gamma^{(k-1)}, Y\right)
$$

For $j=1, \ldots, m_{2}$: draw

$$
V_{j, \cdot}^{(k)} \sim \widehat{\rho}_{\lambda}\left(V_{j, \cdot} \mid U^{(k)}, \gamma^{(k-1)}, Y\right)
$$

For $\ell=1, \ldots, K$: draw

$$
\gamma_{\ell}^{(k)} \sim \widehat{\rho}_{\lambda}\left(\gamma_{\ell} \mid U^{(k)}, V^{(k)}, Y\right)
$$

Gibbs sampler

$$
\text { Input } Y, \lambda
$$

Initialization $U^{(0)}, V^{(0)}, \gamma^{(0)}$.

$$
\text { For } k=1, \ldots, N \text { : }
$$

$$
\begin{aligned}
& \text { For } i=1, \ldots, m_{1}: \text { draw } \\
& \quad U_{i, .}^{(k)} \sim \widehat{\rho}_{\lambda}\left(U_{i, \mid} \mid V^{(k-1)}, \gamma^{(k-1)}, Y\right) .
\end{aligned}
$$

For $j=1, \ldots, m_{2}$: draw

$$
V_{j, \cdot}^{(k)} \sim \widehat{\rho}_{\lambda}\left(V_{j, \cdot} \mid U^{(k)}, \gamma^{(k-1)}, Y\right)
$$

$$
\text { For } \ell=1, \ldots, K: \text { draw }
$$

$$
\gamma_{\ell}^{(k)} \sim \widehat{\rho}_{\lambda}\left(\gamma_{\ell} \mid U^{(k)}, V^{(k)}, Y\right)
$$

For the exponential prior, $\widehat{\rho}_{\lambda}\left(U_{i,} \mid V, \gamma, Y\right)$ amounts to a truncated Gaussian distribution.

Block coordinate descent

Input Y, λ.

Initialization $U^{(0)}, V^{(0)}, \gamma^{(0)}$.
While not converged, $k:=k+1$:

Block coordinate descent

Input Y, λ.
Initialization $U^{(0)}, V^{(0)}, \gamma^{(0)}$.
While not converged, $k:=k+1$:

$$
\begin{aligned}
U^{(k)}:=\underset{U}{\arg \min }\left\{\lambda\left\|Y-U\left(V^{(k-1)}\right)^{\top}\right\|_{F}^{2}-\sum_{i=1}^{m_{1}} \sum_{\ell=1}^{K} \log \left[g_{\gamma_{\ell}^{(k-1)}}\left(U_{i, \ell}\right)\right]\right\} \\
V^{(k)}:=\underset{V}{\arg \min }\left\{\lambda\left\|Y-U^{(k)} V^{\top}\right\|_{F}^{2}-\sum_{j=1}^{m_{2}} \sum_{\ell=1}^{K} \log \left[g_{\gamma_{\ell}^{(k-1)}}\left(V_{j, \ell}\right)\right]\right\} \\
\gamma^{(k)}:=\underset{\gamma}{\arg \min } \sum_{\ell=1}^{K}\left\{-\sum_{i=1}^{m_{1}} \log \left[g_{\gamma_{\ell}}\left(U_{i, \ell}^{(k)}\right)\right]-\sum_{j=1}^{m_{2}} \log \left[g_{\gamma_{\ell}}\left(V_{j, \ell}^{(k)}\right)\right]\right. \\
\left.-\log \left[h\left(\gamma_{\ell}\right)\right]\right\}
\end{aligned}
$$

Block coordinate descent

Input Y, λ.
Initialization $U^{(0)}, V^{(0)}, \gamma^{(0)}$.
While not converged, $k:=k+1$:

$$
\begin{aligned}
U^{(k)}:=\underset{U}{\arg \min }\left\{\lambda\left\|Y-U\left(V^{(k-1)}\right)^{\top}\right\|_{F}^{2}-\sum_{i=1}^{m_{1}} \sum_{\ell=1}^{K} \log \left[g_{\gamma_{\ell}^{(k-1)}}\left(U_{i, \ell}\right)\right]\right\} \\
V^{(k)}:=\underset{V}{\arg \min }\left\{\lambda\left\|Y-U^{(k)} V^{\top}\right\|_{F}^{2}-\sum_{j=1}^{m_{2}} \sum_{\ell=1}^{K} \log \left[g_{\gamma_{\ell}(k-1)}\left(V_{j, \ell}\right)\right]\right\} \\
\gamma^{(k)}:=\underset{\gamma}{\arg \min } \sum_{\ell=1}^{K}\left\{-\sum_{i=1}^{m_{1}} \log \left[g_{\gamma_{\ell}}\left(U_{i, \ell}^{(k)}\right)\right]-\sum_{j=1}^{m_{2}} \log \left[g_{\gamma_{\ell}}\left(V_{j, \ell}^{(k)}\right)\right]\right. \\
\left.-\log \left[h\left(\gamma_{\ell}\right)\right]\right\}
\end{aligned}
$$

Public python library + demo USPS data (LeCun et al., 1990)

Take-home messages

- \{Quasi,PAC\}-Bayesian learning is a flexible and powerful machinery.

Take-home messages

- \{Quasi,PAC\}-Bayesian learning is a flexible and powerful machinery.
- First sharp oracle inequality in the literature for (QB-)NMF, showing adaptation to the rank.

Shameless self-promotion

Shameless self-promotion NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California
December 9, 2017

Shameless self-promotion
 NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California
December 9, 2017
What this talk could have been about: online clustering, high-dimensional ranking, PAC-Bayesian bounds for hostile data, stability, sequential principal curves...

Shameless self-promotion

NIPS 2017 Workshop

(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights

Long Beach Convention Center, California
December 9, 2017
What this talk could have been about: online clustering, high-dimensional ranking, PAC-Bayesian bounds for hostile data, stability, sequential principal curves...
Ongoing projects:
\{active, agnostic/objective, deep, representation\} learning (mostly with some PAC-Bayes)
https://bguedj.github.io
https://bguedj.github.io/nips2017/50shadesbayesian.html

