Toward a rigorous causal framework for brain mapping

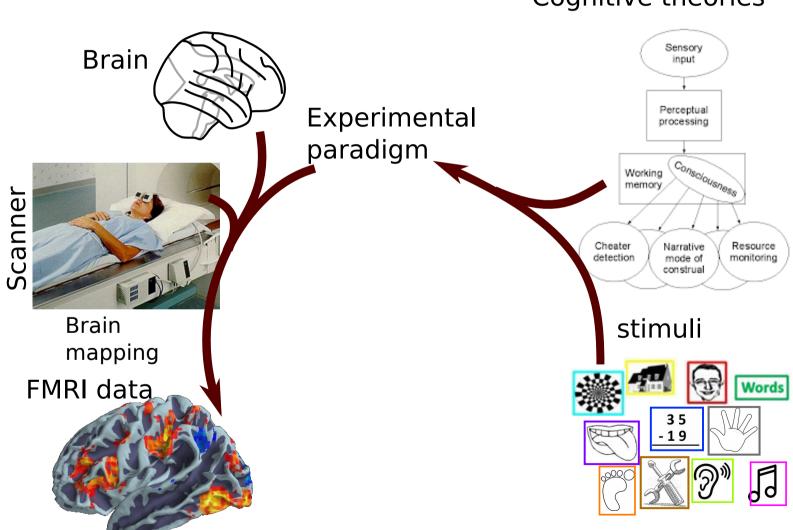
Bertrand Thirion, bertrand.thirion@inria.fr

17/04/2018

Cognitive neuroscience

How are cognitive activities affected or controlled by neural circuits in the brain ?

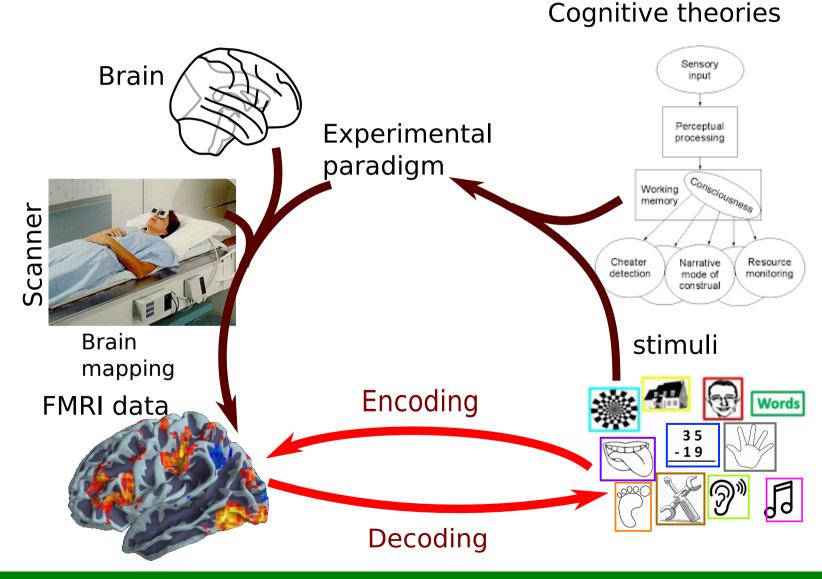
The brain, the mind and the scanner



Cognitive theories

17/04/2018

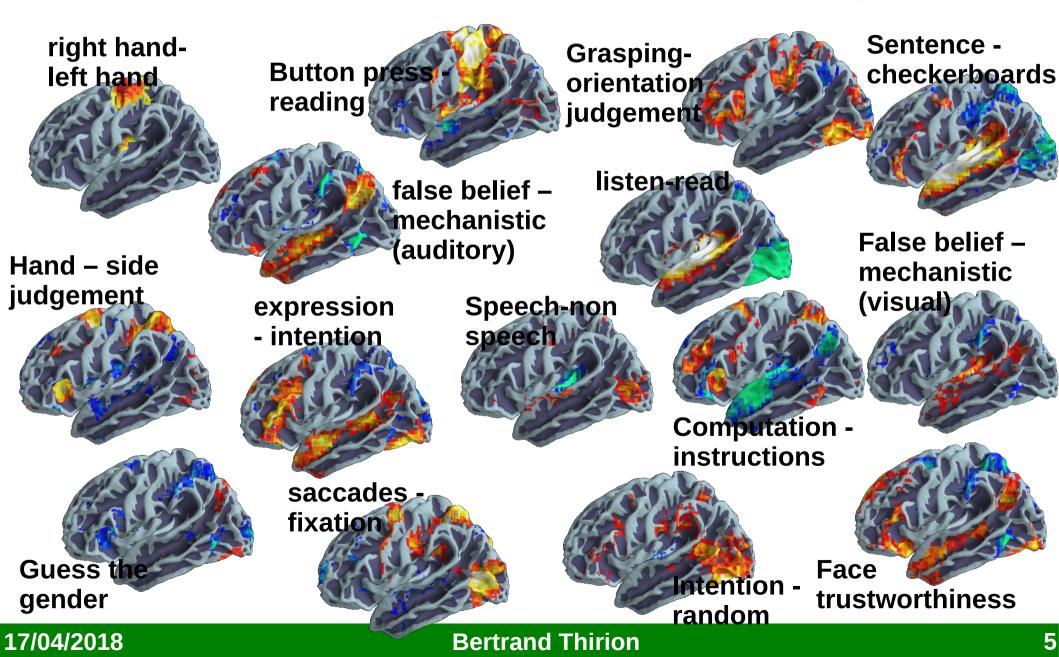
The brain, the mind and the scanner



17/04/2018

Bertrand Thirion

Encoding: mapping cognitive functions to brain activity



Resolution increases

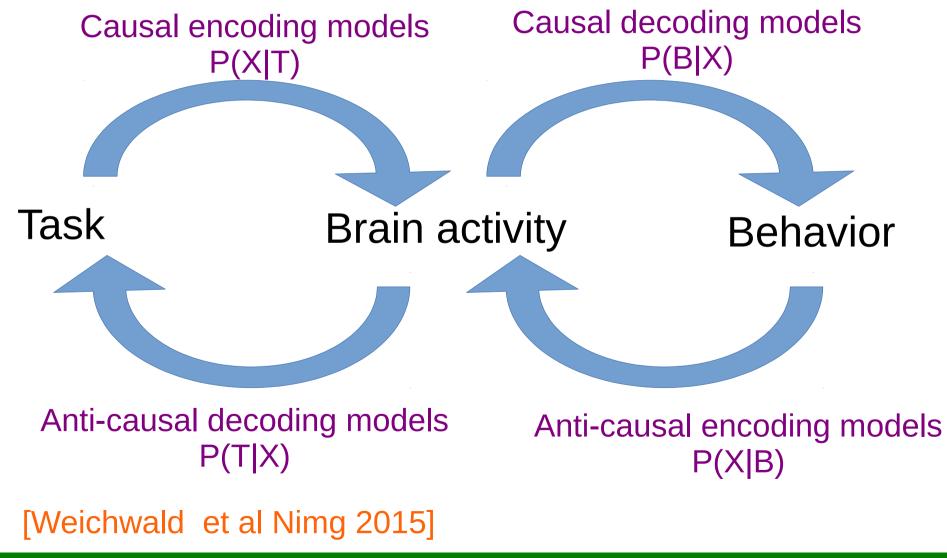
|--|

2007: 3 mm	2014: 1.5 mm	2020: 0.5 mm ?	
p = 50,000	p = 400,000	p = 10 ⁷	
17/04/2018	Bertrand Thirion		

better estimators for large-scale brain imaging

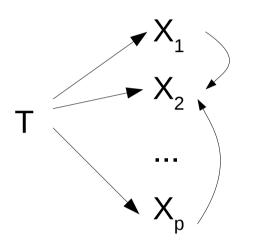
- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of models
- Statistical inference for high-dimensional models

Causal reasoning on encoding/decoding

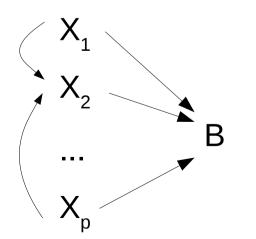


17/04/2018

Causal interpretation



Encoding: causal Decoding: anti-causal



Encoding: anti-causal Decoding: causal

Simple causal models

The Chain $X_1 \rightarrow X_2 \rightarrow X_3$ $X_1 \not\perp X_3$ $X_1 \perp X_3 | X_2$

Simple causal models

The Chain $X_1 \rightarrow X_2 \rightarrow X_3$ $X_1 \leftarrow X_2 \rightarrow X_3$ $X_1 \not\perp X_3$ $X_1 \perp X_3 | X_2$

The Fork $X_1 \not\perp X_3$ $X_1 \perp X_3 | X_2$

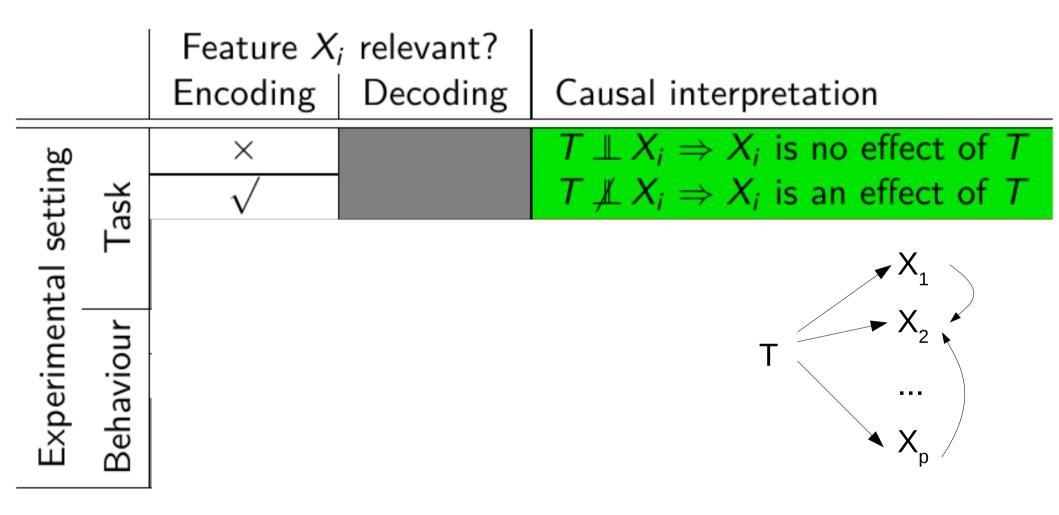
Simple causal models

The Chain $X_1 \rightarrow X_2 \rightarrow X_3$ $X_1 \not\perp X_3$ $X_1 \perp X_3 | X_2$

The Fork $X_1 \leftarrow X_2 \rightarrow X_3$ $X_1 \not\perp X_3$ $X_1 \perp X_3 | X_2$

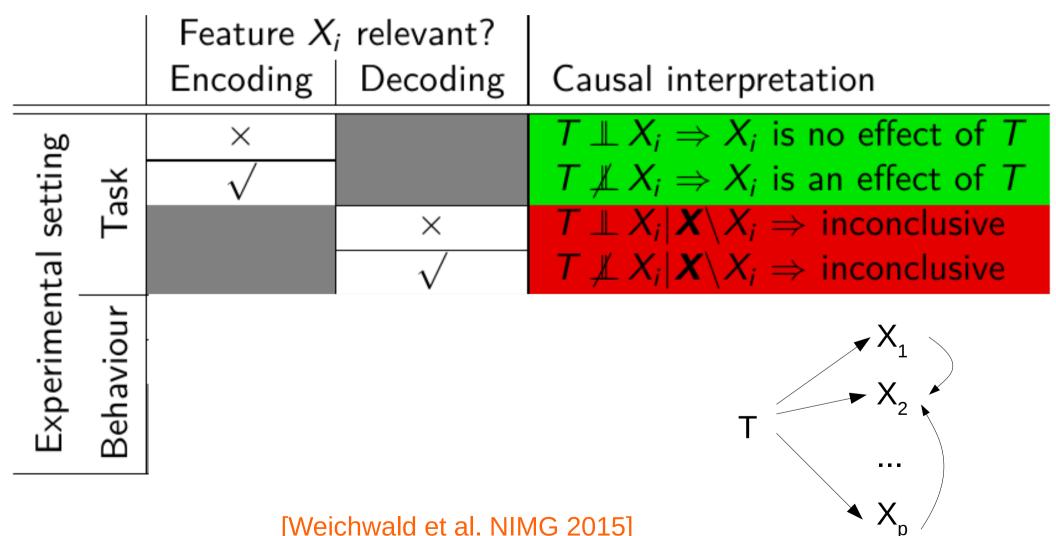
The Collider $X_1 \rightarrow X_2 \leftarrow X_3$ $X_1 \perp X_3$ $X_1 \not\perp X_3 | X_2$

Causal reasoning on encoding/decoding



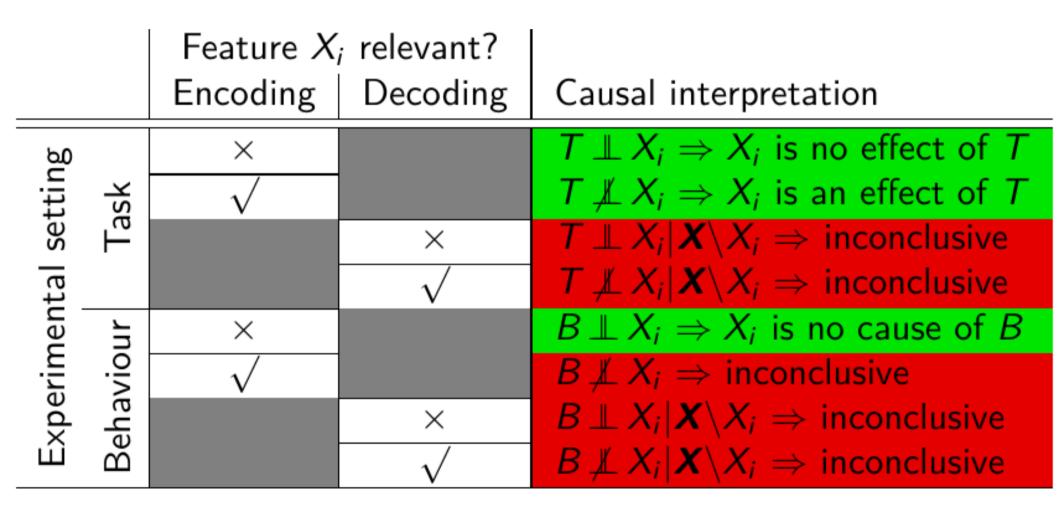
[Weichwald et al. NIMG 2015]

Causal reasoning on encoding/decoding



[Weichwald et al. NIMG 2015]

Causal reasoning on encoding/decoding

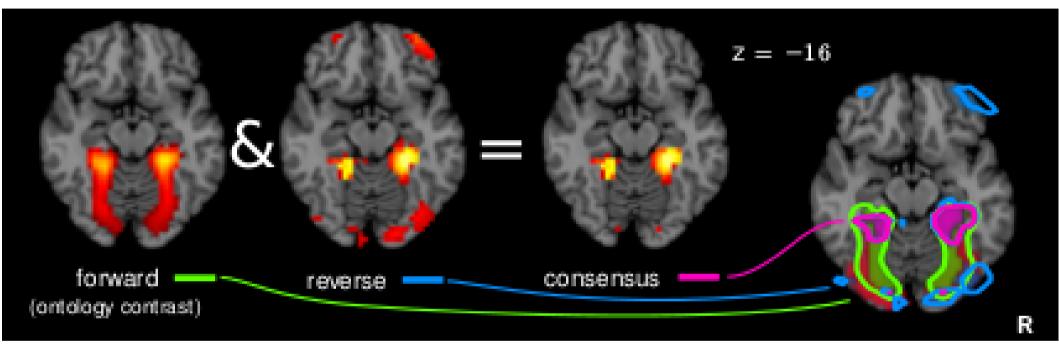


Causal reasoning on encoding/decoding

		Feature X _i relevant? Encoding Decoding		Causal interpretation	
Experimental paradigm Behaviour Task	\times	×	X_i is no effect of T X_i is an indirect effect of T		
	Tas	×		X_i provides context	
			\checkmark	X_i is an effect of T	
	ur	×	×	X_i is no cause of B	
	vio		×	X_i is no direct cause of B	
	sha	×		X _i provides context	
EX	ĕ			inconclusive	

[Weichwald et al. NIMG 2015]

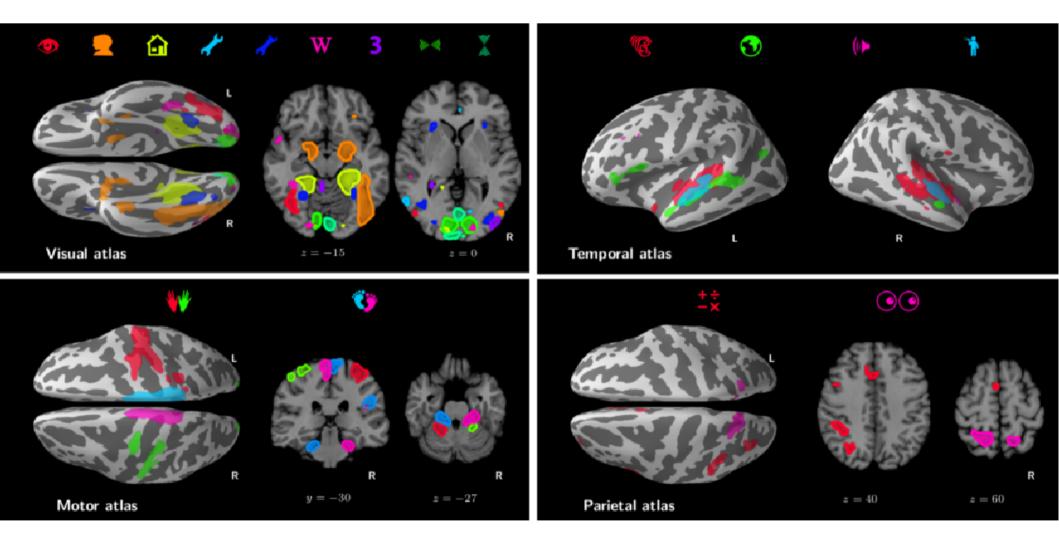
Joint encoding and decoding



[Schwartz et al. NIPS 2013, Varoquaux et al. Submitted to PCB]

	_		-		-	
1				6	\mathbf{n}	Ο
		AU.	<u> </u>		01	

Joint encoding and decoding



[Schwartz et al. NIPS 2013, Varoquaux et al. Submitted to PCB]

Statistical associations and causal reasoning

Definition: X_i is a cause of X_j $(X_i \to X_j)$, iff there exist values of X_i and X_j such that $p(x_j | do\{x_i\}) \neq p(x_j)$.

- Problems:
 - How do you establish $p(x_j|do{x_i}) \neq p(x_j)$ based on finite datasets ?
 - Large number of conditioning variables
 - Encoding models: Multiple comparison issues
 - Decoding problem: statistical tests in multiple regression

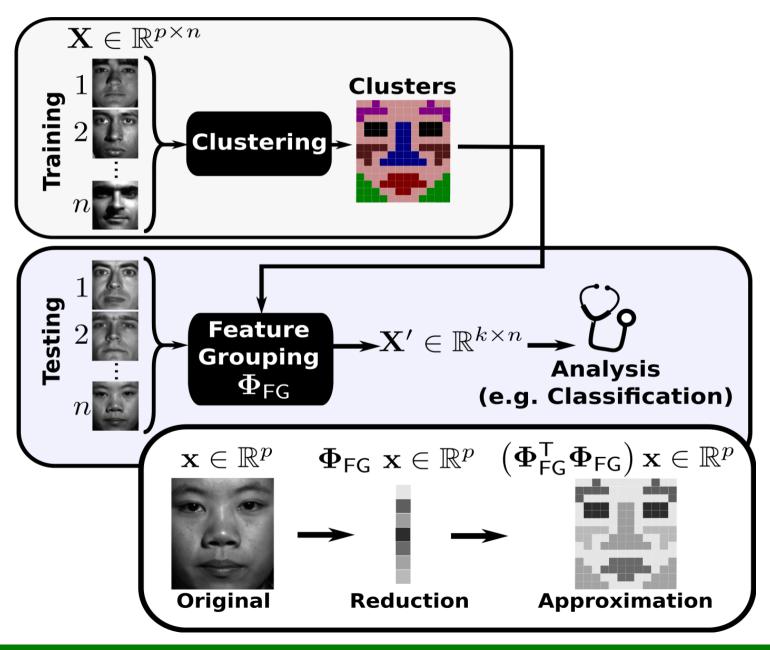
Outline

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Compression in the image domain

- Reduce the complexity of learning algorithms: $p \rightarrow k \ll p$
- Random projections = fast generic solution, but
 - Sub-optimal for structured signals
 - Not invertible when p and k are large
- Local redundancy → feature grouping strategies / clustering: "super-pixels"
 - Fast clustering procedures needed (large k regime)

Compression by feature grouping



17/04/2018

Crafting good image compression

• Key assumption: signal of interest L-Lipschitz

$$|\mathbf{x}_i - \mathbf{x}_j| \le L \operatorname{dist}_{\mathcal{G}}(v_i, v_j), \quad \forall (i, j) \in [p]^2$$

• Feature grouping matrix $\mathbf{\Phi}_{\mathsf{FG}} \in \mathbb{R}^{k imes p}$

• almost trivially:
$$\|\mathbf{x}\|^2 - L^2 \sum_{q=1}^k |\mathcal{C}_q|^3 \le \|\mathbf{\Phi}_{\mathsf{FG}} \mathbf{x}\|^2 \le \|\mathbf{x}\|^2$$

• Worst case $\|\mathbf{x}\|_2^2 - kL^2 \max_{q \in [k]} \{|\mathcal{C}_q|^3\} \le \|\mathbf{\Phi}_{\mathsf{FG}} \mathbf{x}\|_2^2 \le \|\mathbf{x}\|_2^2$

Need a fast method to learn balanced clusters

17/04/2018

Denoising properties

- Noisy signal model $\mathbf{x} = \mathbf{s} + \mathbf{n}$ $MSE_{approx} \le L^2 \sum_{q=1}^k |\mathcal{C}_q| \operatorname{diam}_{\mathcal{G}}(\mathcal{C}_q)^2 + \frac{k}{p} \operatorname{MSE}_{orig}$
- Denoising

 $MSE_{approx} \leq MSE_{orig}$

$$L^2 \leq \frac{(p-k)}{\sum_{q=1}^k |\mathcal{C}_q| \operatorname{diam}_{\mathcal{G}}(\mathcal{C}_q)^2} \sigma^2$$

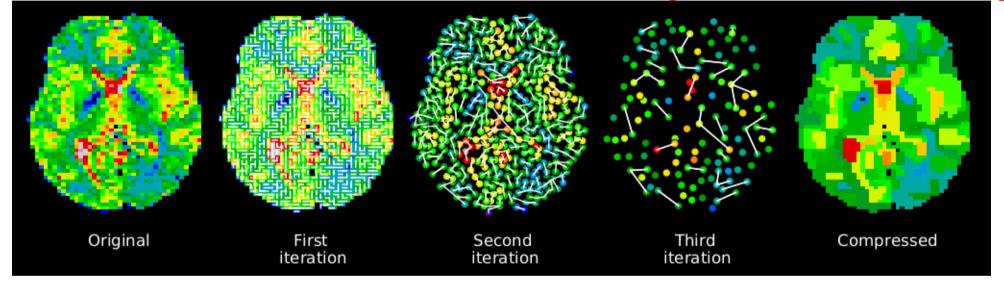
• Equal-size clusters

$$MSE_{approx} \le p\left(\frac{L}{k}\right)^2 + \frac{k}{p}MSE_{orig} = O\left(\max\left\{\frac{p}{k^2}, \frac{k}{p}\right\}\right)$$

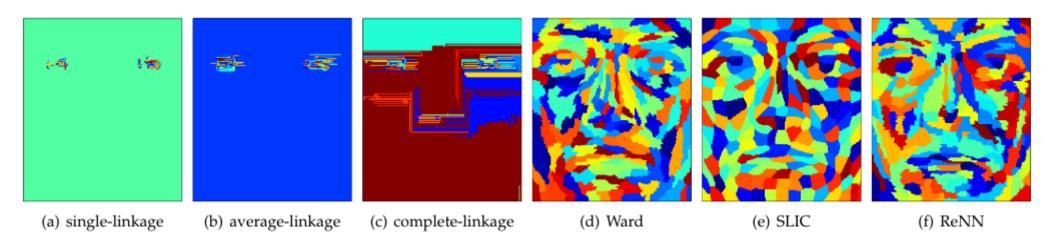
17/04/2018

Recursive neighbor Agglomeration

[Thirion et al. Stamlins 2015]



Based on local decisions = fast (linear time) – avoid percolation

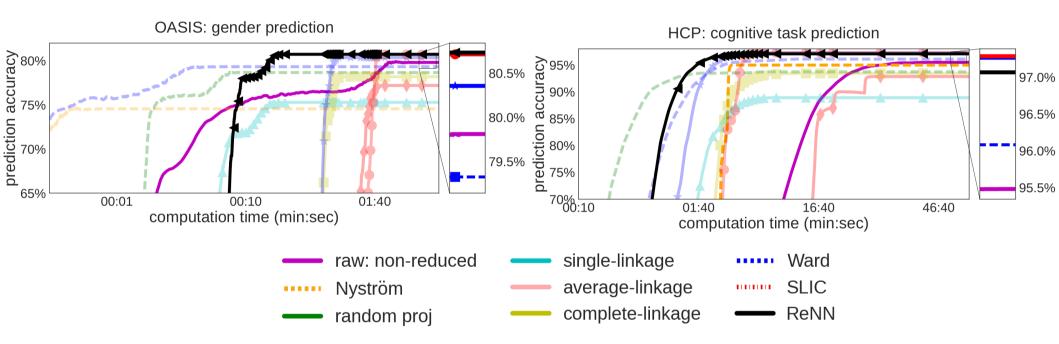


Bertrand Thirion

17/04/2018

25

Effect on data analysis tasks

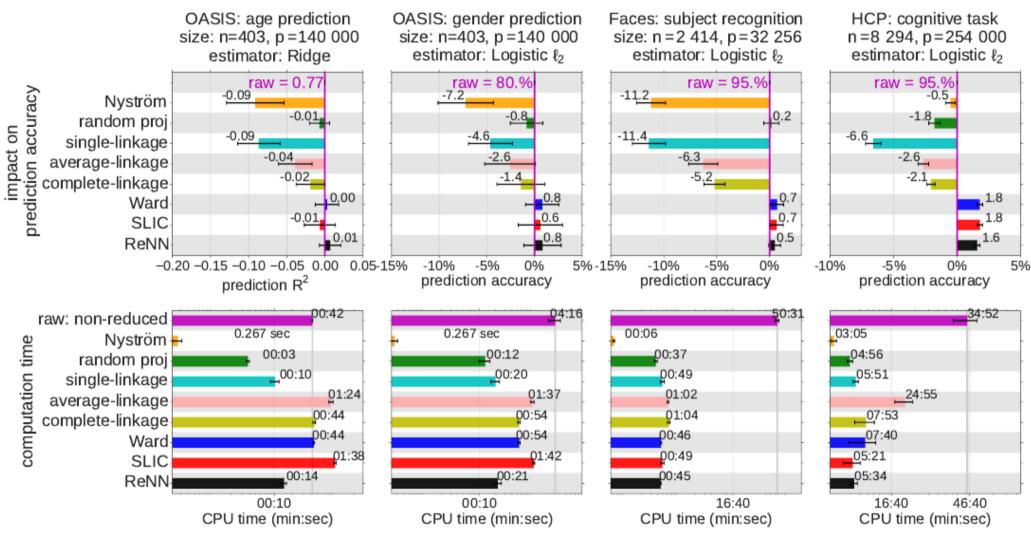


Impressive speed-up and increased accuracy with respect to non-compressed representation

- Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI in Press]

More results



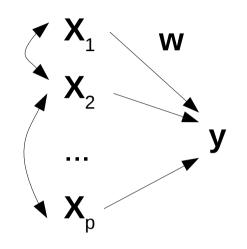
[Hoyos Idrobo IEEE PAMI in Press]

17/04/2018

Outline

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Brain activity decoding

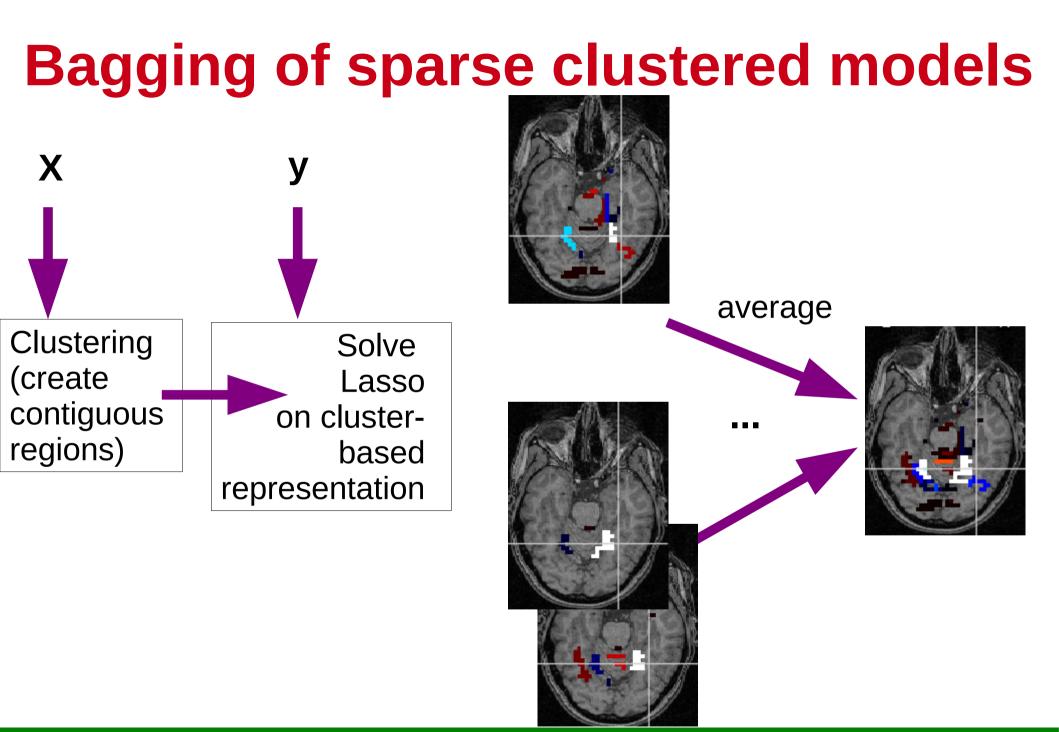


• behavior = f (brain activity)

$$\mathbf{y} = \mathbf{X} \mathbf{w}^* + \sigma_* \boldsymbol{\varepsilon}$$
 • error vector: $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$
• noise magnitude: $\sigma_* > 0$

- prediction: find $\hat{\boldsymbol{w}}$ that minimizes $\|\boldsymbol{X}\hat{\boldsymbol{w}} \boldsymbol{X}\boldsymbol{w}^*\|_2$
- estimation: find \hat{w} with control on $|\hat{w}_j w_j^*|$ for all $j \in [p]$

17/04/2018

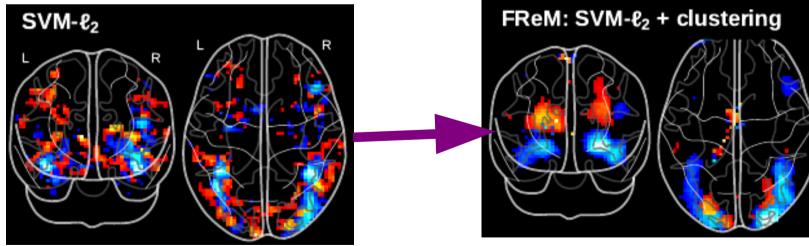


17/04/2018

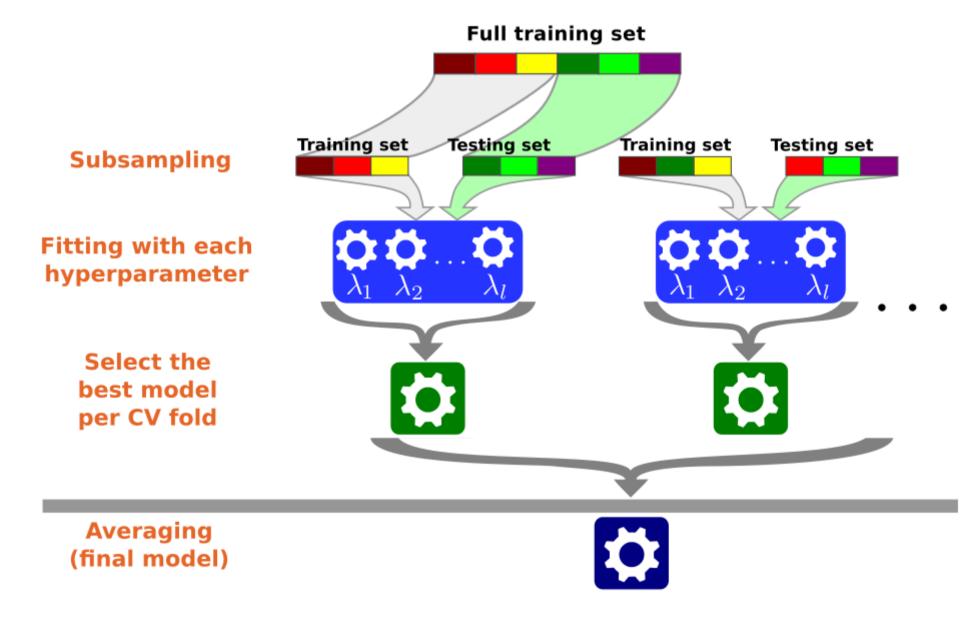
Computationally efficient structure

"fast regularized ensembles of models"

State of the art solution: not very stable, but cheap



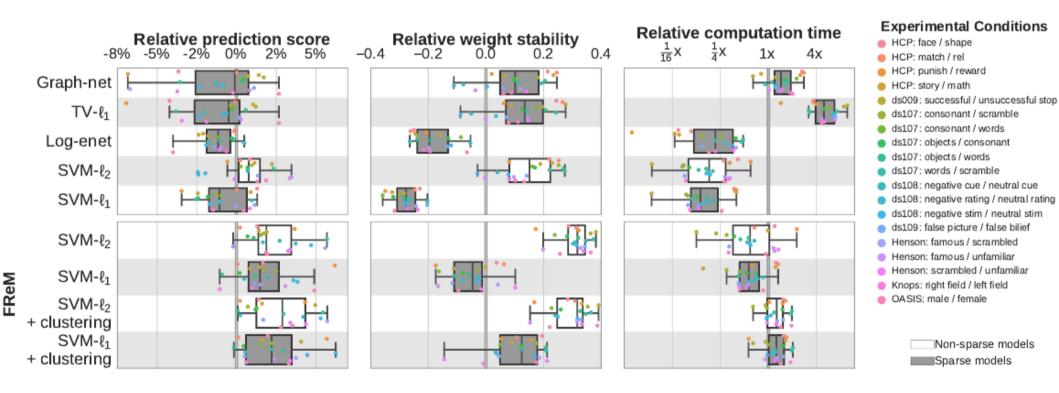
Computationally efficient structure



Effect on prediction accuracy

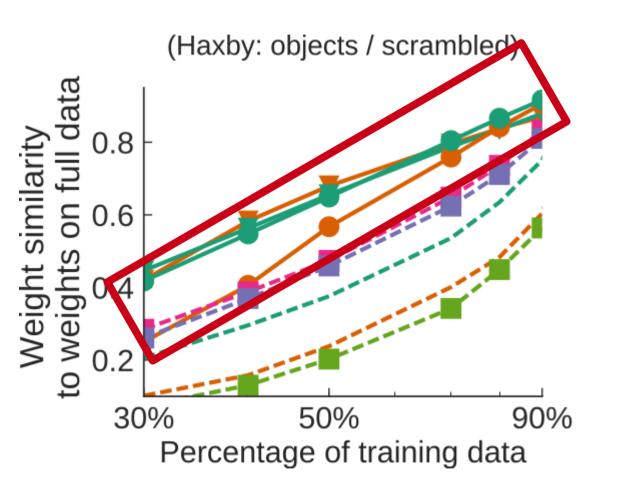
Relative prediction score 0% 2% -8% -5% -2% 5% [Hoyos Idrobo et al PRNI 2015, Graph-net Neuroimage 2017, PAMI 2018] TV-l₁ Log-enet SVM-l₂ SVM-l₁ SVM-l₂ "fast regularized ensembles of models" SVM-l₁ FReM SVM-l₂ + clustering SVM-l₁ + clustering

More results



[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI in Press]

Learning curve



Classifiers

- Graph-net
- -- TV-ℓ₁
- Log-enet
- --- SVM-l₂
- --- SVM-*l*₁
- --- FReM: SVM-l₂
- FReM: SVM-l₁
- → FReM: SVM-ℓ₂ + clustering
- FReM: SVM- ℓ_1 + clustering

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017]

Outline

- A causal framework for brain activity decoding
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Statistical inference on w

- Inference: find {j: w_j > 0} with some statistical guarantees
- Standard solutions for high-dimensional linear models (p > n)
 - Corrected ridge [Bühlmann 2013]
 - Desparsified Lasso [Zhang & Zhang 2014, Montanari 2014]
 - Multi-split [Meinshausen 2009], knockoffs [Candès 2015+]
- Fail for $p \gg n$

Desparsified Lasso

- Objective: construct confidence bounds on the coefficients of w^*
- Principle:

[Zhang & Zhang 2014 Series B Stat Meth]

- construct an unbiased estimator of \boldsymbol{w}^* (generalization of $\hat{\boldsymbol{w}}^{\mathsf{OLS}}$)
- compute its covariance matrix
- Heuristic argument: in low dimension we can prove that:

$$\hat{w}_j^{\mathsf{OLS}} = rac{\mathbf{z}_j^{ op} \mathbf{y}}{\mathbf{z}_j^{ op} \mathbf{x}_j} \;\;,$$

where z_j is the residual of the OLS regression of x_j versus $X^{(-j)}$:

$$\mathbf{z}_j = \mathbf{x}_j - \mathbf{P}_{\mathbf{X}^{(-j)}}\mathbf{x}_j$$
 ,

where $P_{\mathbf{X}^{(-j)}}$ is the projection onto $\text{Span}(\mathbf{X}^{(-j)}) \subset \mathbb{R}^{p-1}$

Desparsified Lasso

• **Desparsified Lasso estimator:** when n < p, z_j is the residual of a Lasso-CV regression of x_j vs $X^{(-j)}$ and the debiased estimator is:

$$\hat{w}_j = \frac{\mathbf{z}_j^{\top} \mathbf{y}}{\mathbf{z}_j^{\top} \mathbf{x}_j} - \sum_{k \neq j} \frac{\mathbf{z}_j^{\top} \mathbf{x}_k \hat{w}_k^{(init)}}{\mathbf{z}_j^{\top} \mathbf{x}_j} ,$$

where $\hat{w}^{(init)}$ is an initial non linear estimator of w^* (*e.g.*, Lasso)

• **Covariance:** the covariance matrix of this estimator is:

$$\Omega_{jk} = \frac{n\mathbf{z}_j^{\top}\mathbf{z}_k}{(\mathbf{z}_j^{\top}\mathbf{x}_j)(\mathbf{z}_k^{\top}\mathbf{x}_k)}$$

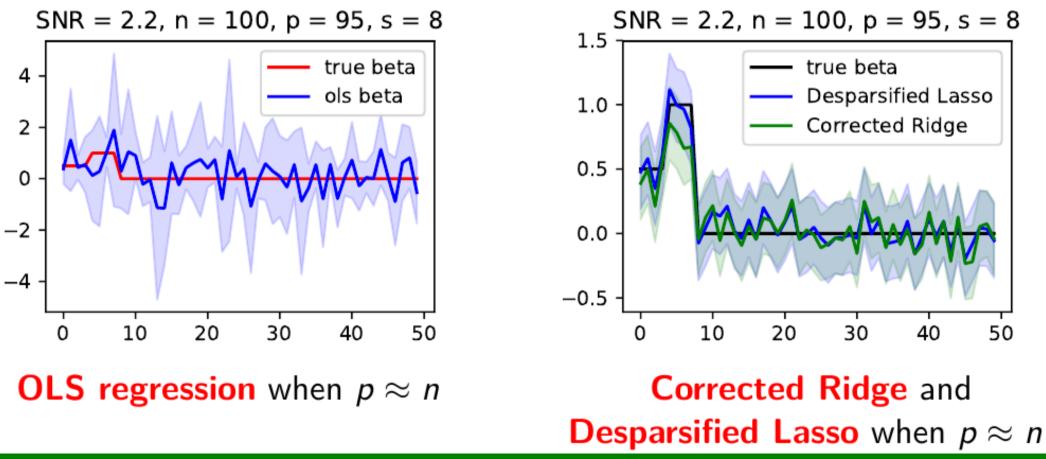
• Confidence bounds: under few assumptions (Dezeure et al. [2015]):

$$\sigma_*^{-1}(\Omega_{jj})^{-1/2}(\hat{w}_j - w_j^*) \sim \mathcal{N}(0, 1)$$

17/04/2018

Preliminary assessment

- Low dimension: n = 100 and p = 95
- OLS versus corrected Ridge and desparsified Lasso:

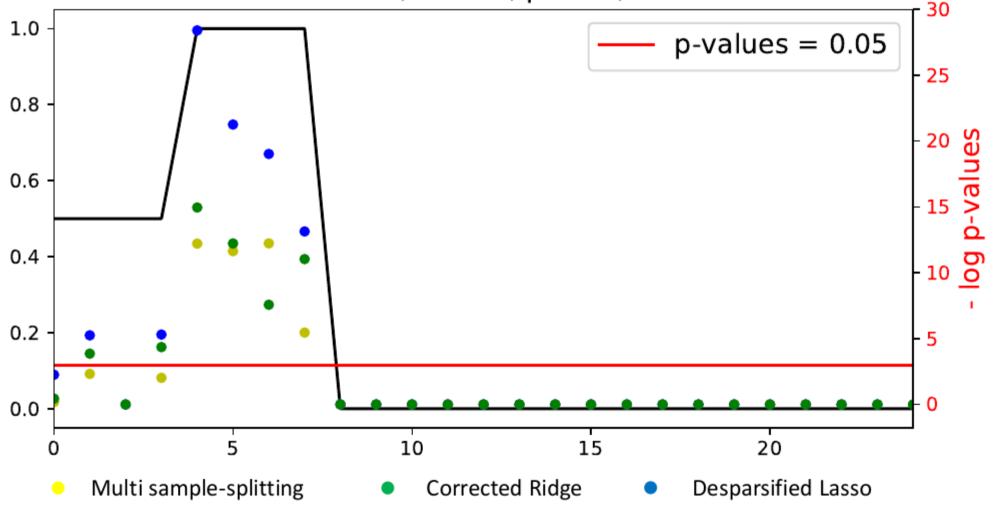


17/04/2018

Bertrand Thirion

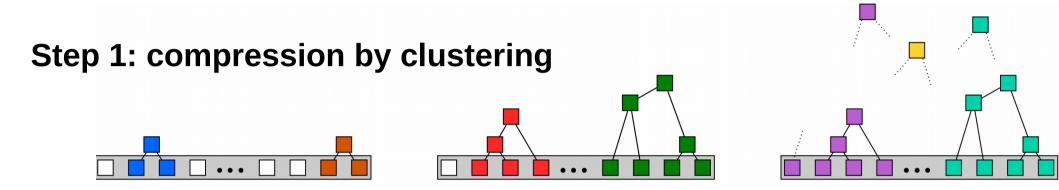
Preliminary assessment

SNR = 2.2, n=100, p = 95, s = 8



17/04/2018

Adaptation to brain imaging



Step 2: inference on compressed representations

$$\sigma_*^{-1}(\Omega_{jj})^{-1/2}(\hat{w}_j - w_j^*) \sim \mathcal{N}(0,1)$$

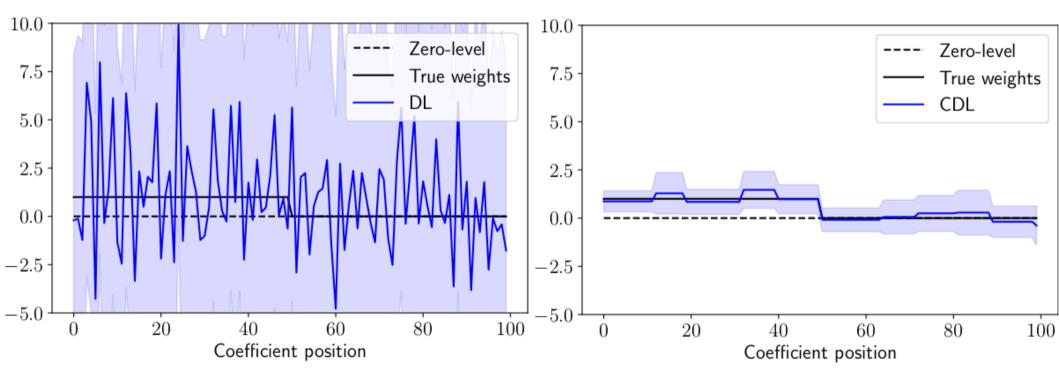
Clustered Desparsified Lasso

Lasso

Step 3: ensembling iterate with different parcellations Ensemble of → aggregate p-values (FReM-like approach) Clustered Desparsified

Large p → need dimension reduction

p=2000, n=100



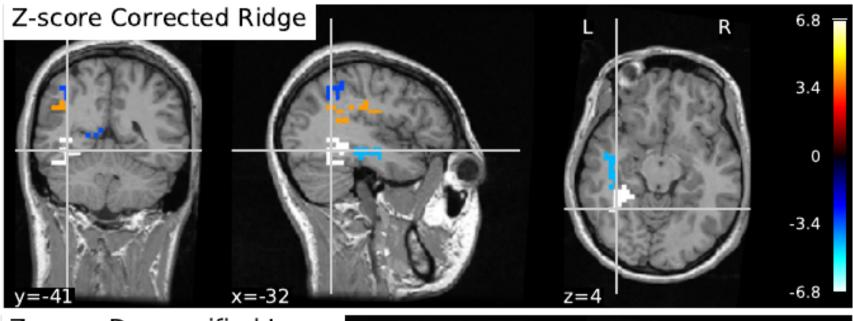
Large p kills statistical power

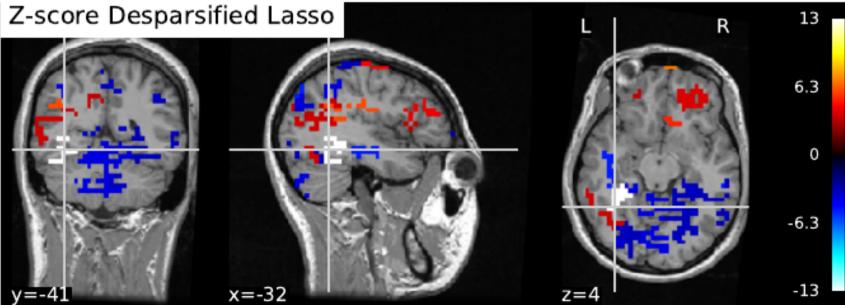
CDL tames variance

[Chevalier et al. subm. To MICCAI]

17/04/2018

Preliminary assessment: CDL



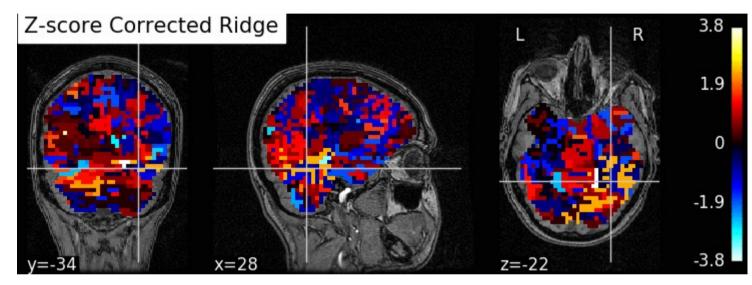


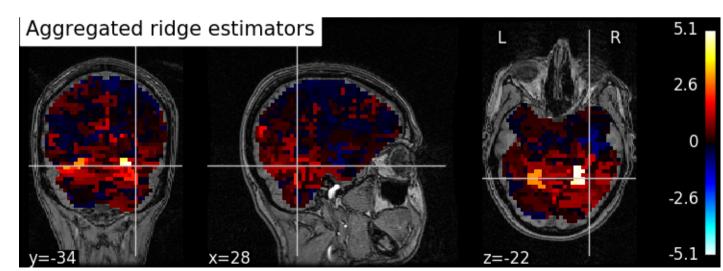
17/04/2018

Bertrand Thirion

From CDL to ECDL

DL p-values from different clusterings



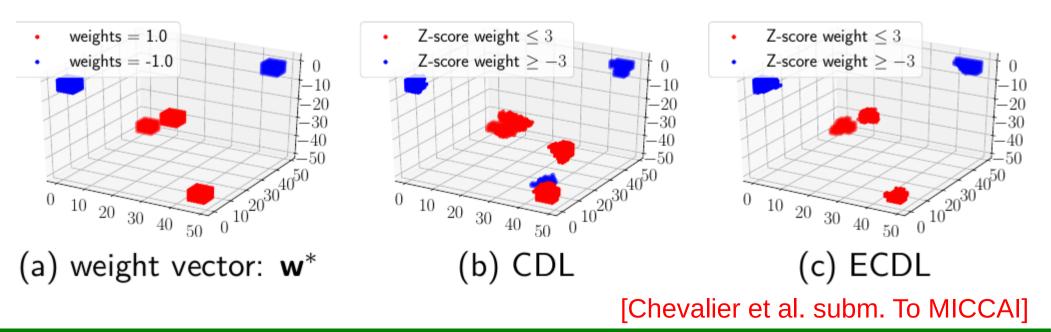


aggregation

17/04/2018

Simulations: ECDL > CDL

- Parameters: n = 400, H = 50, $p = H^3 = 125\,000$, $\sigma_{\rm smth} = 2$
- Noise: $SNR_y = 3$ by taking $\sigma_* = 8$
- Hyperparameters: C = 500 and B = 25
- Weights:

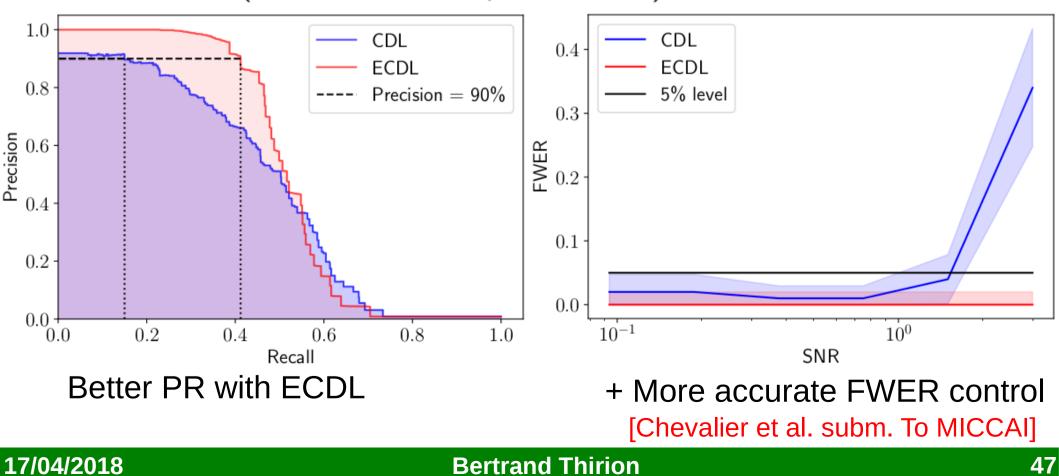


17/04/2018

Experiments: PR and FWER control

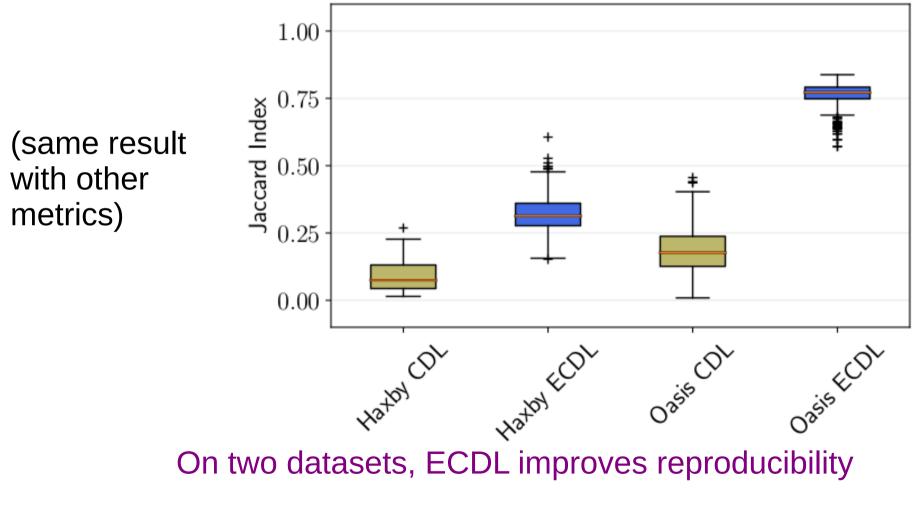
 $\label{eq:Recall} \mbox{Recall} = \frac{\mbox{Number of true positive}}{\mbox{Size of the active set}} \mbox{ Precision} = \frac{\mbox{Number of true positive}}{\mbox{Number of discoveries}}$

 $FWER = Prob(Number of false positive \geq 1)$



Stability gains on real data

Similarity across bootstrap replications of the inference



[Chevalier et al. subm. To MICCAI]

17/04/2018

Conclusion

- Large-p data bring challenges:
 - Computation cost
 - Overfit
 - Difficulty of statistical inference
 - ... of causal reasoning
- Solutions: online learning, subsampling, compression
- Ensembling improves estimators
- Go & get more data

WIP

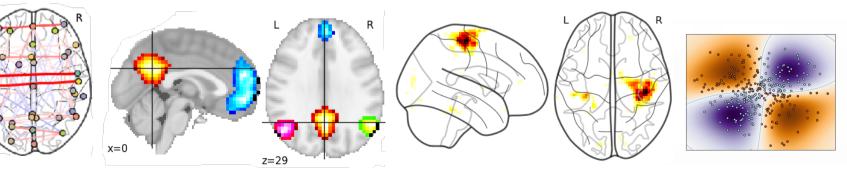
- too conservative ?
- Classification ?
- Use of bootstrap
- knockoffs

From good ideas to good practices: software

Machine learning in Python

- BSD, Python, OSS
 - Classification of (neuroimaging) data
 - Network analysis

MEG + EEG ANALYSIS & VISUALIZATION



17/04/2018

Parietal

- G. Varoquaux,
- A. Gramfort,
- P. Ciuciu,
- D. Wassermann,
- D. Engemann,
- A. Manoel,
- D. Chyzhyk
- A.L. Grilo Pinho,
- E. Dohmatob,
- A. Mensch,
- J.A. Chevalier,
- A. Hoyos idrobo,
- D. Bzdok,
- J. Dockès,
- P. Cerda,
- C. Lazarus
- D. La Rocca
- G. Lemaitre
- L. El Gueddari
- O. Grisel
- M. Massias
- P. Ablin
- H. Janati
- J. Massich
- K. Dadi
- C. Petitot

17/04/2018

HP

Acknowledgements

UNU

CARO

Other collaborators (thanks for the data) S. Dehaene R. Poldrack, J. Haxby C. F. Gorgolevski J. Salmon

universite

PARIS-SACLAY

Bertrand Thirion

Human Brain Project