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Cognitive neuroscience 

How are cognitive activities affected or controlled 
by neural circuits in the brain ?
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Encoding: mapping cognitive 
functions to brain activity
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Resolution increases

2007: 
3 mm

2014: 
1.5 mm

2020: 
0.5 mm ?

p = 50,000 p = 400,000 p = 107
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better estimators for large-scale  
brain imaging

● A causal framework for brain activity decoding
● Dimension reduction for images
● Fast regularized ensembles of models
● Statistical inference for high-dimensional models
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Causal reasoning on 
encoding/decoding

Task Brain activity Behavior

 Causal encoding models 
P(X|T)

 Causal decoding models 
P(B|X)

 Anti-causal decoding models 
P(T|X)

 Anti-causal encoding models 
P(X|B)

[Weichwald  et al Nimg 2015]
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 Causal interpretation

Encoding: causal
Decoding: anti-causalT
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Simple causal models
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Simple causal models
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Simple causal models
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Causal reasoning on 
encoding/decoding

[Weichwald et al. NIMG 2015]
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Causal reasoning on 
encoding/decoding

[Weichwald et al. NIMG 2015]
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Causal reasoning on 
encoding/decoding

[Weichwald et al. NIMG 2015]
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Causal reasoning on 
encoding/decoding

[Weichwald et al. NIMG 2015]
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Joint encoding and decoding

[Schwartz et al. NIPS 2013, Varoquaux et al. Submitted to PCB] 
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Joint encoding and decoding

[Schwartz et al. NIPS 2013, Varoquaux et al. Submitted to PCB] 
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Statistical associations and 
causal reasoning

● Problems:
– How do you establish 

based on finite datasets ?

– Large number of conditioning variables

– Encoding models: Multiple comparison issues

– Decoding problem: statistical tests in multiple 
regression  
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Outline

● A causal framework for brain activity decoding
● Dimension reduction for images
● Fast regularized ensembles of Models
● Statistical inference for high-dimensional 

models
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Compression in the image 
domain

● Reduce the complexity of learning algorithms: 
p→k ≪ p

● Random projections = fast generic solution, but 
– Sub-optimal for structured signals

– Not invertible when p and k are large

● Local redundancy → feature grouping 
strategies / clustering: “super-pixels”
– Fast clustering procedures needed (large k regime) 
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Compression by feature grouping
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Crafting good image compression

● Key assumption: signal of interest L-Lipschitz

● Feature grouping matrix

● almost trivially:

● Worst case

Need a fast method to learn balanced clusters
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Denoising properties

● Noisy signal model

● Denoising

● Equal-size clusters
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Recursive neighbor Agglomeration

Based on local decisions = fast (linear time) – avoid percolation

[Thirion et al. Stamlins 2015]
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Effect on data analysis tasks

Impressive speed-up and increased accuracy with 
respect to non-compressed representation

– Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI in Press]
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More results

[Hoyos Idrobo IEEE PAMI in Press]
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Outline

● A causal framework for brain activity decoding
● Dimension reduction for images
● Fast regularized ensembles of Models
● Statistical inference for high-dimensional 

models
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Brain activity decoding
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Bagging of sparse clustered models
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Computationally efficient structure

State of the art 
solution: not 
very stable, but 
cheap

“fast regularized ensembles of models”
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Computationally efficient structure
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Effect on prediction accuracy

“fast regularized 
ensembles of models”

[Hoyos Idrobo et al PRNI 2015, 
Neuroimage 2017, PAMI 2018]
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More results

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI in Press]
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Learning curve

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017]
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Outline

● A causal framework for brain activity decoding
● Dimension reduction for images
● Fast regularized ensembles of Models
● Statistical inference for high-dimensional 

models
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Statistical inference on w

● Standard solutions for high-dimensional linear 
models (p > n)
– Corrected ridge [Bühlmann 2013]

– Desparsified Lasso [Zhang & Zhang 2014, Montanari 2014]

– Multi-split [Meinshausen 2009], knockoffs [Candès 2015+]

● Fail for p ≫ n 

● Inference: find {j: wj > 0} with some statistical 
guarantees
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Desparsified Lasso

[Zhang & Zhang 2014 Series B Stat Meth]
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Desparsified Lasso
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Preliminary assessment
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Preliminary assessment
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Adaptation to brain imaging

Step 1: compression by clustering

Step 2: inference on compressed representations

Step 3: ensembling iterate with different parcellations 
→ aggregate p-values (FReM-like approach)

Clustered 
Desparsified 
Lasso

Ensemble of
Clustered 
Desparsified 
Lasso
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Large p → need dimension reduction

Large p kills statistical power CDL tames variance

p=2000, n=100

[Chevalier et al. subm. To MICCAI]
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Preliminary assessment: CDL
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From CDL to ECDL

DL p-values 
from different 
clusterings

aggregation
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Simulations: ECDL > CDL

[Chevalier et al. subm. To MICCAI]
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Experiments: PR and FWER control

Better PR with ECDL + More accurate FWER control
[Chevalier et al. subm. To MICCAI]
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Stability gains on real data

On two datasets, ECDL improves reproducibility 

Similarity across bootstrap replications of the inference

[Chevalier et al. subm. To MICCAI]

(same result 
with other 
metrics)
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Conclusion
● Large-p data bring 

challenges:
– Computation cost

– Overfit

– Difficulty of statistical inference

– … of causal reasoning

● Solutions: online learning, 
subsampling, compression

● Ensembling improves 
estimators

● Go & get more data

WIP 
● too conservative ?
● Classification ?
● Use of bootstrap
● knockoffs
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From good ideas to good practices: 
software

● Machine learning in Python

● Machine learning for neuroimaging 
http://nilearn.github.io

● BSD, Python, OSS

– Classification of (neuroimaging) data

– Network analysis

http://nilearn.github.io/
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