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● In the last decade huge leap forward of machine’s performance in many cognitive 
tasks thanks to deep Artificial Neural Networks (Hinton, LeCun, Bengio, ...)

● Loosely inspired from real neural networks (visual system) → stacks of simple 
artificial neurons (perceptrons; few basic variants)

● Very versatile (image classification, game playing, speech recognition, emerging 
applications in physics…)

● Impressive results (super-human in some cases, e.g. AlphaGo)
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Deep Neural Networks
Their input-output relation is highly non-linear 

Neurons / Activation functions

Synaptic Weights

Typically ReLU neurons:



  

Deep Neural Networks
Their input-output relation is highly non-linear 

Supervised learning :

- Training Set

- Loss function (non-convex):

- Stochastic Gradient Descent

Robustly achieve low error on the training set (doesn’t 
get stuck in bad local minima) and good generalization 
properties.

Poor theoretical understanding!

e.g.   Carlo,

random minibatch



  

Undeep learning: the perceptron

i.e. find synaptic weights W such that

For binary synapses the perceptron problem is NP-hard and 
also standard heuristics such as Simulated Annealing take 
exponential time to solve it.

Average case theorethical analysis can be done with
Replica and Cavity method from statistical physics.

 

One possible choice for H(W) is the error counting Hamiltonian. 

The perceptron is the building block of multi-layer networks.

We want to learn a binary linear classifier                  ,



  

Mostly isolated solutions but...

0.83

The origin of the computational hardness is due to the fact that typical solution are isolated 
(Kabashima and Huang ‘14), anologue of deep holes for non-discrete networks.

There is a dense region of solutions, but it is subdominant in the equilibrium measure 
(uniform over all solutions). 

Still efficient algorithms do exist (Braunstein and Zecchina ‘07) and they can almost reach the 
theoretical SAT/UNSAT threshold. The solutions found are not isolated at all!



  

Local entropy

To uncover the presence of dense regions of solutions we modify the Boltzamnn 
distribution:

with the local entropy [1] 

Low-lying configurations         surrounded by many others low-lying 
configurations have more statistical weight than configurations
in deep “holes”.

The dense region now dominates the measure.   

[1] Baldassi, Ingrosso, Lucibello, Saglietti, Zecchina (PRL ‘15)

    smoothing of the landscape



  

Local entropy

[1] Baldassi, Ingrosso, Lucibello, Saglietti, Zecchina (PRL ‘15)

Perceptron T=0

Good conceptual tool, also analitically
and algorithmically tractable (with some 
approximations).

For large      corresponds to the proximal operator.

This new cost function enforces robustness
of minimizers. 

Gives some theoretical support for good 
generalization properties of flat minima.



  

Local entropy: algorithms

CIFAR-10 test error, 10 layers CNN 
(Chaudhari et al. ‘16)

.

For continuous weights we can perform 
gradient descent approximating the gradient
 

with a few steps of a Langevin dynamics 
(Chaudhari et al. ‘16)



  

Local entropy: algorithms

MonteCarlo 
+ 
Belief Propagation to estimate  loc. entropy

Success probability in
Random 4SAT Hard Phase

The framework can be applied to any optimization 
problem. 

The drawback is the expensive computation of the 
local entropy.



  

Replicas: the Robust Ensemble

The local entropy is expensive to compute exactly, therefore 
has to be approximated. Can we do better?

If we consider integer y we can write Z as the partition 
function of y+1 coupled systems!

[2] Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, Zecchina (PNAS ‘16)

We call this new ensemble the Robust Ensemble, since it biases the measure towards 
dense/robust regions.

     used to tune exploration vs exploitation. Generally increased during training. 



  

Replicated Algorithms

[2] Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, Zecchina (PNAS ‘16)
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We applied several “replicated” algorithms  on 2-layers binary neural networks, with very good results.

It is sufficient to take y = 3,4,5. Here we show the results for continuous and binary 2-layers net. 

Replicated Stochastic Gradient Descent
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Replicated Simulated Annealing



  

Replicated Algorithms

CIFAR-10 test error, 7 layers CNN. 
(Zhang, LeCun et al ‘15.)

y=16 replicas

CIFAR-10 test error, 7 layers All-CNN. 
(Chaudhari et al ‘17.)

Using replicas is also a way for
distributing computation.

One can also partition the training set 
among the replicas and still get good 
performance!



  

● Deep networks are deeply uncharted. We provided some conceptual tools (local 
entropy) to characterize their loss landscape. 

● Some simple algorithms based on replication and coupling seek comparatively 
flatter minima (higher local entropy). 

● Our findings point towards the relevance of flat minima for robust learning and 
good generalization. As a by-product this algorithms allow for a high-degree of 
parallelized computation.

● “Replicated” methods for optimization problems besides learning should be 
investigated. 

Thanks!

Conclusions

[2] Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, Zecchina (PNAS ‘16)

[1] Baldassi, Ingrosso, Lucibello, Saglietti, Zecchina (PRL ‘15)
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