
Unbiased Online Recurrent Optimization

Corentin TALLEC
LRI & Paris-Saclay University, France

Supervised by

Yann OLLIVIER

GT Deepnet
February 16, 2017



UORO

I Goal: to train dynamical systems, recurrent networks,
reinforcement learning systems... while they are running,
without the “backward in time” analysis that comes with
backpropagation through time,

I ... at the same cost as just running the system,
... but with (reasonable) additional noise.

I Not relevant if you have a large number of short training
sequences

I Relevant if you have a small number of long training sequences,
or only one training sequence (e.g., life).



UORO

I Goal: to train dynamical systems, recurrent networks,
reinforcement learning systems... while they are running,
without the “backward in time” analysis that comes with
backpropagation through time,

I ... at the same cost as just running the system,

... but with (reasonable) additional noise.

I Not relevant if you have a large number of short training
sequences

I Relevant if you have a small number of long training sequences,
or only one training sequence (e.g., life).



UORO

I Goal: to train dynamical systems, recurrent networks,
reinforcement learning systems... while they are running,
without the “backward in time” analysis that comes with
backpropagation through time,

I ... at the same cost as just running the system,
... but with (reasonable) additional noise.

I Not relevant if you have a large number of short training
sequences

I Relevant if you have a small number of long training sequences,
or only one training sequence (e.g., life).



UORO

I Goal: to train dynamical systems, recurrent networks,
reinforcement learning systems... while they are running,
without the “backward in time” analysis that comes with
backpropagation through time,

I ... at the same cost as just running the system,
... but with (reasonable) additional noise.

I Not relevant if you have a large number of short training
sequences

I Relevant if you have a small number of long training sequences,
or only one training sequence (e.g., life).



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Backprop through time O(p) O(
√

T ) O(T )
truncated to length T biased

RTRL O(p2) No No
? O(p) No No



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Backprop through time O(p) O(
√

T ) O(T )
truncated to length T biased

RTRL O(p2) No No
? O(p) No No



Algorithms to train dynamical systems

p = #params

Algorithm Cost per Store past Store past
time step states data

Backprop through time O(p) O(
√

T ) O(T )
truncated to length T biased

RTRL O(p2) No No
? O(p) No No



Recurrent nets as dynamical systems

Problem: how to train a dynamical system defined by

st+1 = F (xt+1, st , 𝜃)

I st : internal state of the system at time t
I xt+1: external input signal
I F : transition function, fixed
I 𝜃: parameter to be trained

Goal: minimize some loss function ℓt = ℓ(st) along the trajectories
of the system.

Examples: RNNs, LSTMs, GRUs, ...



Recurrent nets as dynamical systems

Problem: how to train a dynamical system defined by

st+1 = F (xt+1, st , 𝜃)

I st : internal state of the system at time t
I xt+1: external input signal
I F : transition function, fixed
I 𝜃: parameter to be trained

Goal: minimize some loss function ℓt = ℓ(st) along the trajectories
of the system.

Examples: RNNs, LSTMs, GRUs, ...



Recurrent nets as dynamical systems

Problem: how to train a dynamical system defined by

st+1 = F (xt+1, st , 𝜃)

I st : internal state of the system at time t
I xt+1: external input signal
I F : transition function, fixed
I 𝜃: parameter to be trained

Goal: minimize some loss function ℓt = ℓ(st) along the trajectories
of the system.

Examples: RNNs, LSTMs, GRUs, ...



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt
𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problems: goes back in time, keep track of past history...



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt
𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problems: goes back in time, keep track of past history...



Simple strategy: online gradient descent over the loss at time t,

𝜃 ← 𝜃 − 𝜂
𝜕ℓt
𝜕𝜃

with learning rate 𝜂.

Problem: how to compute the derivative 𝜕ℓt
𝜕𝜃

? Current loss depends
on 𝜃 via whole past trajectory.

Standard approach to compute 𝜕ℓt
𝜕𝜃

: backpropagation through time
(BPTT).
Problems: goes back in time, keep track of past history...



Why do we backpropagate through time?
For instance, let us compute how the current loss ℓt depends on the
starting point s0:

𝜕ℓt
𝜕s0

=

𝜕ℓt
𝜕st
× 𝜕st

𝜕st−1
× · · · × 𝜕s1

𝜕s0

= vector×matrix× · · · ×matrix

Left-to-right: OK, only vector×matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same forward-backward structure in many problems: hidden Markov
models (EM), reinforcement learning and optimal control (Bellman
equations)...



Why do we backpropagate through time?
For instance, let us compute how the current loss ℓt depends on the
starting point s0:

𝜕ℓt
𝜕s0

= 𝜕ℓt
𝜕st
× 𝜕st

𝜕st−1
× · · · × 𝜕s1

𝜕s0

= vector×matrix× · · · ×matrix

Left-to-right: OK, only vector×matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same forward-backward structure in many problems: hidden Markov
models (EM), reinforcement learning and optimal control (Bellman
equations)...



Why do we backpropagate through time?
For instance, let us compute how the current loss ℓt depends on the
starting point s0:

𝜕ℓt
𝜕s0

= 𝜕ℓt
𝜕st
× 𝜕st

𝜕st−1
× · · · × 𝜕s1

𝜕s0

= vector×matrix× · · · ×matrix

Left-to-right: OK, only vector×matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same forward-backward structure in many problems: hidden Markov
models (EM), reinforcement learning and optimal control (Bellman
equations)...



Why do we backpropagate through time?
For instance, let us compute how the current loss ℓt depends on the
starting point s0:

𝜕ℓt
𝜕s0

= 𝜕ℓt
𝜕st
× 𝜕st

𝜕st−1
× · · · × 𝜕s1

𝜕s0

= vector×matrix× · · · ×matrix

Left-to-right: OK, only vector×matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix.

=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same forward-backward structure in many problems: hidden Markov
models (EM), reinforcement learning and optimal control (Bellman
equations)...



Why do we backpropagate through time?
For instance, let us compute how the current loss ℓt depends on the
starting point s0:

𝜕ℓt
𝜕s0

= 𝜕ℓt
𝜕st
× 𝜕st

𝜕st−1
× · · · × 𝜕s1

𝜕s0

= vector×matrix× · · · ×matrix

Left-to-right: OK, only vector×matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same forward-backward structure in many problems: hidden Markov
models (EM), reinforcement learning and optimal control (Bellman
equations)...



Why do we backpropagate through time?
For instance, let us compute how the current loss ℓt depends on the
starting point s0:

𝜕ℓt
𝜕s0

= 𝜕ℓt
𝜕st
× 𝜕st

𝜕st−1
× · · · × 𝜕s1

𝜕s0

= vector×matrix× · · · ×matrix

Left-to-right: OK, only vector×matrix multiplications. That’s
BPTT.

Right-to-left: matrix-matrix multiplications, must store a matrix.
=⇒ only for small networks. Known as real-time recurrent learning
(RTRL).

Same forward-backward structure in many problems: hidden Markov
models (EM), reinforcement learning and optimal control (Bellman
equations)...



If you cannot travel back in time...

Algorithms that go forward in time must maintain the gradient of
the current state with respect to the parameters:

Gt := 𝜕st
𝜕𝜃

and then compute the gradient of the loss via the chain rule

𝜕ℓt
𝜕𝜃

= 𝜕ℓt
𝜕st

𝜕st
𝜕𝜃

Gt is a full object of size dim(state)×dim(param).

Sometimes, cannot even store Gt .



If you cannot travel back in time...

Algorithms that go forward in time must maintain the gradient of
the current state with respect to the parameters:

Gt := 𝜕st
𝜕𝜃

and then compute the gradient of the loss via the chain rule

𝜕ℓt
𝜕𝜃

= 𝜕ℓt
𝜕st

𝜕st
𝜕𝜃

Gt is a full object of size dim(state)×dim(param).

Sometimes, cannot even store Gt .



If you cannot travel back in time...

Algorithms that go forward in time must maintain the gradient of
the current state with respect to the parameters:

Gt := 𝜕st
𝜕𝜃

and then compute the gradient of the loss via the chain rule

𝜕ℓt
𝜕𝜃

= 𝜕ℓt
𝜕st

𝜕st
𝜕𝜃

Gt is a full object of size dim(state)×dim(param).

Sometimes, cannot even store Gt .



UORO

I At each time, maintain a search direction 𝜃t in parameter
space, together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



UORO
I At each time, maintain a search direction 𝜃t in parameter

space,

together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



UORO
I At each time, maintain a search direction 𝜃t in parameter

space, together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



UORO
I At each time, maintain a search direction 𝜃t in parameter

space, together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



UORO
I At each time, maintain a search direction 𝜃t in parameter

space, together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



UORO
I At each time, maintain a search direction 𝜃t in parameter

space, together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



UORO
I At each time, maintain a search direction 𝜃t in parameter

space, together with an estimate s̃t of the effect of 𝜃 on the
current state st .

I Have the search direction 𝜃t evolve stochastically, but not fully
at random, in a way driven by how the transition function F
depends on the parameter 𝜃.

I Can be arranged so that, at each time, s̃t𝜃
⊤
t is an unbiased

estimate of 𝜕st
𝜕𝜃

:
Es̃t𝜃

⊤
t = Gt

I Unbiased estimate of Gt =⇒ unbiased estimate of the gradient
of the loss function ℓt wrt the parameter

I The estimates are noisy but unbiased =⇒ over time the
parameter evolves in the correct direction.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃)

Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) +

𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.

=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1.

Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



To understand how to approximate Gt , let us look at its evolution.
The evolution equation is

st+1 = F (xt+1, st , 𝜃) Gt := 𝜕st
𝜕𝜃

Taking the derivative of the evolution equation wrt 𝜃 we get

Gt+1 = 𝜕F
𝜕𝜃

(xt+1, st , 𝜃) + 𝜕F
𝜕s (xt+1, st , 𝜃) · Gt

This equation is affine.
=⇒ If G̃t is an unbiased approximation of Gt , then

𝜕F
𝜕𝜃

+ 𝜕F
𝜕s · G̃t

is an unbiased approximation of Gt+1. Use with G̃t = s̃t𝜃
⊤
t .

Problem: Even if G̃t = s̃t𝜃
⊤
t is rank-one, G̃t+1 is full-rank again.



The rank-one trick

Proposition
Let A be a k × l matrix,

Let 𝜈 ∈ Rl be a column vector of random ±1 signs. Let
Then (A 𝜈) 𝜈⊤ is an unbiased, rank-one estimate of A:

E (A 𝜈) 𝜈⊤ = A

Proof: E 𝜈 𝜈⊤ = I.

Corollary: UORO is unbiased, Es̃t𝜃
⊤
t = Gt .



The rank-one trick

Proposition
Let A be a k × l matrix,
Let 𝜈 ∈ Rl be a column vector of random ±1 signs. Let

Then (A 𝜈) 𝜈⊤ is an unbiased, rank-one estimate of A:

E (A 𝜈) 𝜈⊤ = A

Proof: E 𝜈 𝜈⊤ = I.

Corollary: UORO is unbiased, Es̃t𝜃
⊤
t = Gt .



The rank-one trick

Proposition
Let A be a k × l matrix,
Let 𝜈 ∈ Rl be a column vector of random ±1 signs. Let
Then (A 𝜈) 𝜈⊤ is an unbiased, rank-one estimate of A:

E (A 𝜈) 𝜈⊤ = A

Proof: E 𝜈 𝜈⊤ = I.

Corollary: UORO is unbiased, Es̃t𝜃
⊤
t = Gt .



The rank-one trick

Proposition
Let A be a k × l matrix,
Let 𝜈 ∈ Rl be a column vector of random ±1 signs. Let
Then (A 𝜈) 𝜈⊤ is an unbiased, rank-one estimate of A:

E (A 𝜈) 𝜈⊤ = A

Proof: E 𝜈 𝜈⊤ = I.

Corollary: UORO is unbiased, Es̃t𝜃
⊤
t = Gt .



UORO in equations
Consider a recurrent model st+1 = F (xt+1, st , 𝜃).

Maintain at each step a vector s̃t ∈ Rdim s and 𝜃t ∈ Rdim 𝜃 with:

𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(𝜕F
𝜕𝜃

)⊤𝜈

s̃t+1 = 𝜌0
𝜕F
𝜕s s̃t + 𝜌1 𝜈

where 𝜈 ∈ Rdim s is a vector of random ±1 signs, and
𝜌0 :=

√︂⃦⃦⃦
𝜃t

⃦⃦⃦
/ ‖𝜕F/𝜕s s̃t‖ and 𝜌1 :=

√︁
‖(𝜕F/𝜕𝜃)⊤𝜈‖ / ‖𝜈‖.

Then 𝜃 ← 𝜃 − 𝛼
𝜕ℓt
𝜕st
· s̃t · 𝜃⊤

t −
𝜕ℓt
𝜕𝜃

⃒⃒⃒
st

is an unbiased gradient
descent on 𝜃.

(Unbiased: E = 𝜃 − 𝛼 𝜕loss/𝜕𝜃.)

For RNNs, LSTMs, GRUs: same computational cost as running the
RNN itself.



UORO in equations
Consider a recurrent model st+1 = F (xt+1, st , 𝜃).

Maintain at each step a vector s̃t ∈ Rdim s and 𝜃t ∈ Rdim 𝜃 with:

𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(𝜕F
𝜕𝜃

)⊤𝜈

s̃t+1 = 𝜌0
𝜕F
𝜕s s̃t + 𝜌1 𝜈

where 𝜈 ∈ Rdim s is a vector of random ±1 signs, and
𝜌0 :=

√︂⃦⃦⃦
𝜃t

⃦⃦⃦
/ ‖𝜕F/𝜕s s̃t‖ and 𝜌1 :=

√︁
‖(𝜕F/𝜕𝜃)⊤𝜈‖ / ‖𝜈‖.

Then 𝜃 ← 𝜃 − 𝛼
𝜕ℓt
𝜕st
· s̃t · 𝜃⊤

t −
𝜕ℓt
𝜕𝜃

⃒⃒⃒
st

is an unbiased gradient
descent on 𝜃.

(Unbiased: E = 𝜃 − 𝛼 𝜕loss/𝜕𝜃.)

For RNNs, LSTMs, GRUs: same computational cost as running the
RNN itself.



UORO in equations
Consider a recurrent model st+1 = F (xt+1, st , 𝜃).

Maintain at each step a vector s̃t ∈ Rdim s and 𝜃t ∈ Rdim 𝜃 with:

𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(𝜕F
𝜕𝜃

)⊤𝜈

s̃t+1 = 𝜌0
𝜕F
𝜕s s̃t + 𝜌1 𝜈

where 𝜈 ∈ Rdim s is a vector of random ±1 signs, and
𝜌0 :=

√︂⃦⃦⃦
𝜃t

⃦⃦⃦
/ ‖𝜕F/𝜕s s̃t‖ and 𝜌1 :=

√︁
‖(𝜕F/𝜕𝜃)⊤𝜈‖ / ‖𝜈‖.

Then 𝜃 ← 𝜃 − 𝛼
𝜕ℓt
𝜕st
· s̃t · 𝜃⊤

t −
𝜕ℓt
𝜕𝜃

⃒⃒⃒
st

is an unbiased gradient
descent on 𝜃.

(Unbiased: E = 𝜃 − 𝛼 𝜕loss/𝜕𝜃.)

For RNNs, LSTMs, GRUs: same computational cost as running the
RNN itself.



UORO in equations
Consider a recurrent model st+1 = F (xt+1, st , 𝜃).

Maintain at each step a vector s̃t ∈ Rdim s and 𝜃t ∈ Rdim 𝜃 with:

𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(𝜕F
𝜕𝜃

)⊤𝜈

s̃t+1 = 𝜌0
𝜕F
𝜕s s̃t + 𝜌1 𝜈

where 𝜈 ∈ Rdim s is a vector of random ±1 signs,

and
𝜌0 :=

√︂⃦⃦⃦
𝜃t

⃦⃦⃦
/ ‖𝜕F/𝜕s s̃t‖ and 𝜌1 :=

√︁
‖(𝜕F/𝜕𝜃)⊤𝜈‖ / ‖𝜈‖.

Then 𝜃 ← 𝜃 − 𝛼
𝜕ℓt
𝜕st
· s̃t · 𝜃⊤

t −
𝜕ℓt
𝜕𝜃

⃒⃒⃒
st

is an unbiased gradient
descent on 𝜃.

(Unbiased: E = 𝜃 − 𝛼 𝜕loss/𝜕𝜃.)

For RNNs, LSTMs, GRUs: same computational cost as running the
RNN itself.



UORO in equations
Consider a recurrent model st+1 = F (xt+1, st , 𝜃).

Maintain at each step a vector s̃t ∈ Rdim s and 𝜃t ∈ Rdim 𝜃 with:

𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(𝜕F
𝜕𝜃

)⊤𝜈

s̃t+1 = 𝜌0
𝜕F
𝜕s s̃t + 𝜌1 𝜈

where 𝜈 ∈ Rdim s is a vector of random ±1 signs, and
𝜌0 :=

√︂⃦⃦⃦
𝜃t

⃦⃦⃦
/ ‖𝜕F/𝜕s s̃t‖ and 𝜌1 :=

√︁
‖(𝜕F/𝜕𝜃)⊤𝜈‖ / ‖𝜈‖.

Then 𝜃 ← 𝜃 − 𝛼
𝜕ℓt
𝜕st
· s̃t · 𝜃⊤

t −
𝜕ℓt
𝜕𝜃

⃒⃒⃒
st

is an unbiased gradient
descent on 𝜃.

(Unbiased: E = 𝜃 − 𝛼 𝜕loss/𝜕𝜃.)

For RNNs, LSTMs, GRUs: same computational cost as running the
RNN itself.



UORO in equations
Consider a recurrent model st+1 = F (xt+1, st , 𝜃).

Maintain at each step a vector s̃t ∈ Rdim s and 𝜃t ∈ Rdim 𝜃 with:

𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(𝜕F
𝜕𝜃

)⊤𝜈

s̃t+1 = 𝜌0
𝜕F
𝜕s s̃t + 𝜌1 𝜈

where 𝜈 ∈ Rdim s is a vector of random ±1 signs, and
𝜌0 :=

√︂⃦⃦⃦
𝜃t

⃦⃦⃦
/ ‖𝜕F/𝜕s s̃t‖ and 𝜌1 :=

√︁
‖(𝜕F/𝜕𝜃)⊤𝜈‖ / ‖𝜈‖.

Then 𝜃 ← 𝜃 − 𝛼
𝜕ℓt
𝜕st
· s̃t · 𝜃⊤

t −
𝜕ℓt
𝜕𝜃

⃒⃒⃒
st

is an unbiased gradient
descent on 𝜃.

(Unbiased: E = 𝜃 − 𝛼 𝜕loss/𝜕𝜃.)

For RNNs, LSTMs, GRUs: same computational cost as running the
RNN itself.



UORO graphically

xt+1

st

st+1

𝜃

F



UORO graphically

I Backpropagate the loss.

xt+1

st

st+1

𝜃

F

𝜕lt+1/𝜕s

𝜕lt+1/𝜕st

𝜕lt+1
𝜕𝜃

⃒⃒⃒
st

Gradient estimate: g̃t+1 =
(︁

𝜕lt+1
𝜕st
· s̃t

)︁
𝜃⊤

t + 𝜕lt+1
𝜕𝜃

⃒⃒⃒
st



UORO graphically

I Backpropagate the loss.
I Forward differentiate s̃t (left multiplication by Jacobian).

xt+1

st

st+1

𝜃

Fs̃t

ŝt+1



UORO graphically

I Backpropagate the loss.
I Forward differentiate s̃t (left multiplication by Jacobian).
I Backpropagate random signs.

xt+1

st

st+1

𝜃

F

𝜈

(𝜕F/𝜕𝜃)⊤𝜈



Aggregation

I g̃t+1 = 𝜕lt+1
𝜕st
· s̃t + 𝜕lt+1

𝜕𝜃

⃒⃒⃒
st

I s̃t+1 = 𝜌0 ŝt+1 + 𝜌1 𝜈

I 𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(︁
𝜕F
𝜕𝜃

)︁
⊤𝜈



Aggregation

I g̃t+1 = 𝜕lt+1
𝜕st
· s̃t + 𝜕lt+1

𝜕𝜃

⃒⃒⃒
st

I s̃t+1 = 𝜌0 ŝt+1 + 𝜌1 𝜈

I 𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(︁
𝜕F
𝜕𝜃

)︁
⊤𝜈



Aggregation

I g̃t+1 = 𝜕lt+1
𝜕st
· s̃t + 𝜕lt+1

𝜕𝜃

⃒⃒⃒
st

I s̃t+1 = 𝜌0 ŝt+1 + 𝜌1 𝜈

I 𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(︁
𝜕F
𝜕𝜃

)︁
⊤𝜈



Aggregation

I g̃t+1 = 𝜕lt+1
𝜕st
· s̃t + 𝜕lt+1

𝜕𝜃

⃒⃒⃒
st

I s̃t+1 = 𝜌0 ŝt+1 + 𝜌1 𝜈

I 𝜃t+1 = 1
𝜌0

𝜃t + 1
𝜌1

(︁
𝜕F
𝜕𝜃

)︁
⊤𝜈



UORO: Results

I Datasets:
I influence balancing
I distant brackets
I anbn problem for long dependencies

I Model: LSTMs or GRUs, log-loss over probabilistic prediction
of next character for character predictions.

I Baselines: Comparision with Truncated backpropagation
through time



UORO: Results

I Datasets:
I influence balancing
I distant brackets
I anbn problem for long dependencies

I Model: LSTMs or GRUs, log-loss over probabilistic prediction
of next character for character predictions.

I Baselines: Comparision with Truncated backpropagation
through time



UORO: Results

I Datasets:
I influence balancing
I distant brackets
I anbn problem for long dependencies

I Model: LSTMs or GRUs, log-loss over probabilistic prediction
of next character for character predictions.

I Baselines: Comparision with Truncated backpropagation
through time



Influence balancing

I Linear model.
I Learn a parameter that has a positive influence in the short

term, but a negative influence in the long go.

I UORO succeeds in balancing dependencies correctly.
I TBPTT fails even when truncation is far above the inherent

time range of the model.



Influence balancing

I Linear model.
I Learn a parameter that has a positive influence in the short

term, but a negative influence in the long go.
I UORO succeeds in balancing dependencies correctly.
I TBPTT fails even when truncation is far above the inherent

time range of the model.



Influence balancing, positive influence on 10 steps, negative
influence on the 13 next steps.

1× 10−12

1× 10−10

1× 10−8

1× 10−6

1× 10−4

1× 10−2

1× 100

1× 102

1× 104

1× 106

0 20000 40000 60000 80000 100000

Lo
ss

Epoch

UORO
TBPTT-1

TBPTT-10
TBPTT-100
TBPTT-200



Distant brackets

Sample:

[a]lmsle[a]
[c]kopas[c]
[d]llses[d]
[l]oksse[l]

Correct prediction requires storing the first character between
bracket.



Learning curves on distant brackets

1.5

2

2.5

3

3.5

4

100 1000 10000 100000 1× 106 1× 107

Re
ce

nt
lo

ss

Epoch

UORO GRU
TBPTT-4 GRU

TBPTT-4 LSTM
UORO LSTM

Optimal
Optimal no memory



anbn

Sample:

aaaaa
bbbbb
a
b
aaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb

Correct prediction requires counting the number of a’s.



Learning curves on anbn:

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 1000 10000 100000 1× 106 1× 107

Re
ce

nt
lo

ss

Epoch

UORO GRU
UORO LSTM

TBPTT-16 GRU
TBPTT-16 LSTM

Optimal
Optimal no memory



Open problems and future work

I Convergence theorem: done for simple (linear) cases, in
progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning:

in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.

No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!



Open problems and future work
I Convergence theorem: done for simple (linear) cases, in

progress for more general cases.

I Cleverer variance reduction: noise is put "uniformly" on all
components of s̃t at each time step. Different units does not
respond similarly to noise, how to take this into account?

I How to deal with parameters that have a non-continuous
influence on the trajectory, such as probabilities to make
certain discrete choices?

I Reinforcement learning: in real physical systems, response of
the environment depends on the actions of the system.
No gradient available for this =⇒ need to rely on gradients
computed from a (learned) model of the world.

Thank you!


