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Outline 

q Particle Physics context 
q Why a Tracking challenge now ? 
q HiggsML challenge recap 
q Simulation 
q Metric 
q Conclusion 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Who are we ? 
Paolo Calafiura, Steven Farrell, Heather Gray (LBNL-Berkeley), Jean-Roch 
Vlimant (CalTech), Cécile Germain (LAL/LRI U Paris Saclay), Isabelle Guyon 
(ChaLearn, U Paris Saclay), David Rousseau, Yetkin Yilnaz (LAL Orsay U Paris 
Saclay), Vincenzo Innocente, Andreas Salzburger  (CERN), Tobias Golling, 
Moritz Kiehn, Sabrina Amrouche (U Geneva), Vava Gligorov (LPNHE-Paris), 
Mikhail Hushchyn, Andrey Ustyuzhanin (Yandex) 

q  Particle physics tracking experts from three large CERN experiments 
on the LHC ATLAS, CMS and LHCb 

q  Machine Learning scientists 
q  Some of us have organised challenges on Kaggle 

o  The Higgs Machine Learning challenge 2014 ( 
proceedings of NIPS 2014 workshop) 

o  Flavour of Physics challenge 2015 

q  We have been preparing this new challenge for 3 years… 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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LHC purpose in a nutshell 
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Proton collisions 

E=mc2 

Create heavy short-lived 
Particles (e.g. Higgs boson) 

Most decay immediately 
 
 
 
A few types (pions, electron, 
muons…) live long enough  
to be detected 

David Rousseau,   TrackML challenge,   CiML NIPS 2017 

See Kyle Cranmer keynote NIPS 2016 
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A proton collision in ATLAS detector 

David Rousseau,   TrackML challenge,   CiML NIPS 2017 
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Current situation: 20 parasitic collisions  
High Lumi-LHC : 200 parasitic collisions 

Bunch collision 

many p many p 

~15 cm 

David Rousseau,   TrackML challenge,   CiML NIPS 2017 
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Future of LHC beyond Higgs 
boson discovery 
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We’re leaving at the edge! 

173 GeV 

125 G
eV 

David Rousseau,   TrackML challenge,   CiML NIPS 2017 

This is suspicious ! 
èhint for « new physics » 

Is the universe stable ? 
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Luminous matter 

Dark matter 

Dark matter 

Scale   
~10-17 m 

Scale  ~1022 m 

David Rousseau,   TrackML challenge,   CiML NIPS 2017 

How ? 
èHL-LHC, increase LHC 
Luminosity by 10 in 2025 

The two infinite (Pascal, Newton,…) 

Gravitational lensing 



Particle Tracking at LHC 
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LHC tracking… 
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…fascinates ML scientists 
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Current situation 

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23

6 m 
2 

m
 

Point precision ~5 µm to 3mm 

100k points   10k tracks / event 

10-100 billion events/year 
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Pile-up 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Tracking crisis 
q  Tracking (in particular pattern recognition) 

dominates reconstruction CPU time at LHC  
q  High Luminosity-LHC  perspective : 

increased rate of parasitic collisions from 
40 (2017) to 200 

q  CPU time of current software quadratic/
exponential extrapolation (difficult to 
quote any number)  

q  (current software give sufficiently good 
results in terms of accuracy, but x10 too 
slow) 

q  Distant future FCC-hh would reach 1000 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23

25 40 70 140 
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Motivation 
q  LHC experiments future computing budget flat (at best) (LHC experiments 

use 300.000 CPU cores on the LHC world wide computing grid) 
q  Installed CPU power per $==€==CHF expected increase factor <10 in 

2025 
q  Experiments plan on increase of amount of data recorded (by a factor ~10) 
q  èHighLumi reconstruction to be as fast as current reconstruction despite 

factor 10 in complexity 
q  èrequires very significant software CPU improvement, factor ~10 
q  Large effort to optimise current software and tackle micro and macro 

parallelism 
o  Also development of dedicated hardware for fast tracking 

q  >20 years of LHC tracking development. Everything has been tried! 
o  Maybe yes, but maybe algorithm slower at low lumi but with a better scaling 

have been dismissed ? 
o  Maybe no, brand new ideas from ML  

q  Need to engage a wide community to tackle this problem 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 



Particle Tracking algorithms 
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Current Algorithms 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

z 

r 

q  Pattern : connect 3D points into tracks 
q  Essentially combinatorial approach 
q  Tracks are (not perfect) helices pointing (approximately) to the origin 
q  Challenge : explore completely new approaches 
q  (not part of the challenge : given the points, estimate the track 

parameters)  
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Hough transform: principle 
q Toy : 2D, track coming from originè2 parameters phi, 

rho0 (radius of curvature) 
q   Find an excess in image plane 
q ègo back to real plane 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Hough Transform: toy 1 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q 6 particles, no hit smearing 
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Hough Transform : toy 2 

q 6 particles, with hit smearing 
 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Hough Transform: final comments 

q Mapping x,y,z to 5 helix parameters 
q ègeneralised Hough Transform 
q èexcess to be found in 5D image space  
q Difficult to take into account point measurement 

anisotropy 
q Multiple scattering broadens the possible 

trajectory 
q èexcess in image space is blurred 
q èhigh multiplicityèconfusion 
q However : linear time at first order 
q Approach still promising 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Kalman filter 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q  initially developed by I. Kalman to track 
missiles (for HEP pioneered by Billoir and 
R. Fruehwirth) 

q  performs a progressive way of least 
square 
estimation equivalent to a χ2 fit (if run 
with a smoother) 

q  start with transport of track parameters 
(and covariances) to measurement 
surface, 
create predicted parameters (“predicted 
state”) 

q  combine/update predicted parameters 
with 
measurement to updated parameters 
(“filtered state”) 

q  Also used for local pattern recognition 
(outlier) 

q  Computation intensive 
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Pattern recognition in ML 
q  Pattern recognition, tracking, is a very old, very hot topic in Artificial 

Intelligence : examplesè 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q  Note that these are real-time applications, 
with CPU constraints 

q  Worry about efficiency, “track swap”,… 
q  But no on-the-shelf algorithm will solve our 

problem 
q  (in fact a few lines calling DBScan in sk-

learn does find some tracks)  

http://papers.nips.cc/paper/5572-a-complete-variational-tracker.pdf 

 

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23
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An early attempt 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q  1987 very first Particle Physics Machine Learning  paper 
known 

q  Losely inspired from Traveling Salesman Problem with NN by 
Hopfield & Tank Biological Cybernetics 52 (1985) 141. or with Minimal 
Tree Span Cassel & Kowalski Nucl Inst; and Meth 185 (1981) 235 

q  (large litterature since, e.g. Neural Combinatorial 
Optimization with reinforcement learning, Bello et al Google 
Brain 1611.0994)  

q  Full implementation in ALEPH Stimpfl & Garrido (1990) 
Computer Physics Comm. 64 (1991) 46. 

q  However never deployed 

ALEPH 
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arXiv 1604.01444 Aurisano et al 
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A recent attempt : NOVA 

Used in published results 
No attempt to identify separate tracks 
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TrackML Ramp 
q  A simplified tracking challenge setup on RAMP (Center for Data Science Paris-Saclay 

platform,  Balazs Kégl) 
q  A (non completely trivial) 2D simulation with ~10 tracks instead of 3D/10.000 tracks 
q  Run as a 40 hours hackathon during  CTDWIT 6-9th March 2017 LAL-Orsay    
q  Allowed to validate robustness a scoring variable and show richness of possible 

algorithms: combinatorial (HEP baseline), conformal mapping, MCTS, LSTM (See also 
S. Farrell et al paper accepted by NIPS 2017 “Deep Learning for Physical Science” 
workshop) 

q  Published in proceedings EPJ Web Conf., 150 (2017) 00015 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Convolution NN 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
Figure 1. A possible interpretation of convolutional neural networks applied to 2D tracking data.

attention mechanisms [16–18], giving the models the capability to focus on particular parts of the
input or intermediate feature representations to produce a desired output.

Such rich learned representations have also proven highly beneficial for tracking-based problems
in non-HEP applications, such as sports analytics and computational neuro-science. For instance,
[19] uses attention-based LSTMs to learn hierarchical models of basketball player behavior from
tracking data, while [20] applies recurrent neural networks to generate realistic fruit-fly behavior and
handwriting.

4 Datasets

Simple toy datasets were used to study and demonstrate the ideas discussed in this paper. The "detec-
tors" are made of perfect pixel planes in 2D or 3D. Tracks are sampled from straight lines contained
within the detector volume, and binary hits are recorded in each intercepting discrete pixel on each
layer. No trajectory curvature, material effects, or detector inefficiencies are modeled. These toy
datasets are highly simplistic compared to real tracking detector data, which means that quantitative
results are likely not indicative of algorithm performance in realistic scenarios. Nonetheless, this sim-
ple toy data provides a useful environment to test out various models. Figure 2 shows example 2D
data generated with tracks as well as uniform noise. Figure 3 shows an example 3D event.

For the experiments described in section 5, the following data configurations were used. 2D toy
experiments used one million 2D events with 50 detector layers of 50 pixels each, one signal track,
and five background tracks for training. The 3D toy experiments used a detector with 10 layers and
50 × 50 pixels in each layer. Events were generated with a random number of background tracks
sampled from a Poisson distribution with mean values varied from 1 to 100. At each point, five
million events were generated for training and one hundred thousand events for testing.

5 Track finding with LSTMs and CNNs

The goal of this line of study is to identify models which can do the assignment of pixel hits to a track
candidate by extrapolating from a partial track (a seed) through detector layers. When considering a
single track at a time, the problem can be formulated as one of multi-class classification. The pixels in
one detector layer make up the possible "classes", and the model must identify which one is traversed
by the target track candidate. Modeling of track dynamics can be handled by LSTMs or CNNs.

A basic LSTM model for 2D track finding is shown in figure 4. This model consists of an LSTM
layer which reads the input pixel arrays and a single fully-connected layer which is applied separately
to each LSTM output to produce the pixel predictions for the same detector layer. The seed is specified

    
 

DOI: 10.1051/, 00003 (2017) 715001EPJ Web of Conferences 50 epjconf/201 0003

4

Connecting The Dots/Intelligent Trackers 2017

See: 
Farrel S. et al, The HEP.TrkX Project: deep neural networks 
for HL-LHC online and offline tracking, EPJ Web of 
Conferences 150, 00003 (2017)  



32 

RNN 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

See: 
Farrel S. et al, The HEP.TrkX Project: deep neural networks 
for HL-LHC online and offline tracking, EPJ Web of 
Conferences 150, 00003 (2017)  

Long Short Term Memory (LSTM) 



2014 HiggsML challenge recap 
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HiggsML in a nutshell 
q (see JMLR proceedings http://proceedings.mlr.press/v42/cowa14.html) 
q ATLAS Htautau MC analysis ntuple released 
q Competition on kaggle to optimise Higgs selection : 

https://higgsml.lal.in2p3.fr  
q 1785 teams (1942 people) have participated 

(participation=submission of at least one solution) 
o  (6517 people have downloaded the data) 
o  èmost popular challenge on the Kaggle platform (until spring 

2015) 
o  35772 solutions uploaded 

q 136 forum topics with 1100 posts  

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 



35 

What data did we release ? 
q  From ATLAS full sim Geant4 MC12 production 
q  30 variables  
q  Signal is Hètautau, Background a mixture of : Z, top, W 
q  Based on November 2013 ATLAS Htautau conf note ATLAS-

CONF-2013-108  
q  Preselection for lep-had topology : single lepton trigger, one lepton 

identified, one hadronic tau identified 
q  è800.000 events (all that was available): 

o  250.000 training data set 
o  550.000 test data set without label and weight 

q  Reproduces reasonably well (~20%) content of 3 highest sensitivity 
bins (x 2 categories) in conf note 

q  (some background and many correction factors deliberately omitted 
so that the sample cannot be used for physics, only for machine 
learning studies) 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Dataset 
Permanently available and usable by anyone (also 

non ATLAS) on CERN Open Data: 
http://opendata.cern.ch/collection/ATLAS-Higgs-Challenge-2014 

ASCII csv file, with mixture of Higgs to tautau 
(lephad) signal and corresponding backgrounds, 
from official GEANT4 ATLAS simulation  

Weight and signal/background (for training dataset 
only)  

weight (fully normalised) 
label : « s » or « b » 
Conf note variables used for categorization or BDT: 
 DER_mass_MMC  
 DER_mass_transverse_met_lep  
 DER_mass_vis  
 DER_pt_h  
 DER_deltaeta_jet_jet  
 DER_mass_jet_jet  
 DER_prodeta_jet_jet  
 DER_deltar_tau_lep  
 DER_pt_tot  
 DER_sum_pt  
 DER_pt_ratio_lep_tau  
 DER_met_phi_centrality  
 DER_lep_eta_centrality 
 

 Primitive 3-vectors allowing to compute the conf 
note variables (mass neglected),  

16 independent variables: 
 PRI_tau_pt  
 PRI_tau_eta  
 PRI_tau_phi  
 PRI_lep_pt  
 PRI_lep_eta  
 PRI_lep_phi  
 PRI_met  
 PRI_met_phi  
 PRI_met_sumet  
 PRI_jet_num (0,1,2,3, capped at 3) 
 PRI_jet_leading_pt  
 PRI_jet_leading_eta  
 PRI_jet_leading_phi  
 PRI_jet_subleading_pt  
 PRI_jet_subleading_eta  
 PRI_jet_subleading_phi  
 PRI_jet_all_pt  

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Real life  vs  challenge 
1.  Systematics (and data vs MC) 
2.  2 categories x n BDT score bins 

3.  Background estimated from data 
(embedded, anti tau, control 
region) and some MC 

4.  Weights include all corrections. 
Some negative weights (tt) 

5.  Potentially use any information 
from all 2012 data and MC 
events 

6.  Few variables fed in two BDT 

7.  Significance from complete fit 
with NP etc… 

8.  MVA with TMVA BDT 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

1.  No systematics 
2.  No categories, one signal 

region 
3.  Straight use of ATLAS G4 MC  
4.  Weights only include 

normalisation and pythia 
weight. Neg. weight events 
rejected. 

5.  Only use variables and events 
preselected by the real analysis 

6.  All BDT variables + 
categorisation variables + 
primitives 3-vector 

7.  Significance from “regularised 
Asimov” 

8.  MVA “no-limit” 

Simpler, but not too simple! 
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Final leaderboard 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

7000$ 
4000$ 
2000$ 

HEP meets ML award 
XGBoost authors 
Free trip to CERN 

TMVA expert, with TMVA 
improvements 

Best physicist 

« deep » learning 

BDT ensemble 
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From domain to challenge and back 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

Problem 

Solution 

Domain e.g. HEP 

Domain 
experts 
solve 
the domain 
problem 

Challenge 

Solution 

The 
crowd 
solves 
the 
challenge 
problem 

Problem simplify 

Challenge 
organisation 

reimport 



The tracking challenge 
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In a nutshell 
q  Accurate simulation engine (ACTS https://gitlab.cern.ch/acts/acts-

core) to produce realistic events 
o  One file with list of 3D points  
o  Ground truth : one file with point to particle association 
o  Ground truth auxiliary : true particle parameter (origin, direction, 

curvature) 
o  Typical events with ~200 parasitic collisions (~10.000 tracks/event) 

q  Large training sample 100k events, 10 billion tracks ~100GByte 
q  Participants are given the test sample (with usual split for public and 

private leaderboard) and run the evaluation to find the tracks 
q  They should upload the tracks they have found 

o  A track is a list of 3D points 
o  (do not consider estimation of particle parameter) 
o  Score : fraction of points correctly grouped together 
o  Evaluation on test sample with per-mille precision on 100 event 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Detector layout 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Pixels 

q  Typical setup of a LHC tracking detector (only cylinders and disks however) 
q  embedded in a magnetic field for particle bending (momentum 

measurement), hermetic coverage, highly efficient, radiation tolerant. 
q  Details :  

o  4 cylinders, 7x2 disks : pixels 50 µm x 50µm, analog clustering :  σ ~ 6 µm x 30 µm  
o  4 cylinders, 6x2 disks : short strips 80 µm x 1.2 mm, digital clusters : σ ~ 16 µm x 250 µm  
o  2 cylinder, 6x2 disks : long strips 120 µm x 10.8 mm, digital clusters: σ ~ 25 µm x 3.1mm 

q  (note the measurement anisotropy) 

CMS 
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         Detector : layout  

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Some details on simulation 
q  Particles bent by quasi-solenoidal magnetic fieldèquasi-helicoidal 

trajectories 
q  Deterministic trajectory except for multiple scattering 

David Rousseau,   TrackML challenge,   CiML NIPS 2017 
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100 times 

Exagerated Multiple Scattering 
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Event simulation 
q  Typical LHC event simulated 

o  Pythia tt-bar event  
o  Overlaid with Poisson(200) Pythia minimum bias 
o  ~10’000 tracks 

q  Most tracks are coming from a central region: gaussian σz=5.5 cm, transverse 
σ=15µm, some from a larger cylinder 

q  15% of random hits 
q  Trajectories are deterministic, except for Multiple Scattering, Energy Loss and 

hadronic interaction 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Datasets 
q Hit file                 (measured position mm)                  (pixel location and charge) 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q Truth file          ( true position mm          particle momentum GeV  )                  
(pixel location and charge)        
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Datasets 
q Particle file      origin vertex (mm)                 momentum (GeV)             charge 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q (static)Detector file    center position (mm)               3x3 rotation matrix 

(note : we do not ask participant to reconstruct these track parameters but 
these could be useful latent variables) 
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Score 
q  2017 CMS tracker Technical Design Report : Chapter 6 expected 

performance 31 pages 58 figures 
q  ATLAS Si strip Technical Design Report Chapter 4 ITk Performance 

and Physics Benchmark Studies  54 pages 80 figures 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Track evaluation 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Hit weighting 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

q Define  : weight=weightorder x weightpt 

q  Weightorder: more emphasis on first and last hits 
q  Weightpt: more emphasis on high pT tracks 
q  Weight=0 for noise hits or hits from particle with <=3 hits 
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Track scoring 
q Overall scoring defined at hit level 
q Loop on reco tracks 

o  Require >50% of hits from same true particle 
o  Require >50% of hits from this true particle in this reco track 
o  At this point 1ó1 relationship between true and reco tracks 
o  Sum the weights of the intersection (hits belonging both to true 

and reco track) 

q Event score normalised to the sum of weights of all the 
hits 
o  è ideal algorithm has score==1. 

q Final score averaged of 100 eventsèstatistical precision 
~0.1% 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 



54 

Attempt with 2 simple algs 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Real life  vs  challenge 
1.  Wide type of physics events 
2.  Full detailed Geant 4 / data 

3.  Detailed dead matter description 
4.  Complex geometry (tilted 

modules, double layers, 
misalignments…) 

5.  Hit merging 
6.  Allow shared hits 
7.  Output is hit clustering, track 

parameter and covariance matrix 
8.  Multiple metrics (see TDR’s) 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 

1.  One event type (ttbar) 
2.  ACTS (MS, energy loss, 

hadronic interaction, solenoidal 
magnetic field, inefficiency) 

3.  Cylinders and slabs 
4.  Simple, ideal, geometry 

(cylinders and disks) 

5.  No hit merging 
6.  Disallow shared hits 
7.  Output is hit clustering 
8.  Single number metrics 

Simpler, but not too simple! 
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Challenge phases 
q  We have decided to run in two phases  

o  Accuracy Phase : focus only on accuracy, no CPU incentive 
§  Goal is to expose innovative algorithms 
§  Training time unlimited 
§  Evaluation time unlimited 
§  To run on Kaggle May-August 2018 

o  Throughput Phase: focus on CPU, preserving accuracy 
§  Goal is to expose the fastest algorithms 
§  Training time (still) unlimited 
§  Require the challenge platform to run the algorithm evaluation within fully reproducible 

controlled environment (VM with x86 processor with 2GB memory, but do not exclude 
a GPU track in addition) 

§  To run in July-October 2018 

q  Prizes : 
o  From leaderboards of both phases 
o  From jury examining the algorithms: what are the more likely to be beneficial to HEP ? 

Invitation to NIPS workshop (if confirmed) and to CERN workshop 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Events 
q Challenge Schedules 

o  May to August Run challenge Accuracy phase 
o  July to October : Run challenge Throughput phase 

q Conference/workshops 
o  Connecting The Dots 20-22nd March 2018 Seattle hackathon 
o  July 2018 : Accuracy Phase accepted as an official competition 

for the IEEE World Congress on Computational Intelligence at 
Rio de Janeiro 

o  July 2018 : (submitted) as a talk at CHEP Sofia and ICHEP Seoul 
o  December 2018 : Throughput Phase as a NIPS 2018 competition 

and possibly workshop 
o  Spring 2019 : grand finale workshop at CERN with prize delivery 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 
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Conclusion 
q  Setting up TrackML : a particle tracking challenge 
q  Goal is to involve ML community in overhauling core algorithms of CERN 

LHC experiments. 
o  Looking for new approaches rather than hyper-optimised (HEP) approaches 

q  Very large training dataset ~100GB  
o  Will be released (CERN Open Data portal most likely) after the challenge 

q  Wealth of possible ML techniques (NN, CNN, RNN, Reinforcement learning, 
clustering techniques, MCTS…) ... which makes it all the more interesting 

q  Separate Accuracy phase (most accurate algorithm) and Throughput phase 
(fastest algorithm to reach similar accuracy)  

q  Sponsorship more or less OK for Accuracy Phase, still looking for ~40k€ for 
Throughput phase 

q  Contact : trackml.contact@gmail.com 
q  More details, news, etc… : https://sites.google.com/site/trackmlparticle/ , 

twitter @trackmllhc 
q  We’ve beeing accepted as a NIPS 2018 competition (Throughput phase) 

David Rousseau,   LRI-Orsay Seminar, 13th March 2018 


