Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein¹, Eric Weiss², Niru Maheswaranathan³, Surya Ganguli³

¹ Google Brain, ² UC Berkeley, ³ Stanford University

Niru

Surya

Eric

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Jascha Sohl-Dickstein

• Unknown features/labels

- Unknown features/labels
 - Novel modalities

- Unknown features/labels
 - Novel modalities

[Trans Biomed Eng, 2015]

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

7 exemplar multiunits responding to 40 repeated trials of natural video in cat V1

[PLoS Comp Bio 2014] [Neuron 2013]

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

[SPIE 2009] [Med Phys 2014]

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels
- Unpredictable tasks / one shot learning

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
 - Destroy structure in data
 - Carefully characterize the destruction
 - Learn how to reverse time
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Jascha Sohl-Dickstein

 Dye density represents probability density

- Dye density represents probability density
- Goal: Learn structure of probability density

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys structure

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys structure

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys structure

Data distribution

Jascha Sohl-Dickstein

Uniform distribution

• What if we could reverse time?

Jascha Sohl-Dickstein

• What if we could reverse time?

Jascha Sohl-Dickstein

• What if we could reverse time?

Data distribution

Uniform distribution

Jascha Sohl-Dickstein

- What if we could reverse time?
- Recover data distribution by starting from uniform distribution and running dynamics backwards

Data distribution

Jascha Sohl-Dickstein

Diffusion Probabilistic Models

Uniform distribution

- What if we could reverse time?
- Recover data distribution by starting from uniform distribution and running dynamics backwards

Data distribution

Jascha Sohl-Dickstein

Uniform distribution

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Jascha Sohl-Dickstein
Observation 2: Microscopic Diffusion is Time Reversible

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians
 - Both forwards and backwards in time

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Destroy all structure in data distribution using diffusion process

- Destroy all structure in data distribution using diffusion process
- Learn reversal of diffusion process
 - Estimate function for mean and covariance of each step in the reverse diffusion process (binomial rate for binary data)

- Destroy all structure in data distribution using diffusion process
- Learn reversal of diffusion process
 - Estimate function for mean and covariance of each step in the reverse diffusion process (binomial rate for binary data)
- Reverse diffusion process is the model of the data

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Data distribution

$$q\left(\mathbf{x}^{(0)}\right)$$

Jascha Sohl-Dickstein

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)}; \mathbf{x}^{(t-1)}\sqrt{1-\beta_t}, \mathbf{I}\beta_t\right)$$

Jascha Sohl-Dickstein

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Decay towards origin

Jascha Sohl-Dickstein

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Decay towards origin

Add small noise

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Forward Diffusion Process on Swiss Roll

Jascha Sohl-Dickstein

Forward Diffusion Process on Swiss Roll

Jascha Sohl-Dickstein

Noise distribution

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Learned Reverse Diffusion Process on Swiss Roll

Gaussian diffusion

w/learned kernel

Jascha Sohl-Dickstein

Data

dist.

Diffusion Probabilistic Models

Isotropic

Gaussian

Learned Reverse Diffusion Process on Swiss Roll

Gaussian diffusion

w/learned kernel

Jascha Sohl-Dickstein

Data

dist.

Diffusion Probabilistic Models

Isotropic

Gaussian

Summary of Forward and Reverse Diffusion on Swiss Roll

Diffusion Probabilistic Models

Summary of Forward and Reverse Diffusion on Swiss Roll

Jascha Sohl-Dickstein

Summary of Forward and Reverse Diffusion on Swiss Roll

Jascha Sohl-Dickstein

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log\left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)}\right]$$

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log\left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)}\right]$$

Jensen's inequality

$$L \ge \int d\mathbf{x}^{(0\cdots T)} q\left(\mathbf{x}^{(0\cdots T)}\right) \log \left[\frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}\right]$$

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log\left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)}\right]$$

Jensen's inequality

$$L \ge \int d\mathbf{x}^{(0\cdots T)} q\left(\mathbf{x}^{(0\cdots T)}\right) \log \left[\frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}\right]$$

... algebra ...

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right. \right. \\ \left. + \operatorname{const} \right.$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL}\left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right)\right)$$

 $+ \operatorname{const}$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$\mathsf{Gaussian}$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right\rangle + \text{const}$$

$$+ \text{const}$$
Gaussian

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right\rangle + \text{const}$$

$$+ \text{const}$$

$$Gaussian$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Training

$$\underset{f_{\mu}(\mathbf{x}^{(t)},t),f_{\Sigma}(\mathbf{x}^{(t)},t)}{\operatorname{argmin}} \mathbb{E}\left[D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}\right)\Big|\Big|p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)\right]$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Training

$$\underset{f_{\mu}(\mathbf{x}^{(t)},t),f_{\Sigma}(\mathbf{x}^{(t)},t)}{\operatorname{argmin}} \mathbb{E}\left[D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}\right)\Big|\Big|p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)\right]$$

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein
Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein

Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein

Multiscale Convolution

• Single multi-scale convolutional layer:

Jascha Sohl-Dickstein

Diffusion Probabilistic Models

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Training Data

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Sample from diffusion model

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Sample from diffusion model

Jascha Sohl-Dickstein

Training Data

Jascha Sohl-Dickstein

Training Data

Jascha Sohl-Dickstein

Samples from Generative Adverserial [Goodfellow *et al*, 2014]

Training Data

Samples from DRAW [Gregor *et al*, 2015]

Jascha Sohl-Dickstein

Training Data

Jascha Sohl-Dickstein

Samples from DRAW [Gregor *et al*, 2015]

Samples from diffusion model

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

Jascha Sohl-Dickstein

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

- Required to compute posterior distributions
 - Missing data (inpainting)
 - Corrupted data (denoising)

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

- Required to compute posterior distributions
 - Missing data (inpainting)
 - Corrupted data (denoising)
- Difficult and expensive using competing techniques
 - e.g. VAEs, GSNs, NADEs, GANs, RNVP, most graphical models

Jascha Sohl-Dickstein

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

Acts as small perturbation to diffusion process

Jascha Sohl-Dickstein

Multiplying Distributions is Straightforward Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$ Acts as small perturbation to diffusion process $p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$ $\tilde{p}\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right) \approx \mathcal{N}\left(x^{(t-1)}; \mathbf{f}_{\mu}\left(\mathbf{x}^{(t)}, t\right) + \mathbf{f}_{\Sigma}\left(\mathbf{x}^{(t)}, t\right) \frac{\partial \log r\left(\mathbf{x}^{(t-1)'}\right)}{\partial \mathbf{x}^{(t-1)'}} \bigg|_{\mathbf{x}^{(t-1)'} = f_{\mu}\left(\mathbf{x}^{(t)}, t\right)}, \mathbf{f}_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Holdout Data

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Holdout Data

Corrupted (SNR = 1)

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Corrupted

(SNR = 1)

Denoised

Jascha Sohl-Dickstein

Diffusion Probabilistic Models

Image Inpainting by Sampling from Posterior

Inpainted image

True image

Jascha Sohl-Dickstein

Image Inpainting by Sampling from Posterior

Inpainted image

True image

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

• Flexible: Diffusion process for any (smooth) distribution

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
Flexible and tractable method for deep unsupervised learning

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)

Flexible and tractable method for deep unsupervised learning

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)
- Easy to multiply distributions (e.g. for posterior)

Flexible and tractable method for deep unsupervised learning

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)
- Easy to multiply distributions (e.g. for posterior)
- Bounds on entropy production

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Inverse Ising, non-equilibrium Monte Carlo, stat. mech. of neural networks

• Train energy based models

[PRL, 2011; ICML, 2011]

Diffusion Probabilistic Models

• Train energy based models

 $\hat{\theta}_{ML} = \operatorname*{argmin}_{\theta} D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} \left(\theta \right) \right)$

[PRL, 2011; ICML, 2011]

Diffusion Probabilistic Models

• Train energy based models

 $\hat{\theta}_{ML} = \operatorname*{argmin}_{\theta} D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} \left(\theta \right) \right)$

[PRL, 2011; ICML, 2011]

 $\hat{\theta}_{ML} = \operatorname{argmin} D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} \left(\theta \right) \right)$

[PRL, 2011; ICML, 2011]

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

• Train energy based model

 $\mathbf{p^{(0)}}||\mathbf{p^{(\infty)}}\left(heta
ight)
ight)$

Progression of learning

 $\theta_{ML} = \operatorname{argmin} D_{KL}$

[PRL, 2011; ICML, 2011]

Diffusion Probabilistic Models

• Train energy based model $\hat{\theta}_{ML} = \underset{\theta}{\operatorname{argmin}} D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\infty)} \left(\theta \right) \right)$

$$\hat{\theta}_{MPF} = \operatorname*{argmin}_{\theta} D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\epsilon)} \left(\theta \right) \right)$$

Progression of learning

[PRL, 2011; ICML, 2011]

Diffusion Probabilistic Models

 Train energy based model $\mathbf{p^{(0)}}||\mathbf{p^{(\infty)}}\left(heta
ight)|$ $\hat{\theta}_{MPF} = \operatorname*{argmin}_{\theta} D_{KL} \left(\mathbf{p}^{(\mathbf{0})} || \mathbf{p}^{(\epsilon)} \left(\theta \right) \right)$ $\theta_{ML} = \operatorname{argmin} D_{KL}$ Progression of learning Intermediate Probability distribution space First learning step Learning complete learning step $n^{(\infty)}(\theta)$ $p^{(\epsilon)}$ $p^{(\epsilon)}$ $(\infty)_{\ell}$ $p^{(0)}$

[PRL, 2011; ICML, 2011]

Diffusion Probabilistic Models

• More rapidly solves inverse Ising problem (estimate Ising couplings from samples)

First 60 seconds

First 800 seconds

First 25,000 seconds

[PRL, 2011; ICML, 2011]

Diffusion Probabilistic Models

• Detailed balance

[ICML, 2014]

Jascha Sohl-Dickstein

- Detailed balance
 - + Easy to sample from correct distribution (use any proposal, accept/reject with Metropolis-Hastings)

[ICML, 2014]

Jascha Sohl-Dickstein

- Detailed balance
 - + Easy to sample from correct distribution (use any proposal, accept/reject with Metropolis-Hastings)
 - Random walk behavior (by definition, go backwards exactly as often as forwards, explore distribution like sqrt(steps)).

[ICML, 2014]

Jascha Sohl-Dickstein

- Detailed balance
 - + Easy to sample from correct distribution (use any proposal, accept/reject with Metropolis-Hastings)
 - Random walk behavior (by definition, go backwards exactly as often as forwards, explore distribution like sqrt(steps)).

Random walk (slow mixing)

[ICML, 2014]

Jascha Sohl-Dickstein

- Detailed balance
 - + Easy to sample from correct distribution (use any proposal, accept/reject with Metropolis-Hastings)
 - Random walk behavior (by definition, go backwards exactly as often as forwards, explore distribution like sqrt(steps)).

Random walk (slow mixing)

Asymmetric transitions (faster)

[ICML, 2014]

Jascha Sohl-Dickstein

- Detailed balance
 - + Easy to sample from correct distribution (use any proposal, accept/reject with Metropolis-Hastings)
 - Random walk behavior (by definition, go backwards exactly as often as forwards, explore distribution like sqrt(steps)).

Goal:

 Make Hamiltonian Monte Carlo mix faster by violating detailed balance

[ICML, 2014]

Jascha Sohl-Dickstein

• HMC as operators on discrete state space

[ICML, 2014]

Jascha Sohl-Dickstein

- HMC as operators on discrete state space
- **Operators:**

[ICML, 2014]

Jascha Sohl-Dickstein

- HMC as operators on discrete state space
- **Operators:**

Jascha Sohl-Dickstein

- Greedy leapfrog
 - Try $\mathbf{L}\zeta$
 - If fail, try $\mathbf{L}^2 \zeta$ (no rejection)
 - If fail, try $\mathbf{L}^3 \zeta$...

[ICML, 2014]

Jascha Sohl-Dickstein

- Greedy leapfrog
 - Try $\mathbf{L}\zeta$
 - If fail, try $\mathbf{L}^2 \zeta$ (no rejection)
 - If fail, try $\mathbf{L}^3 \zeta$...
- Tractable, because equilibrium condition now a sum over discrete states, rather than an integral

[ICML, 2014]

Jascha Sohl-Dickstein

Improved mixing by violating detailed balance

Jascha Sohl-Dickstein

Neural network after random initialization:

$$z_i^l = \sum_j W_{ij}^l y_j^l + b^j \qquad \qquad y_i^{l+1} = \phi(z_i^l)$$
$$W_{ij}^l \sim \mathcal{N}(0, \sigma_w^2/N_{l-1}) \qquad \qquad b_i^l \sim \mathcal{N}(0, \sigma_b^2)$$

[NIPS, 2016] [ICLR, 2017]

Jascha Sohl-Dickstein

Neural network after random initialization:

$$\begin{aligned} z_i^l &= \sum_j W_{ij}^l y_j^l + b^j \qquad \qquad y_i^{l+1} = \phi(z_i^l) \\ W_{ij}^l &\sim \mathcal{N}(0, \sigma_w^2/N_{l-1}) \qquad \qquad b_i^l \sim \mathcal{N}(0, \sigma_b^2) \end{aligned}$$

Central limit theorem recurrence relation:

$$z_i^l \sim \mathcal{N}(0, q^l)$$
$$q^l = \sigma_w^2 \frac{1}{\sqrt{2\pi}} \int dz e^{-\frac{1}{2}z^2} \phi^2(\sqrt{q^{l-1}}z) + \sigma_b^2$$

Jascha Sohl-Dickstein

Diffusion Probabilistic Models

[NIPS, 2016]

[ICLR, 2017]

[NIPS, 2016] [ICLR, 2017]

Jascha Sohl-Dickstein

Phase diagram:

Di

Phase diagram:

Predict trainable depth:

 $6\xi_{c}$

Thanks!

- Unsupervised Learning using Nonequilibrium Thermodynamics
 - Eric Weiss
 - Niru Maheswaranathan
 - Surya Ganguli
- Minimum Probability Flow
 - Peter Battaglino
 - Michael R. DeWeese
- Hamiltonian Monte Carlo
 without Detailed Balance
 - Mayur Mudigonda
 - Michael R. DeWeese

- Statistical Physics of Deep Networks
 - Sam Schoenholz
 - Ben Poole
 - Jeffrey Pennington
 - Justin Gilmer
 - Surya Ganguli
 - Maithra Raghu
 - Subhaneil Lahiri

SCRAP SLIDES FROM HERE ON

Jascha Sohl-Dickstein

Setting Diffusion Rate

Erase constant fraction of stimulus variance each step

$$\beta_t = \frac{1}{T - t + 1}$$

• Can also train β_t

Jascha Sohl-Dickstein

Deep Network Architecture for Diffusion

Jascha Sohl-Dickstein

Deep Network Architecture for Diffusion

Jascha Sohl-Dickstein
Image Inpainting by Sampling from Posterior

• Training data [Lazebnik et al, 2005]

Jascha Sohl-Dickstein

Diffusion Probabilistic Model Applied to MNLST

Model	Log likelihood estimate*
Stacked CAE	121 ± 1.6 bits
DBN	138 ± 2 bits
Deep GSN	214 ± 1.1 bits
Diffusion	220 ± 1.9 bits
Adversarial net	225 ± 2 bits

* via Parzen window code from [Goodfellow *et al*, 2014] Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Continuous time formulation

- Continuous time formulation
- Perturbation around energy based model

- Continuous time formulation
- Perturbation around energy based model
- Binary data (e.g. spike trains)

Jascha Sohl-Dickstein

Outline

- Other projects: Training energy based models, Monte Carlo, deep learning theory
- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results

Toy Binary Sequence Learning

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors

Jascha Sohl-Dickstein

• Optimization: Combining SGD and quasi-Newton optimization (SFO optimizer) [IСML 2014]

Diffusion Probabilistic Models

• Optimization: Combining SGD and quasi-Newton optimization (SFO optimizer) [IСML 2014]

Jascha Sohl-Dickstein

• Sampling and evaluation: Hamiltonian Monte Carlo without detailed balance [ICML 2014] and for log likelihood evaluation [Tech Report 2012], fast sampling for natural image models [NIPS 2012]

Jascha Sohl-Dickstein

• Training energy-based models: Minimum Probability Flow learning [ICML 2011] [PRL 2011]

• Model design: capturing dynamics with Lie groups [Under Revision at NECO], bilinear generative models [ICCV 2011]

Horizontal Translation

 Properties of deep networks: Characterization in function space

2d slice through function space for 2-layer network

Jascha Sohl-Dickstein

• Online education data

Jascha Sohl-Dickstein

• Medical imaging data [SPIE 2009] [Med Phys 2014]

A. Projection Mammograms

Jascha Sohl-Dickstein

• Neuroscience ele [Neuron 2013]

ata: [PLoS Comp Bio 2014]

a) Stimulus frames

b) Example data, 2s of data in 20ms bins

 Human ultrasonic echolocation: Blind assistive device [ТВМЕ 2015]

Jascha Sohl-Dickstein

• Planetary science: multispectral observations [Science 2004a] [Science 2004b]

Jascha Sohl-Dickstein

Thanks!

Collaborators

- Craig Abbey
- Peter Battaglino
- Shaowen Bao
- Matthias Bethge
- Jack Culpepper
- Liberty Hamilton
- Chris Hillar
- Alex Huth
- Kilian Koepsell
- Urs Köster
- Niru Maheswaranathan
- Mayur Mudigonda
- Ben Poole
- Lucas Theis
- Jimmy Wang
- Eric Weiss

Jascha Sohl-Dickstein

Mentors

- Surya Ganguli
- Bruno Olshausen
- Michael R.
 DeWeese
- James F. Bell III

Endless discussion

- The Redwood Center for Theoretical Neuroscience
- The Ganguli Gang

Eric

Weiss

Niru Maheswaranathan

Surya Ganguli

Differences from Variational Autoencoders

- Can analytically evaluate KL divergence between steps in forward and reverse trajectories.
- Can multiply with other distributions, and compute posteriors
- Erases structure, rather than transforming it
- Thousands of layers or time steps, rather than only a small handful
- Connections to nonequilibrium statistical mechanics

Jascha Sohl-Dickstein

Continuous Time

$$q\left(\mathbf{x}^{t}|\mathbf{x}^{0},\mathbf{x}^{t+dt}\right) = \mathcal{N}\left(\mathbf{x}^{t};\mathbf{x}^{t+dt} - \mathbf{x}^{t+dt}\frac{\exp\left(-\beta t\right)}{1 - \exp\left(-\beta t\right)}\beta dt - \frac{1}{2}\mathbf{x}^{t+dt}\beta dt + \frac{1}{2}\mathbf{x}^{0}\operatorname{csch}\left(\frac{\beta t}{2}\right)\beta dt,\beta dt\right)$$
$$p\left(\mathbf{x}^{t}|\mathbf{x}^{t+dt}\right) = \mathcal{N}\left(\mathbf{x}^{t};\mathbf{x}^{t+dt} - \mathbf{x}^{t+dt}\frac{\exp\left(-\beta t\right)}{1 - \exp\left(-\beta t\right)}\beta dt - \frac{1}{2}\mathbf{x}^{t+dt}\beta dt + \frac{1}{2}f_{0}\left(\mathbf{x}^{t+dt},t\right)\operatorname{csch}\left(\frac{\beta t}{2}\right)\beta dt,\beta dt\right)$$

$$D_{KL}\left(q\left(\mathbf{x}^{t}|\mathbf{x}^{0},\mathbf{x}^{t+dt}\right)||p\left(\mathbf{x}^{t}|\mathbf{x}^{t+dt}\right)\right) = \frac{1}{2}\frac{\Sigma_{q}}{\Sigma_{p}} + \frac{1}{2}\log\frac{\Sigma_{p}}{\Sigma_{q}} + \frac{1}{2}\frac{\left(\mu_{p}-\mu_{q}\right)^{2}}{\Sigma_{p}} - \frac{1}{2}$$
$$= \frac{1}{8}\left(f_{0}\left(\mathbf{x}^{t+dt},t\right)-\mathbf{x}^{0}\right)^{2}\operatorname{csch}^{2}\left(\frac{\beta t}{2}\right)\beta dt$$

Denoising autoencoder penalty

Diffusion Probabilistic Models

Related Methods

- Generative stochastic networks
- Variational autoencoders
- (Deep) (Recurrent) Neural Autoregressive Distribution Estimators

- Variational Bayesian(e.g. variational autoencoder)
 - Posterior over intermediate layers has analytic form > KL divergence has analytic form
 - Can multiply distributions
 - Generative model is small perturbation around inference model makes learning easier
 - Models have *thousands* of layers (or time steps)

Jascha Sohl-Dickstein