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Introduction

Software safety

The goal of software safety is to ensure that we build the program good
With respect to a given specification

Figure – Preventing bugs on critical software
Figure – A mature field active both on
academics and industry, and countless successes

Reading group: formal methods for robust deep learning
December 2018

3 / 51



Introduction

Software safety

The goal of software safety is to ensure that we build the program good
With respect to a given specification

Figure – Preventing bugs on critical software
Figure – A mature field active both on
academics and industry, and countless successes

Reading group: formal methods for robust deep learning
December 2018

3 / 51



Introduction

Deep learning software specifics

High number of variables and parameters (25 millions for ResNet-50,
some have billions)

Execution environment is unknown (ex : computer vision)
Dangerous weaknesses, not clearly understood : adversarial examples,
model theft, membership attacks
High-dimension geometric spaces are counterintuitive and makes
analysis difficult

All of those makes it difficult for us to reuse bluntly our formal methods
toolset
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Abstract interpretation Another interpretation of a program

Motivations

Complete analysis can be expensive : int i ; char p [100]; . . .; p[ i ]

Sometimes, only partial knowledge is needed :
int i ; . . .; while ( i>0); . . .
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Abstract interpretation Another interpretation of a program

Intuition

Key insight : abstract the program to produce a more easily
computationable entity

Use this abstraction to exhibit interesting properties
This is an abstract interpretation
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Abstract interpretation Another interpretation of a program

Example : modulo function sign

i n t mod( i n t A, i n t B) {
i n t Q = 0 ;
i n t R = A;
wh i l e (R >= B) {

R = R − B;
Q = Q + 1 ;

}
r e t u r n R ;

}
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Real semantic (a semantic is the set of all possible executions of a program) : A = 10, B = 3 :

〈l : a, b, q, r〉
〈1 : 10, 3〉 → 〈2 : 10, 3, 0〉 → 〈3 : 10, 3, 0, 10〉 →

〈4 : 10, 3, 0, 10〉 → 〈5 : 10, 3, 0, 7〉 → 〈6 : 10, 3, 1, 7〉 →
〈4 : 10, 3, 1, 7〉 → 〈5 : 10, 3, 1, 4〉 → 〈6 : 10, 3, 2, 4〉 →

〈4 : 10, 3, 2, 4〉 → 〈5 : 10, 3, 2, 1〉 → 〈6 : 10, 3, 3, 1〉 → 〈7 : 10, 3, 3, 1〉 →
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wh i l e (R >= B) {
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> R because R − B =# (≥ 0)− (≥ 0) = >

R ≥ B =# > ≥ (≥ 0)
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Abstract interpretation Another interpretation of a program

Example : modulo function sign

i n t mod( i n t A, i n t B) {
i n t Q = 0 ;
i n t R = A;
wh i l e (R >= B) {
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Q = Q + 1 ;
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Abstract interpretation Another interpretation of a program

What is at stake ?

Figure – Figure comes from Antoine Minet tutorial

Balance between relevant properties, computationable executions and accuracy of
abstraction
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Abstract interpretation Theoretical elements

Partial order relations
A partial order v on a set X is a relation holding :

1 reflexivity : ∀x ∈ X : x v x ;
2 anti-symetric : ∀x , y ∈ X : (x v y) ∧ (y v x)⇒ x = y ;
3 transitivity : ∀x , y , z ∈ X : (x v y) ∧ (y v z)⇒ x v z ;

Partial, means sometimes there are some x and y not sharing any order relation.

t and u are resp. lowerupperbound and greaterlowerbound of two elements of any
subset of X . If they exist, they are unique
Most relevant partial order : partial inclusion ⊆

Figure – Partial order representation : Hasse Diagram
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Abstract interpretation Theoretical elements

Lattice

A lattice is a partially ordered set X such as :
1 ∀A ⊆ X : tA exist
2 ∀A ⊆ X : uA exist
3 X as a smaller element ⊥
4 X as a greatest element >
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Abstract interpretation Theoretical elements

Fixpoints

Définition
A fixpoint for a function f is a point xfixe such as f (xfixe) = xfixe

Note that f (x) ⊆ x . A fixpoint is an execution invariant.

Théorème (Knaster-Tarski fixpoint theorem)

If X is a complete lattice and f : X → X a monotonous application, then
the ordered subset of all fixpoints of f is a non-empty complete lattice.
In particular, f has a smaller and greater fixpoint.
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Abstract interpretation Theoretical elements

Partial order and analysis

1 approximation with sound but non-comparable analysis
2 valid regarding a specification : a program semantic P respect a given

specification S if P ⊆ S

3 Sound analysis : abstract semantic is coarser than real semantic
4 Convergence : order is necessary to have convergence towards a

fixpoint
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Abstract interpretation Theoretical elements

Let’s summarize

Lattice X : set with partial order relation ⊆, a smallest element ⊥ and
a biggest element >
A fonction f is monotonous on X ⇒, fixpoints xfixe exists

X → The abstract semantic of a program
f → An evaluation on the abstract semantic
xfixe → A snapshot of all the states of a program in the abstract
semantic
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Abstract interpretation Theoretical elements

What is the frame of our lattice ?

A program state after an abstract execution

〈⊥,⊥,⊥,⊥〉

〈(> 0), (> 0),⊥,⊥〉 〈(> 0), (< 0),⊥,⊥〉

〈(> 0), (> 0), 0,⊥〉 〈(> 0), (< 0), 0,⊥〉

. . . . . . . . . . . .

Figure – Partial Hasse diagram of the modulo fonction, for the abstract semantic of signs
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Abstract interpretation Theoretical elements

Consequences

If we have a monotonous f (abstract evaluations), fixpoints (knowing
program states in the abstract semantic) exists ! And we can compute them

Goal now : “monotonous” computations.
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Abstract interpretation Theoretical elements

Definitions

Définition
Let D a domain.

an abstraction function α : P(Rd → D)

a concretization function γ : D → P(Rd)

d ∈ D is an abstraction of P(Rd), and γ(d) gives us the corresponding
values in P(Rd).

Théorème (Validity of abstract interpretation)

An abstract domain D is “sound” iff X ⊆ γ(α(X ))∀X ⊆ Rd
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Abstract interpretation Theoretical elements

Transfer functions

Let a function f : Rp → Rd ′ . An abstract transformer is a function
T#

f : D → D
′
such as f (γ(d)) ⊆ γ′(T#

f (d)) for all d ∈ D.
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Abstract interpretation Theoretical elements

An abstract domain : intervals

Let x ∈ Rd , ε ∈ Rd . [x − ε, x + ε] is an interval, also noted [a, b]. Transfer
functions :

[a, b] + [c , d ] = [a+ b, c + d ]

[a, b] ∗ [c , d ] = [a ∗ b, c ∗ d ]
[a, b] = [−b,−a]
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Abstract interpretation Theoretical elements

An example of intervals

X <− 0
wh i l e (X<40)

X <− X+1

1

2

3

4 6

5

X ← 0

X ≤ 40

X ← X + 1

X ≥ 40

l χ#0
l χ#4

l χ#5
l χ#7

l χ#8
l

1 > > > > >
2 ⊥ 0 0 0 0
3 ⊥ 0 [0,+∞] [0,+∞] [0,+∞]

4 ⊥ 0 0 [0, 39] [0, 39]
5 ⊥ 1 1 [1, 40] [1, 40]
6 ⊥ ⊥ ⊥ [40,+∞] [40,∞]

Limitations : x := [−1, 1], x − x = [−2, 2]
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Abstract interpretation Case study : DiffAI/DeepZ

Summary of work

1 build an abstraction of neural network using the abstract
interpretation framework

2 encapsulate adversarial perturbations inside abstract domains
3 build robustness properties on abstract domains and learn networks to

minimize adversarial loss

Figure – DiffAI/DeepZ control flow
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Abstract interpretation Case study : DiffAI/DeepZ

Abstract domains used

Intervals [x − ε, x + ε]

Zonotopes (polytope with a symetry center) z = (zC , zE ), zC ∈ Rd

center, zE ∈ Rd∗m linear constraints
Hybrids zonotope h = 〈hC , hB , hE 〉, hC ∈ Rd center, hB ∈ Rd

≥0
perturbations, hE ∈ Rd∗l errors coefficients
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Abstract interpretation Case study : DiffAI/DeepZ

Abstractions and concretizations

γH(h) =
{
hconc(β, e)|β ∈ [−1, 1]d , e ∈ [−1, 1]d∗m

}
,

hconc = hC + diag(hB) ∗ β + hE ∗ e

i-th total error of an hybrid zonotope h : εH(h)i = (hB)i +
∑m

j=1 |(hE )i ,j |
Interval concretization : ιH(h)i [(hC )i − εH(h)i , (hC )i + εH(h)i ]

Reading group: formal methods for robust deep learning
December 2018
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Abstract interpretation Case study : DiffAI/DeepZ

Matrix operations

For a matrix M : T#
f (h) = 〈M · hC ,M · hB ,M · hE 〉

Includes sum, scalar multiplication, convolutions. . .
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Abstract interpretation Case study : DiffAI/DeepZ

ReLu

Let a zonotope z. A zonotope z
′
= T

#(transfo)
Relui

with m
′
= m + 1 is computed : zBox If min(ι(z)) ≥ 0, ReLu has no

effect and propagated zonotope is the same (modulo dimension). Else :

(z
′
C )t = (zC )t for t 6= i

(z
′
E )t = (zE )t for t 6= i

(z
′
C )i = ReLu( 1

2 max(ι(z)i ))

(z
′
E )i,l = 0 for l ≤ m

(z
′
E )i,m+1 = ReLu( 1

2 max(ι(z)i ))

(z
′
E )j,m+1 = 0 for j ≤ i

zDiag If min(ι(z)i ) ≤ 0 ≤ max(ι(z)i ) holds, then : (z
′
C )t = (zC )t for t 6= i

(z
′
E )t = (zE )t for t 6= i

(z
′
C )i = (zC )i z

′
E )i,l

(z
′
E )i,l = zE )i,l for l ≤ m

(z
′
E )i,m+1 = − 1

2 min(ι(z)i )

(z
′
E )j,m+1 = 0 for j ≤ i

Else, zBox
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Abstract interpretation Case study : DiffAI/DeepZ

Adversarial training

Loss : L(z , y) = maxy ′ 6=y (zy ′ − zy , where z points and y labels.
Then the adversarial loss when minimized shows the π-robustness of all the
training set :

LA
N(x , y) = max

z̃∈γ(T#
N (α(π(x))))

L(z̃ , y).

Reading group: formal methods for robust deep learning
December 2018

26 / 51



Abstract interpretation Case study : DiffAI/DeepZ

Results

Epoch training time multiplied between 3 and 7. An epoch on a
baseline Resnet is 3.7s, against 12.6s with their method
Test against one attack (PGD, Madry et al.)
MNIST : 5.8% on adversarial test error, baseline 100%
CIFAR-10 : ResNet with adversarial training has a 47.8% test error,
baseline is 88%.
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Abstract interpretation Case study : DiffAI/DeepZ

Conclusion

An elegant method combining the best of the two worlds, promising results
but need to be compared against more attacks and with different metrics
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Abstract interpretation Case study : DiffAI/DeepZ

Questions ?

:)
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SMT

SMT

1 Introduction
2 Abstract interpretation

Another interpretation of a program
Theoretical elements

Structure and convergence
Abstract domains

Case study : DiffAI/DeepZ
Transfer functions

3 SMT
Automated reasoning : SAT calculus

Problem formulation
How to solve a SAT problem ?

Make the theory talk
A praxis of theories

ReLuPlex/DeepSafe/Fast-Lin
Results
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SMT Automated reasoning : SAT calculus

Boolean calculus

Two possible values : false(0) and true(1)

Rules are “good” :
associativity : A ∧ (B ∧ C) = (A ∧ B) ∧ C
commutativity (A ∧ B = B ∧ A)
idempotency (A ∧ A = A)
neutral elements : 1 for ∧ , 0 for ∨
absorbant elements : 0 for ∧ , 1 for ∨
distributivity

Some axioms
1 negation ¬
2 Morgan’s law : ¬(A ∧ B)=¬A ∨ ¬B , same idea for ∨

Reading group: formal methods for robust deep learning
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SMT Automated reasoning : SAT calculus

Boolean calculus (following)

Vocabulaire :
Litterals : elementary signs (values, variables)
Clause (or term) : litterals disjunction (a∨ b)
A unit clause iff there is only one litteral involved
Cunjonctive Normal Form : ((a∨ b)∧ (b ∨ d))

Boolean calculus is used to encode logic formulae

Reading group: formal methods for robust deep learning
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SMT Automated reasoning : SAT calculus

SAT problem

Let a formula A(x1, x2, . . . , xn), are there boolean values xi

making A true ? : SAT
Let a formula A(x1, x2, . . . , xn), is A true for all xi ? : VALID

VALID(A) is equivalent to ¬SAT(¬A)

NP-complete problem

Reading group: formal methods for robust deep learning
December 2018

33 / 51



SMT Automated reasoning : SAT calculus

SAT problem

Let a formula A(x1, x2, . . . , xn), are there boolean values xi

making A true ? : SAT
Let a formula A(x1, x2, . . . , xn), is A true for all xi ? : VALID

VALID(A) is equivalent to ¬SAT(¬A) NP-complete problem

Reading group: formal methods for robust deep learning
December 2018

33 / 51



SMT Automated reasoning : SAT calculus

Conflict Driven Clause Learning

Principle :
1 Look for a term leading the formula to UNSAT by assigning values

iteratively to variables
2 Identify the origin of conflict and learn a clause preventing it
3 Repeat until SAT, TIMEOUT or UNSAT
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SMT Automated reasoning : SAT calculus

Illustration

ϕ1 = x1 ∨ x4
ϕ2 = x1 ∨ x3 ∨ x8
ϕ3 = x1 ∨ x8 ∨ x12
ϕ4 = x2 ∨ x11
ϕ5 = x3 ∨ x7 ∨ x13
ϕ6 = x3 ∨ x7 ∨ x13 ∨ x9
ϕ7 = x8 ∨ x7 ∨ x9

x1 ⇒ x4 [ϕ1]
x3 ⇒ x8 [ϕ2], x12 [ϕ3]
x2 ⇒ x11 [ϕ4]
x7 ⇒ x13 [ϕ5], x9 [ϕ6], x9 [ϕ7]

Contradiction because of x3, x7, x8
β = x3 ∨ x7 ∨ x8 Conflict memory
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SMT Automated reasoning : SAT calculus

Limitations

Thou shalt calculate only booleans
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SMT Make the theory talk

What’s a theory ?

Définition (Theory)

A theory is an set of symbols and rules specifying the meaning of those
symbols and their grammar (how they can be combined together).
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SMT Make the theory talk

What’s a theory good for ?

To solve a+ b ≥ 3, we need to know about :
identify symbols 3, a and b as members of the same set (R)
specify the meaning of the symbol + (what is a sum)
specify the meaning of the symbol ≥ and deduce a constraint
specify what is the sum of two reals
a way to solve the equation

Real arithmetic theory gives us the necessary tools :
(R,+, ∗) as a set with properties
evaluations rules

Mature solvers : Linear Programming, simplex algorithm, etc.
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SMT Make the theory talk

How to make out theories with SAT ?

1 Reduce the theory-formula into a SAT formula by introducing variables
2 Find a conjunction of litterals using SAT solvers
3 Pass this conjunction to a solver modulo theory
4 Propagates given results as constraints via equalities
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SMT Make the theory talk

Illustration

Let the formula ((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))

There is logic AND arithmetic
Are there reals making this formula true ?
Comment faire ? Créer des variables et les passer à SAT. Par exemple :
x1 : a = 1, x2 : a = 2, x3 : a ≥ 3, x4 : b ≤ 2, x5 : b ≥ 3
On obtient alors : (x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5))
It’s a SAT problem !

Reading group: formal methods for robust deep learning
December 2018

40 / 51



SMT Make the theory talk

Illustration

Let the formula ((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))
There is logic AND arithmetic
Are there reals making this formula true ?

Comment faire ? Créer des variables et les passer à SAT. Par exemple :
x1 : a = 1, x2 : a = 2, x3 : a ≥ 3, x4 : b ≤ 2, x5 : b ≥ 3
On obtient alors : (x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5))
It’s a SAT problem !

Reading group: formal methods for robust deep learning
December 2018

40 / 51



SMT Make the theory talk

Illustration

Let the formula ((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))
There is logic AND arithmetic
Are there reals making this formula true ?
Comment faire ? Créer des variables et les passer à SAT. Par exemple :
x1 : a = 1, x2 : a = 2, x3 : a ≥ 3, x4 : b ≤ 2, x5 : b ≥ 3

On obtient alors : (x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5))
It’s a SAT problem !

Reading group: formal methods for robust deep learning
December 2018

40 / 51



SMT Make the theory talk

Illustration

Let the formula ((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))
There is logic AND arithmetic
Are there reals making this formula true ?
Comment faire ? Créer des variables et les passer à SAT. Par exemple :
x1 : a = 1, x2 : a = 2, x3 : a ≥ 3, x4 : b ≤ 2, x5 : b ≥ 3
On obtient alors : (x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5))

It’s a SAT problem !

Reading group: formal methods for robust deep learning
December 2018

40 / 51



SMT Make the theory talk

Illustration

Let the formula ((a = 1) ∨ (a = 2)) ∧ (a ≥ 3 ∧ ((b ≤ 2) ∨ (b ≥ 3))
There is logic AND arithmetic
Are there reals making this formula true ?
Comment faire ? Créer des variables et les passer à SAT. Par exemple :
x1 : a = 1, x2 : a = 2, x3 : a ≥ 3, x4 : b ≤ 2, x5 : b ≥ 3
On obtient alors : (x1 ∨ x2) ∧ (x3 ∧ (x4 ∨ x5))
It’s a SAT problem !

Reading group: formal methods for robust deep learning
December 2018

40 / 51



SMT Make the theory talk

Illustration

SMT/SAT ensemble

Original formula

SMT interpretor Solveur SMT

Solveur SAT

SAT,UNSAT,TIMEOUT

Formule booléene clauses UNSAT

Propagation
des contraintes
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SMT Make the theory talk

Application concrète

Logiciels : Z3, CVC4, Yices, Simplify, Alt-Ergo
Que fournir en entrée ?
Déclarer des variables d’entrées (fonctions muettes) contraintes sous forme
d’inégalités linéaires (ou affines) spécifier le flot de contrôle axiomes
éventuels (définitions de fonctions) propriétés à vérifier
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SMT Make the theory talk

Exemple : identité sur un réseau jouet

x1

a

b

y

1.0

−1.0

1.0

1.0

Figure – Pour x1 ≥ 0, on a l’identité

( se t− l o g i c QF_LRA)

; ; Dec l a r e the neuron v a r i a b l e s

( d e c l a r e−fun x1 ( ) Rea l )
( d e c l a r e−fun a ( ) Rea l )
( d e c l a r e−fun b ( ) Rea l )
( d e c l a r e−fun y ( ) Rea l )

; ; Bound i n pu t r ange s

( a s s e r t (>= x1 0) )

; ; Laye r 1

( a s s e r t ( l e t ( ( ws (∗ x1 1 . 0 ) ) )
(= a ( i t e (>= ws 0) ws 0 ) ) ) )
( a s s e r t ( l e t ( ( ws (∗ x1 (− 1 . 0 ) ) ) )
(= b ( i t e (>= ws 0) ws 0 ) ) ) )

; ; Laye r 2
( a s s e r t ( l e t ( ( ws (+ (∗ a 1 . 0 ) (∗ b 1 . 0 ) ) ) )
(= y ws ) ) )

; ; to check
( a s s e r t (= y x1 ) )
( check−s a t )

Figure – Formule satisfaite
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SMT ReLuPlex/DeepSafe/Fast-Lin

Articles

Towards Fast Computation of Certified Robustness for ReLU
Networks, Tsui-Wei et al, 2018
Reluplex : An Efficient SMT Solver for Verifying Deep Neural
Networks, Katz et al, 2017
DeepSafe : A Data-driven Approach for Assessing Robustness of
Neural Networks, Gopinath et al, 2018
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ReLuPlex : Simplexe + ReLu

Simplex algorithm : for a set of af-
fine constraints, find the optimal
solution. If it exists, the solution
is at an edge of the constraint po-
lytope

Implemented as an array with up-
date rules
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ReLuPlex : Simplexe + ReLu

Two variables for each ReLu : backward and forward
Updates rules for ReLu inside of Simplex algorithm
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DeepSafe : partition the input space

Parition the input space using non-supervised clustering
Uses SMT solvers to prove a given region robust regarding a certain
label
Partial robustness
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Experimental setting

ACAS Xu neural networks : Inputs are sensors informations (7
dimensions), output are instructions given to the pilot (5 dimensions)
6 layers, 7 or 9 neurons per layer, fully connected

Figure – Exemple of verified properties
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Results : ReLuPlex

Figure – Exemple of verified properties

Figure – Exemple of verified properties
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Results : DeepSafe

MNIST proven robust for certain labels within 12 hours of testing, with 10
hours of clustering (80 clusters).
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Questions ?

:)
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