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© Introduction

© Abstract interpretation
@ Another interpretation of a program
@ Theoretical elements

@ Structure and convergence
@ Abstract domains

o Case study : DiffAl/DeepZ

@ Transfer functions

© smT
@ Automated reasoning : SAT calculus
@ Problem formulation
@ How to solve a SAT problem ?
@ Make the theory talk
@ A praxis of theories
@ RelLuPlex/DeepSafe/Fast-Lin

@ Results
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Software safety

The goal of software safety is to ensure that we build the program good
With respect to a given specification
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Introduction

Deep learning software specifics

@ High number of variables and parameters (25 millions for ResNet-50,
some have billions)
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Introduction

Deep learning software specifics

@ High number of variables and parameters (25 millions for ResNet-50,
some have billions)

e Execution environment is unknown (ex : computer vision)
@ Dangerous weaknesses, not clearly understood : adversarial examples,
model theft, membership attacks
e High-dimension geometric spaces are counterintuitive and makes
analysis difficult
All of those makes it difficult for us to reuse bluntly our formal methods
toolset
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Abstract interpretation

Abstract interpretation

© Abstract interpretation
@ Another interpretation of a program
@ Theoretical elements

@ Case study : DiffAl/DeepZ
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Abstract interpretation Another interpretation of a program

Motivations

e Complete analysis can be expensive : int i; char p[100]; . . .; p[i]
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Abstract interpretation Another interpretation of a program

Motivations

e Complete analysis can be expensive : int i; char p[100];

@ Sometimes, only partial knowledge is needed :
int i; . . .; while (i>0); .
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Abstract interpretation Another interpretation of a program

[ntuition

o Key insight : abstract the program to produce a more easily
computationable entity
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Abstract interpretation Another interpretation of a program

[ntuition

o Key insight : abstract the program to produce a more easily
computationable entity

@ Use this abstraction to exhibit interesting properties

@ This is an abstract interpretation
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ACEIETG AT IS SN Another interpretation of a program

Example : modulo function sign

int mod(int A int B) {

int Q=

int R=A

while (R >= B) {
R =R - B;
Q=Q+ 1;

}

return R;
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Abstract interpretation Another interpretation of a program

Example : modulo function sign

int mod(int A, int B) {

int Q= 0;

int R=A;

while (R >= B) {
R =R — B;
Q=Q+ 1;

}
return R;

}

Real semantic (a semantic is the set of all possible executions of a program) : A= 10, B =3:

(l:a, b,q,r)

(1:10,3) — (2:10,3,0) — (3:10,3,0,10) —
(4:10,3,0,10) — (5:10,3,0,7) — (6:10,3,1,7) —
(4:10,3,1,7) — (5:10,3,1,4) — (6:10,3,2,4) —

(4:10,3,2,4) — (5:10,3,2,1) — (6:10,3,3,1) — (7:10,3,3,1) —
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Abstract interpretation Another interpretation of a program

Example : modulo function sign

int mod(int A, int B) {

int Q= 0;
int R=A;
while (R >= B) {
R =R — B;
Q=Q + 1;
return R
}
Abstract semantic: A> 0, B> 0:
(I:a,b,9,1)
(1:(20),(=20)) = (2:(20),(20),0) = (3:(=0),(=0),0,(=0)) —
(4:(20),(20),0,(=0)) - (5:(=0),(=0),0,T) = (6:(=0),(=0),(20), T) —

(4:(20),(20),(20),T) = (5:(20),(20),(20), T) =
(7:(20),(20),(20),T)
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ACEIETG AT IS SN Another interpretation of a program

Example : modulo function sign

int mod(int A, int B) {

int Q= 0;

int R=A;

while (R >= B) {
R=R - B
Q=Q+ 1

T R because R — B=# (>0)— (>0)=T

R>B=%T2>(>0)

Reading group: formal methods for robust deep learning
December 2018

8 /51



ACEIETG AT IS SN Another interpretation of a program

Example : modulo function sign

int mod(int A, int B) {
int Q= 0;
int R=A;
while (R >= B) {
=R - B;
Q=Q+ 1
}

return R;

Loop invariant : ((> 0),(> 0),(>0), T)
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Another interpretation of a program
What is at stake 7

>
27
O\

precise analysis false alarm unsound analysis
ACS = PCS AZSbut PCS ACSbutPgZS
(a) (b) (c)

Figure 1.6: Proving that a program P satisfies a safety specification S, i.e., that
P C S, using an abstraction A of P: (a) succeeds, (b) fails with a false alarm, and
(c) is not a possible configuration for a sound analysis.

Figure — Figure comes from Antoine Minet tutorial

Balance between relevant properties, computationable executions and accuracy of
abstraction
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Theoretical elements
Partial order relations

A partial order C on a set X is a relation holding :
@ reflexivity : Vx € X : x C x;
@ anti-symetric: Vx,y e X : (xCy)A(yEx) = x=y;
@ transitivity : Vx,y,ze X: (xCy)A(yCz)=xLC z;

Partial, means sometimes there are some x and y not sharing any order relation.
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Theoretical elements
Partial order relations

A partial order C on a set X is a relation holding :
@ reflexivity : Vx € X : x C x;
@ anti-symetric: Vx,y e X : (xCy)A(yEx) = x=y;
@ transitivity : Vx,y,ze X: (xCy)A(yCz)=xLC z;

Partial, means sometimes there are some x and y not sharing any order relation.

Ll and M are resp. lowerupperbound and greaterlowerbound of two elements of any

subset of X. If they exist, they are unique
Most relevant partial order : partial inclusion C

Figure — Partial order representation : Hasse Diagram
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Theoretical elements
Lattice

A lattice is a partially ordered set X such as :
Q@ VA C X : LA exist
Q@ VA C X : MA exist
© X as a smaller element L

@ X as a greatest element T
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ALEIET AT IS S  Theoretical elements

Fixpoints

Définition

A fixpoint for a function f is a point xfie such as f(Xfixe) = Xfixe

Note that f(x) C x. A fixpoint is an execution invariant.
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Abstract interpretation Theoretical elements

Fixpoints

Définition

A fixpoint for a function f is a point xfie such as f(Xfixe) = Xfixe

Note that f(x) C x. A fixpoint is an execution invariant.

Théoréme (Knaster-Tarski fixpoint theorem)

If X is a complete lattice and f : X — X a monotonous application, then
the ordered subset of all fixpoints of f is a non-empty complete lattice.
In particular, f has a smaller and greater fixpoint.

Reading group: formal methods for robust deep learning
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Abstract interpretation Theoretical elements

Partial order and analysis

@ approximation with sound but non-comparable analysis

@ valid regarding a specification : a program semantic P respect a given
specification S if P C S

© Sound analysis : abstract semantic is coarser than real semantic

@ Convergence : order is necessary to have convergence towards a
fixpoint
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ALEIET AT IS S  Theoretical elements

Let's summarize

@ Lattice X : set with partial order relation C, a smallest element L and
a biggest element T

@ A fonction f is monotonous on X =, fixpoints xg.e exists
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ALEIET AT IS S  Theoretical elements

Let's summarize

@ Lattice X : set with partial order relation C, a smallest element L and
a biggest element T

@ A fonction f is monotonous on X =, fixpoints xge exists
X =7
f—7
Xfixe —7 ?
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Abstract interpretation Theoretical elements

Let's summarize

@ Lattice X : set with partial order relation C, a smallest element L and
a biggest element T

@ A fonction f is monotonous on X =, fixpoints xg.e exists

X — The abstract semantic of a program

f — An evaluation on the abstract semantic

Xfixe — A snapshot of all the states of a program in the abstract
semantic
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Theoretical elements
What is the frame of our lattice?

A program state after an abstract execution
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Abstract interpretation Theoretical elements

What is the frame of our lattice?

A program state after an abstract execution

N N

), (>0),0,.L) {(>0),(<0),0,L)

—

((>0),(>0),L,1) ((>0),(<0), L, 1)

N

(L, L, 1,1)

FIgU € — Partial Hasse diagram of the modulo fonction, for the abstract semantic of signs
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Abstract interpretation Theoretical elements

Consequences

If we have a monotonous f (abstract evaluations), fixpoints (knowing
program states in the abstract semantic) exists!| And we can compute them

Reading group: formal methods for robust deep learning 16 / 51
December 2018



Abstract interpretation Theoretical elements

Consequences

If we have a monotonous f (abstract evaluations), fixpoints (knowing

program states in the abstract semantic) exists!| And we can compute them
Goal now : “monotonous”’ computations.
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ALEIET AT IS S  Theoretical elements

Definitions

Définition
Let D a domain.
e an abstraction function o : P(R? — D)

e a concretization function v : D — P(R9)

d € D is an abstraction of P(R9), and ~(d) gives us the corresponding
values in P(RY).

Théoreme (Validity of abstract interpretation)
An abstract domain D is “sound” iff X C v(a(X))¥X C RY
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Abstract interpretation Theoretical elements

Transfer functions

Let a function f : RP — R9". An abstract transformer is a function
T# . D — D such as f(y(d)) C 7/ (TF(d)) for all d € D.
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Abstract interpretation Theoretical elements

An abstract domain : intervals

Let x € R, e € RY. [x — &, x + €] is an interval, also noted [a, b]. Transfer
functions :

[a, b] + [c,d] = [a+ b, c+ d]
[a, b] * [c,d] = [axb,cxd]
[av b] = [_bv _a]

Reading group: formal methods for robust deep learning 19 /51
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Abstract interpretation Theoretical elements

An example of intervals

X<—0
while (X<40)
X <— X+1
1
X Ol
2 U 1Pl 1P P N Pl X
X < 40r 3 TX > 40
4 6
X X + 1l
5
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Abstract interpretation Theoretical elements

An example of intervals

X <=0
while (X<40)
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1
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l £ I A R \
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Abstract interpretation Theoretical elements

An example of intervals

X<—0
while (X<40)
X <— X+1
1
X Ol
2 U Vit Vil B Vi il X
1T T T T T
l 2| L 0 0 0 0
X < 40r 3 TX > 40
4 6
X X + 1l
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Abstract interpretation Theoretical elements

An example of intervals

X <=0
while (X<40)
X <— X+1
1
X<—0l
2 N Yl Bl DY vl X
1T T T T T
l 201 0 0 0 0
3 3] L 0 [0,+0c] | [0,400] | [0, +0o¢]

Reading group: formal methods for robust deep learning 20/ 51
December 2018



Abstract interpretation Theoretical elements

An example of intervals

X<—0
while (X<40)
X <— X+1
1
X<—0l
> L gt vl il
17 |7 |7 T T
l 2| L 0 0 0 0
3 1 0 [0,+00] | [0,400] | [0,+o¢]
1 0

Reading group: formal methods for robust deep learning

20 / 51
December 2018 /



Abstract interpretation Theoretical elements

An example of intervals

X <=0
while (X<40)
X <— X+1
1
X<—0l
2 N Yl Bl DY vl X
1T T T T T
l € 0 0 0 0
3 1 0 [0, +00] | [0,+00] | [0,4o¢]
1 0
1 1

X
T X
X
IA
+ IS
- )
m(—b(T
c\(J
X
v
B
)
g lwnN
o
o
BlW
A=)
e
BHlw
R=ARE)
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Abstract interpretation Theoretical elements

An example of intervals

X<—0
while (X<40)
X <— X+1
1
X Ol
0 4 5 7 8
> g g il X
1T T T T T
l 2| L 0 0 0 0
X < 40 3 X > 40 3L 0 [0,+00] | [0,400] | [0,+o¢]
4L 0 0 0,39] 0,39]
5| L 1 1 1,40] 1,40]
4 6 6] L | L |L 40, +00] | [40, oc]
X X + 1l
5
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Abstract interpretation Theoretical elements

An example of intervals

X <=0
while (X<40)
X <— X+1
1
X<—0l
2 [ BVl BYARPYA X X
1T T T T T
l 201 0 0 0 0
X < 40 3 X > 40 3| L 0 [0, +00] | [0,+00] | [0,4o¢]
4L |0 o 0,39] | [0,39]
5L |1 |1 1,40] 1,40]
4 6 6L | L |L 40, +o] | [40, od]
X<—X+1l
5

Limitations : x := [—1,1],x — x = [-2,2]
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Summary of work

© build an abstraction of neural network using the abstract
interpretation framework

@ encapsulate adversarial perturbations inside abstract domains

© build robustness properties on abstract domains and learn networks to
minimize adversarial loss

Concrete

B E—— Ny (B,
Semantics / (x< Conv FC o(Be(x))
¢ 1O ‘
|
Abstract ;Y ) 7
strac _ w
Interpretation deD Teon Tie deD

Figure — DiffAl/DeepZ control flow

Reading group: formal methods for robust deep learning 21 /51
December 2018



Abstract domains used

e Intervals [x — &, x + €]

@ Zonotopes (polytope with a symetry center) z = (zc, zg), zc € R
center, ze € R9*™ linear constraints

e Hybrids zonotope h = (h¢, hg, hg), hc € R center, hg € Rdzo
perturbations, hg € R4 errors coefficients
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Abstractions and concretizations

fYH(h) - {hCOnC(ﬁ7 e)|ﬁ S [_17 1]d7 ec [_17 1]d*m}v
hconc = hC + d’ag(hB) * /8 + hE * e
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Abstractions and concretizations

YH(h) = {hconc (B, €)|8 € [-1,1]7, e € [-1,1]7*™},

heconc = hc + diag(hg) * 5 + hg x e

i-th total error of an hybrid zonotope h : e (h); = (hg)i + ;L1 [(he)i |
Interval concretization : ty(h); [(hc)i — en(h)i, (hc)i + en(h)i]
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Matrix operations

For a matrix M : T/ (h) = (M - hc, M - hg, M - hg)
Includes sum, scalar multiplication, convolutions. . .
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Case study : DiffAl/DeepZ
Relu

Let a zonotope z. A zonotope 2 = T:?t(lz;ansm) with m = m + 1 is computed : zBox If min(.(z)) > 0, ReLu has no
effect and propagated zonotope is the same (modulo dimension). Else :
(Z,c)r = (z¢)t for t # i
(z)e = (zE)e for t # 1
(z¢)i = ReLu( 3 max(u(2),))
(z‘,/:-),»yl =0for/ <m
(z6)i,mia = ReLu( 3 max(e(2))))
(zé)j’,,,Jrl =0forj<i
zDiag If min(.(z);) < 0 < max((z);) holds, then : (zé)t =(z¢)t for t # i
(Z,n/;)t = (zg)t for t #i
(z¢)i = (zC)ize)i,
(Z[/:')i,l =zg)j for I <m
)

—

ze)ime1 = — 3 min(e(2);)
!
(zg)j,m+1 =0 for j < i

Else, zBox
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Adversarial training

Loss: L(z,y) = maxy/;éy(zy/ — z,, where z points and y labels.
Then the adversarial loss when minimized shows the 7-robustness of all the
training set :

A ~
LN(Xu.y): . Lnax L(Z,_y)
2ey(Tj (a(x(x))))
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Results

Epoch training time multiplied between 3 and 7. An epoch on a
baseline Resnet is 3.7s, against 12.6s with their method

Test against one attack (PGD, Madry et al.)
MNIST : 5.8% on adversarial test error, baseline 100%

CIFAR-10 : ResNet with adversarial training has a 47.8% test error,
baseline is 88%.
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Conclusion

An elegant method combining the best of the two worlds, promising results
but need to be compared against more attacks and with different metrics
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Questions ?
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SMT

SMT

© smT

@ Automated reasoning : SAT calculus

@ Make the theory talk

@ RelLuPlex/DeepSafe/Fast-Lin
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ElVAEN Automated reasoning : SAT calculus

Boolean calculus

Two possible values : false(0) and true(1)
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ElVAEN Automated reasoning : SAT calculus

Boolean calculus

Two possible values : false(0) and true(1)
Rules are “good” :

@ associativity : AA(BAC)=(AAB)AC
commutativity (A A B =B A A)
idempotency (A A A = A)

neutral elements : 1 for A, 0 for vV
absorbant elements : 0 for A, 1 for Vv
distributivity
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ElVAEN Automated reasoning : SAT calculus

Boolean calculus

Two possible values : false(0) and true(1)
Rules are “good” :

@ associativity : AA(BAC)=(AAB)AC
e commutativity (A A B =B A A)

o idempotency (A A A =A)

o neutral elements : 1 for A, 0 for Vv

°

absorbant elements : 0 for A, 1 for Vv

distributivity
Some axioms
@ negation —
@ Morgan's law : =(A A B)=—A V =B, same idea for V
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ElVAEN Automated reasoning : SAT calculus

Boolean calculus (following)

Vocabulaire :
o Litterals : elementary signs (values, variables)
o Clause (or term) : litterals disjunction (aV b)
@ A unit clause iff there is only one litteral involved
e Cunjonctive Normal Form : ((aV b)A (b Vv d))
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ElVAEN Automated reasoning : SAT calculus

Boolean calculus (following)

Vocabulaire :
o Litterals : elementary signs (values, variables)
o Clause (or term) : litterals disjunction (aV b)
@ A unit clause iff there is only one litteral involved
e Cunjonctive Normal Form : ((aV b)A (b Vv d))

Boolean calculus is used to encode logic formulae

Reading group: formal methods for robust deep learning
December 2018
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ElVAEN Automated reasoning : SAT calculus

SAT problem

e Let a formula A(x1, x2,. .., X,), are there boolean values x;
making A true? : SAT

e Let a formula A(x1, x2,...,x,), is A true for all x; 7 : VALID
VALID(A) is equivalent to =SAT(—A)
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ElVAEN Automated reasoning : SAT calculus

SAT problem

e Let a formula A(x1, x2,. .., X,), are there boolean values x;
making A true? : SAT

e Let a formula A(x1, x2,...,x,), is A true for all x; 7 : VALID
VALID(A) is equivalent to =SAT(—=A) NP-complete problem

Reading group: formal methods for robust deep learning 33 /51
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ElVAEN Automated reasoning : SAT calculus

Conflict Driven Clause Learning

Principle :

@ Look for a term leading the formula to UNSAT by assigning values
iteratively to variables

@ Identify the origin of conflict and learn a clause preventing it
© Repeat until SAT, TIMEOUT or UNSAT
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ElVAEN Automated reasoning : SAT calculus

[llustration
p1=x1V Xa
p2=x1VX3VXg
p3=x1V Xg V X12

pa = X2 V X11

p5 = X3 V X7 V X13

Yo =X3 VX7 VX3 V X9
p7r=xg VX7 V Xg
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[llustration

p1=x1V Xq
p2=x1VX3VXg

w3 =x1V xg V X12

Y4 = x2 V X11

w5 =x3 V X7V X13

we =X3 V X7V X13 V X9
pr=x3 V X7 V X9

ElVAEN Automated reasoning : SAT calculus

x1 = xa [p1]
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[llustration

p1=x1V Xxq
p2=x1V X3V Xg
w3 =x1V xg V X12
Y4 = x2 V X11
w5 =x3 V X7V X13

ElVAEN Automated reasoning : SAT calculus

X1 = Xa [gol]
x3 = xg [p2], x12 [¥3]

wo =33V X7 V X33 V X0

p7 =Xxg V X7 V X

Reading group: formal methods for robust deep learning
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ElVAEN Automated reasoning : SAT calculus

[llustration

p1=x1V Xxq
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X2 = X11 [904]

x7 = x13 [gs], xo [pe], Xo [¢7]

Contradiction because of X3, X7, xg
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ElVAEN Automated reasoning : SAT calculus

Limitations

Thou shalt calculate only booleans

Reading group: formal methods for robust deep learning 36 / 51
December 2018



IV Make the theory talk

What's a theory ?

Définition (Theory)
A theory is an set of symbols and rules specifying the meaning of those
symbols and their grammar (how they can be combined together).
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EIVaBN Make the theory talk

What's a theory good for?

To solve a4 b > 3, we need to know about :

identify symbols 3, a and b as members of the same set (R)
specify the meaning of the symbol + (what is a sum)

specify the meaning of the symbol > and deduce a constraint

specify what is the sum of two reals

a way to solve the equation
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EIVaBN Make the theory talk

What's a theory good for?

To solve a4 b > 3, we need to know about :
identify symbols 3, a and b as members of the same set (R)
specify the meaning of the symbol + (what is a sum)

specify the meaning of the symbol > and deduce a constraint

specify what is the sum of two reals
@ a way to solve the equation

Real arithmetic theory gives us the necessary tools :
e (R, +, %) as a set with properties
@ evaluations rules

Mature solvers : Linear Programming, simplex algorithm, etc.
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IV Make the theory talk

How to make out theories with SAT ?

© Reduce the theory-formula into a SAT formula by introducing variables
@ Find a conjunction of litterals using SAT solvers
© Pass this conjunction to a solver modulo theory

@ Propagates given results as constraints via equalities
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IV Make the theory talk

[llustration

Let the formula ((a=1) V(a=2))A(a>3 A ((b<2)V (b>3))
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EIVaBN Make the theory talk

[[lustration

Let the formula ((a=1) V(a=2))A(a>3 A ((b<2)V (b>3))
There is logic AND arithmetic

Are there reals making this formula true?

Comment faire ? Créer des variables et les passer & SAT. Par exemple :
x1:a=1,x:a=2,x3:a>3,x4:b<2,x5:b>3

On obtient alors : (x1 V x2) A (x3 A (xa V x5))

It's a SAT problem !
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EIVaBN Make the theory talk

[[lustration

Original formula

SMT interpretorl Solveur SMT

Propagation
des contraintes

Formule booléene clauses UNSAT

Solveur SAT

SMT /SAT ensemble

SAT,UNSAT, TIMEOUT
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EIVaBN Make the theory talk

Application concréte

Logiciels : Z3, CVC4, Yices, Simplify, Alt-Ergo

Que fournir en entrée?

Déclarer des variables d'entrées (fonctions muettes) contraintes sous forme
d'inégalités linéaires (ou affines) spécifier le flot de contréle axiomes
éventuels (définitions de fonctions) propriétés a vérifier
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SMT

Make the theory talk

Exemple : identité sur un réseau jouet

Figure — Pour x; > 0, on a l'identité

(set—logic QF_LRA)
i; Declare the neuron variables
(declare—fun x1 (
(declare—fun a () Real)
(declare—fun b ()
(declare—fun y ()

; Bound input ranges

(assert (>= x1 0))

i Layer 1

(assert (let ((ws (x x1 1.0)))

(= a (ite (>= ws 0) ws 0))))
(assert (let ((ws (x x1 (- 1.0))))
(= b (ite (>= ws 0) ws 0))))

i Layer 2
(assert (let ((ws (+ (+ a 1.0) (+ b 1.0))))
(=y ws)))

i to check
(assert (= y x1))
(check—sat)

Reading group: formal methods for robust deep learning
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IV Make the theory talk

Exemple : identité sur un réseau jouet

(set—logic QF_LRA)

;; Declare the neuron variables

(declare—fun x1 () Real)
(declare—fun a () Real)
(declare—fun b () Real)
(declare—fun y () Real)

; Bound input ranges
(assert (>= x1 0))
. Layer 1

assert (let ((ws
= a (ite (>= ws 0
assert (let ((ws

b (ite (>= ws 0

i Layer 2

(assert (let ((ws (+ (+ a 1.0) (s b

(= y ws)))

i to check
(assert (= y x1))
(check—sat)

in ~/Formation/alt-ergo

.smt2

Figure — Formule satisfaite
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EIVAN ReluPlex/DeepSafe/Fast-Lin

Articles

@ Towards Fast Computation of Certified Robustness for ReLU
Networks, Tsui-Wei et al, 2018

@ Reluplex : An Efficient SMT Solver for Verifying Deep Neural
Networks, Katz et al, 2017

@ DeepSafe : A Data-driven Approach for Assessing Robustness of
Neural Networks, Gopinath et al, 2018
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VAl ReluPlex/DeepSafe/Fast-Lin

ReLuPlex : Simplexe + Relu

Simplex algorithm : for a set of af-
fine constraints, find the optimal

. . ) . Implemented as an array with up-
solution. If it exists, the solution P Y P

. . date rules
is at an edge of the constraint po-
lytope
Pivoty 71" i f;ro(:((;j 3.?).“1:3: guc {il,j;k{ fff\
Linear Programming: Simplex with 3 Decision Vari Pivota Til: ,3((;),,?)“(15‘); si(‘,)‘\ {FL})

The Linear Programming Problem @5 € B, o) <Uwy) Vale;) > ulwy), Uw;) < ala) + 08 < ulz;)

Updat
pdate o = update(a,z;,5)
Solve this inear programming problern. ) N N
Fail @i € B, (a(z:) <l(x:i) A slackt(w:) = 0) v (a(wi) > u(w:i) A slack” (zi) = 0)
Maximize P = 20 + 10g + 155 owga10 ailure UNSAT
Ca750875)
Subjectto o+ 29 + g s 55 o
2+ o+ s B® Bs02) Success 1 € X M) < olw) < ui)
X+ X+ 3g s 30 c015) SAT
» S+ 29 + 4 s 57 >
e 0090
X 2o w20 e 11820815)
P - F025)
A(11400) - .
[Ty
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VAl ReluPlex/DeepSafe/Fast-Lin

ReLuPlex : Simplexe + Relu

@ Two variables for each RelLu : backward and forward

Updates rules for ReLu inside of Simplex algorithm

Update, -

x, ¢ B, ) ER a(e) #
Update, = date(a. 2, max (0, a(z1)) — a(x,))

1) €E RV (z,a:) ER, x; ¢ B, Ti; #0

zi € B, 3my. (@
T = piwol(T.1,3), Bi=BU {a;} \ {1}

T

ReluSpit (v..l,)((l\' () <0, u(z:) >0

i)=0 Uxi) =0

Vz € X. I(z) < a(z) < u(z), V(z* 2') € R. a(z!) = max (0, a(z"))

SAT
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VAl ReluPlex/DeepSafe/Fast-Lin

DeepSafe : partition the input space

@ Parition the input space using non-supervised clustering

@ Uses SMT solvers to prove a given region robust regarding a certain
label

@ Partial robustness
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VAl ReluPlex/DeepSafe/Fast-Lin

Experimental setting

e ACAS Xu neural networks : Inputs are sensors informations (7
dimensions), output are instructions given to the pilot (5 dimensions)

@ 6 layers, 7 or 9 neurons per layer, fully connected

Figure — Exemple of verified properties
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ReLuPlex/DeepSafe/Fast-Lin
Results : RelLuPlex

Figure — Exemple of verified properties

Table 2: Verifying properties of the ACAS Xu networks.
| Networks Result Time Stack Splits

b1 41 UNSAT 394517 47 1522384
4 TIMEOUT
b2 1 UNSAT 463 55 88388
35 SAT 82419 44 284515
&3 42 UNSAT 28156 22 52080
N 42 UNSAT 12475 21 23940
&5 1 UNSAT 19355 46 58914
b6 1 UNSAT 180288 50 548496
Readingﬁ;ér up: fogimgrgﬁ%}gth@ﬁﬁ for gebysgegeep learning 49 / 51
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VAl ReluPlex/DeepSafe/Fast-Lin

Results : DeepSafe

MNIST proven robust for certain labels within 12 hours of testing, with 10
hours of clustering (80 clusters).
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VAl ReluPlex/DeepSafe/Fast-Lin

Questions ?
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