Reading group: formal methods for robust deep learning

Julien Girard

December 2018

Reading group: formal methods for robust deep learning December 2018

Introduction

- Abstract interpretation
 - Another interpretation of a program
 - Theoretical elements
 - Structure and convergence
 - Abstract domains
 - Case study : DiffAI/DeepZ
 - Transfer functions
- 3 SMT
 - Automated reasoning : SAT calculus
 - Problem formulation
 - How to solve a SAT problem?
 - Make the theory talk
 A praxis of theories
 - ReLuPlex/DeepSafe/Fast-Lin
 - Results

Software safety

The goal of software safety is to ensure that we build the program good With respect to a given **specification**

Software safety

The goal of software safety is to ensure that we build the program good With respect to a given **specification**

Figure – Preventing bugs on critical software

Figure – A mature field active both on academics and industry, and countless successes

• High number of variables and parameters (25 millions for ResNet-50, some have billions)

- High number of variables and parameters (25 millions for ResNet-50, some have billions)
- Execution environment is unknown (ex : computer vision)

- High number of variables and parameters (25 millions for ResNet-50, some have billions)
- Execution environment is unknown (ex : computer vision)
- Dangerous weaknesses, not clearly understood : adversarial examples, model theft, membership attacks

- High number of variables and parameters (25 millions for ResNet-50, some have billions)
- Execution environment is unknown (ex : computer vision)
- Dangerous weaknesses, not clearly understood : adversarial examples, model theft, membership attacks
- High-dimension geometric spaces are counterintuitive and makes analysis difficult

- High number of variables and parameters (25 millions for ResNet-50, some have billions)
- Execution environment is unknown (ex : computer vision)
- Dangerous weaknesses, not clearly understood : adversarial examples, model theft, membership attacks
- High-dimension geometric spaces are counterintuitive and makes analysis difficult

All of those makes it difficult for us to reuse bluntly our formal methods toolset

Abstract interpretation

Introduction

Abstract interpretation

- Another interpretation of a program
- Theoretical elements
 - Structure and convergence
 - Abstract domains

• Case study : DiffAI/DeepZ

Transfer functions

3 9

- Automated reasoning : SAT calculus
 - Problem formulation
 - How to solve a SAT problem ?
- Make the theory talk
 - A praxis of theories
- ReLuPlex/DeepSafe/Fast-Lin
 - Results

Motivations

• Complete analysis can be expensive : int i; char p[100]; . . .; p[i]

Motivations

- Complete analysis can be expensive : int i; char p[100]; . . .; p[i]
- Sometimes, only partial knowledge is needed : int i; . . .; while (i>0); . . .

Intuition

• Key insight : *abstract* the program to produce a more easily computationable entity

Intuition

- Key insight : *abstract* the program to produce a more easily computationable entity
- Use this abstraction to exhibit interesting properties

Intuition

- Key insight : *abstract* the program to produce a more easily computationable entity
- Use this abstraction to exhibit interesting properties
- This is an abstract interpretation

```
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
        }
        return R;
}
```

```
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
        }
    return R;
}
```

Real semantic (a semantic is the set of all possible executions of a program) : A = 10, B = 3 :

$$\begin{array}{c} \langle l:a,b,q,r \rangle \\ \\ \langle 1:10,3 \rangle \rightarrow \langle 2:10,3,0 \rangle \rightarrow \langle 3:10,3,0,10 \rangle \rightarrow \\ \\ \langle 4:10,3,0,10 \rangle \rightarrow \langle 5:10,3,0,7 \rangle \rightarrow \langle 6:10,3,1,7 \rangle \rightarrow \\ \\ \langle 4:10,3,1,7 \rangle \rightarrow \langle 5:10,3,1,4 \rangle \rightarrow \langle 6:10,3,2,4 \rangle \rightarrow \\ \\ \langle 4:10,3,2,4 \rangle \rightarrow \langle 5:10,3,2,1 \rangle \rightarrow \langle 6:10,3,3,1 \rangle \rightarrow \langle 7:10,3,3,1 \rangle \rightarrow \end{array}$$

Reading group: formal methods for robust deep learning December 2018

```
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
        Q = Q + 1;
        }
    return R;
}
```

Abstract semantic : $A \ge 0$, $B \ge 0$:

$$\begin{array}{c} \langle l:a,b,q,r \rangle \\ \langle 1:(\geq 0),(\geq 0) \rangle \rightarrow \langle 2:(\geq 0),(\geq 0),0 \rangle \rightarrow \langle 3:(\geq 0),(\geq 0),0,(\geq 0) \rangle \rightarrow \\ \langle 4:(\geq 0),(\geq 0),0,(\geq 0) \rangle \rightarrow \langle 5:(\geq 0),(\geq 0),0,\top \rangle \rightarrow \langle 6:(\geq 0),(\geq 0),(\geq 0),\top \rangle \rightarrow \\ \langle 4:(\geq 0),(\geq 0),(\geq 0),\tau \rangle \rightarrow \langle 5:(\geq 0),(\geq 0),(\geq 0),\tau \rangle \rightarrow \langle 6:(\geq 0),(\geq 0),(\geq 0),\tau \rangle \rightarrow \\ \langle 7:(\geq 0),(\geq 0),(\geq 0),\tau \rangle \end{array}$$

 \top *R* because *R* - *B* = # (\geq 0) - (\geq 0) = \top *R* \geq *B* = # \top \geq (\geq 0)

Loop invariant : $\langle (\geq 0), (\geq 0), (\geq 0), \top \rangle$

What is at stake?

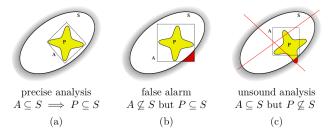


Figure 1.6: Proving that a program P satisfies a safety specification S, i.e., that $P \subseteq S$, using an abstraction A of P: (a) succeeds, (b) fails with a false alarm, and (c) is not a possible configuration for a sound analysis.

Figure – Figure comes from Antoine Minet tutorial

Balance between relevant properties, computationable executions and accuracy of abstraction

Reading group: formal methods for robust deep learning December 2018

A partial order \sqsubseteq on a set X is a relation holding :

- 2 anti-symetric : $\forall x, y \in X : (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$;
- 3 transitivity : $\forall x, y, z \in X : (x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z$;

Partial, means sometimes there are some x and y not sharing any order relation.

A partial order \sqsubseteq on a set X is a relation holding :

2 anti-symetric : $\forall x, y \in X : (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$;

3 transitivity : $\forall x, y, z \in X : (x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z$;

Partial, means sometimes there are some x and y not sharing any order relation. \Box and \Box are resp. *lowerupperbound* and *greaterlowerbound* of two elements of any subset of X. If they exist, they are unique

A partial order \sqsubseteq on a set X is a relation holding :

1 reflexivity :
$$\forall x \in X : x \sqsubseteq x$$
;

2 anti-symetric : $\forall x, y \in X : (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$;

3 transitivity : $\forall x, y, z \in X : (x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z$;

Partial, means sometimes there are some x and y not sharing any order relation. \Box and \Box are resp. *lowerupperbound* and *greaterlowerbound* of two elements of any subset of X. If they exist, they are unique Most relevant partial order : **partial inclusion** \subseteq

A partial order \sqsubseteq on a set X is a relation holding :

1 reflexivity :
$$\forall x \in X : x \sqsubseteq x$$
;

- 2 anti-symetric : $\forall x, y \in X : (x \sqsubseteq y) \land (y \sqsubseteq x) \Rightarrow x = y$;
- $\textbf{3} \text{ transitivity} : \forall x, y, z \in X : (x \sqsubseteq y) \land (y \sqsubseteq z) \Rightarrow x \sqsubseteq z ;$

Partial, means sometimes there are some x and y not sharing any order relation. \Box and \Box are resp. *lowerupperbound* and *greaterlowerbound* of two elements of any subset of X. If they exist, they are unique Most relevant partial order : **partial inclusion** \subseteq

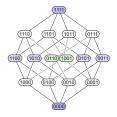


Figure – Partial order representation : Hasse Diagram

Reading group: formal methods for robust deep learning December 2018

Lattice

A lattice is a partially ordered set X such as :

- $A \subseteq X : \sqcup A$ exist
- $A \subseteq X : \sqcap A$ exist
- 3 X as a smaller element \perp
- X as a greatest element \top

Fixpoints

Définition

A fixpoint for a function f is a point x_{fixe} such as $f(x_{fixe}) = x_{fixe}$

Note that $f(x) \subseteq x$. A fixpoint is an *execution invariant*.

Fixpoints

Définition

A fixpoint for a function f is a point x_{fixe} such as $f(x_{fixe}) = x_{fixe}$

Note that $f(x) \subseteq x$. A fixpoint is an *execution invariant*.

Théorème (Knaster-Tarski fixpoint theorem)

If X is a complete lattice and $f : X \to X$ a monotonous application, then the ordered subset of all fixpoints of f is a non-empty complete lattice. In particular, f has a smaller and greater fixpoint.

Partial order and analysis

- approximation with sound but non-comparable analysis
- ② valid regarding a specification : a program semantic P respect a given specification S if P ⊆ S
- **3** Sound analysis : abstract semantic is coarser than real semantic
- Convergence : order is necessary to have convergence towards a fixpoint

Let's summarize

- Lattice X : set with partial order relation \subseteq , a smallest element \perp and a biggest element \top
- A fonction f is monotonous on $X \Rightarrow$, fixpoints x_{fixe} exists

Let's summarize

• Lattice X : set with partial order relation \subseteq , a smallest element \perp and a biggest element \top

• A fonction f is monotonous on $X \Rightarrow$, fixpoints x_{fixe} exists

 $X \rightarrow ?$ $f \rightarrow ?$ $\chi_{fixe} \rightarrow ?$

> Reading group: formal methods for robust deep learning December 2018

Let's summarize

- Lattice X : set with partial order relation \subseteq , a smallest element \perp and a biggest element \top
- A fonction f is monotonous on $X \Rightarrow$, fixpoints x_{fixe} exists

 $X \rightarrow$ The abstract semantic of a program $f \rightarrow$ An evaluation on the abstract semantic $x_{fixe} \rightarrow$ A snapshot of all the states of a program in the abstract semantic

What is the frame of our lattice?

A program state after an abstract execution

What is the frame of our lattice?

A program state after an abstract execution

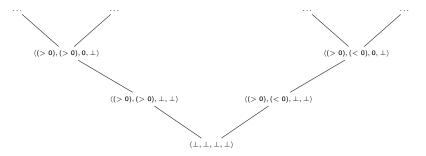


Figure - Partial Hasse diagram of the modulo fonction, for the abstract semantic of signs

Reading group: formal methods for robust deep learning December 2018

Consequences

If we have a monotonous f (abstract evaluations), fixpoints (knowing program states in the abstract semantic) exists! And we can compute them

Consequences

If we have a monotonous f (abstract evaluations), fixpoints (knowing program states in the abstract semantic) exists ! And we can compute them Goal now : "monotonous" computations.

Definitions

Définition

Let D a domain.

- an abstraction function $\alpha : P(\mathcal{R}^d \to D)$
- a concretization function $\gamma: D \to P(\mathcal{R}^d)$

 $d \in D$ is an abstraction of $P(\mathcal{R}^d)$, and $\gamma(d)$ gives us the corresponding values in $P(\mathcal{R}^d)$.

Théorème (Validity of abstract interpretation)

An abstract domain D is "sound" iff $X \subseteq \gamma(\alpha(X)) \forall X \subseteq \mathcal{R}^d$

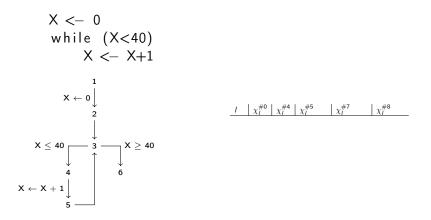
Transfer functions

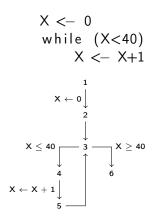
Let a function $f : \mathcal{R}^p \to \mathcal{R}^{d'}$. An abstract transformer is a function $T_f^{\#} : D \to D'$ such as $f(\gamma(d)) \subseteq \gamma'(T_f^{\#}(d))$ for all $d \in D$.

An abstract domain : intervals

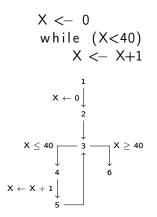
Let $x \in \mathcal{R}^d$, $\varepsilon \in \mathcal{R}^d$. $[x - \varepsilon, x + \varepsilon]$ is an interval, also noted [a, b]. Transfer functions :

[a,b] + [c,d] =	[a+b,c+d]
[a,b]*[c,d] =	[a * b, c * d]
[a, b] =	[-b,-a]

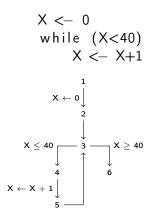




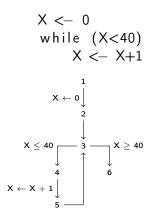
1	$\chi_{I}^{\#0}$	$\chi_{I}^{\#4}$	$\chi_{l}^{\#5}$	$\chi_{l}^{\#7}$	χ#8
1	Т	Т	Т	Т	Т



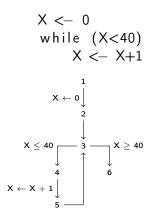
1		$\chi_{I}^{\#0}$	$\chi_{I}^{\#4}$	$\chi_{I}^{\#5}$	$\chi_{I}^{\#7}$	$\chi_{l}^{\#8}$
1	L	Т	Т	Т	Т	Т
	2	\perp	0	0	0	0



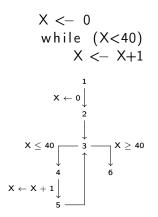
1		$\chi_{I}^{\#0}$	$\chi_{I}^{\#4}$	$\chi_{l}^{\#5}$	$\chi_{l}^{\#7}$	$\chi_{l}^{\#8}$
	1	Т	Т	Т	Т	Т
	2	\perp	0	0	0	0
	3	\perp	0	$[0, +\infty]$	$[0, +\infty]$	$[0, +\infty]$



1	$\chi_{I}^{\#0}$	$\chi_{I}^{\#4}$	$\chi_{I}^{\#5}$	$\chi_{I}^{\#7}$	$\chi_{l}^{\#8}$
1	Т	Т	Т	Т	Т
2	\perp	0	0	0	0
3	\perp	0	$[0, +\infty]$	$[0, +\infty]$	$[0, +\infty]$
4	\perp	0	0	[0, 39]	[0, 39]

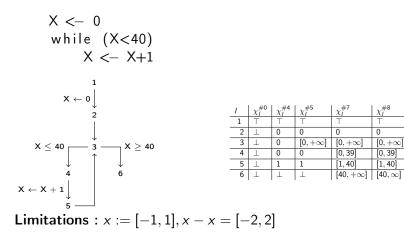


1	$\chi_{I}^{\#0}$	$\chi_{I}^{\#4}$	$\chi_{l}^{\#5}$	$\chi_{l}^{\#7}$	$\chi_{l}^{\#8}$
1	Т	Т	Т	Т	Т
2	1	0	0	0	0
3	1	0	$[0, +\infty]$	$[0, +\infty]$	$[0, +\infty]$
4	1	0	0	[0, 39]	[0, 39]
5	1	1	1	[1, 40]	[1, 40]



1	$\chi_{I}^{\#0}$	$\chi_{I}^{\#4}$	$\chi_{I}^{\#5}$	$\chi_{I}^{\#7}$	$\chi_{l}^{\#8}$
1	Т	Т	Т	Т	Т
2	\perp	0	0	0	0
3	\perp	0	$[0, +\infty]$	$[0, +\infty]$	$[0, +\infty]$
4	\perp	0	0	[0, 39]	[0, 39]
5	\perp	1	1	[1, 40]	[1, 40]
6	\perp	\perp	\perp	$[40, +\infty]$	$[40,\infty]$

Reading group: formal methods for robust deep learning December 2018



Summary of work

- build an abstraction of neural network using the abstract interpretation framework
- encapsulate adversarial perturbations inside abstract domains
- Suild robustness properties on abstract domains and learn networks to minimize adversarial loss

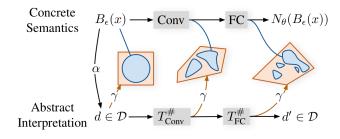


Figure – DiffAI/DeepZ control flow

Reading group: formal methods for robust deep learning December 2018

Abstract domains used

- Intervals $[x \varepsilon, x + \varepsilon]$
- Zonotopes (polytope with a symetry center) z = (z_C, z_E), z_C ∈ R^d center, z_E ∈ R^{d*m} linear constraints
- Hybrids zonotope $h = \langle h_C, h_B, h_E \rangle$, $h_C \in \mathcal{R}^d$ center, $h_B \in \mathcal{R}^d_{\geq 0}$ perturbations, $h_E \in \mathcal{R}^{d*l}$ errors coefficients

Abstractions and concretizations

$$\gamma_{H}(h) = \left\{ h_{conc}(\beta, e) | \beta \in [-1, 1]^{d}, e \in [-1, 1]^{d * m} \right\},$$

$$h_{conc} = h_{C} + diag(h_{B}) * \beta + h_{E} * e$$

Abstractions and concretizations

$$\begin{split} \gamma_H(h) &= \left\{ h_{conc}(\beta, e) | \beta \in [-1, 1]^d, e \in [-1, 1]^{d * m} \right\}, \\ h_{conc} &= h_C + diag(h_B) * \beta + h_E * e \\ i\text{-th total error of an hybrid zonotope } h : \varepsilon_H(h)_i = (h_B)_i + \sum_{j=1}^m |(h_E)_{i,j}| \\ \text{Interval concretization} : \iota_H(h)_i [(h_C)_i - \varepsilon_H(h)_i, (h_C)_i + \varepsilon_H(h)_i] \end{split}$$

Matrix operations

For a matrix $M : T_f^{\#}(h) = \langle M \cdot h_C, M \cdot h_B, M \cdot h_E \rangle$ Includes sum, scalar multiplication, convolutions...

ReLu

Let a zonotope z. A zonotope $z' = T_{Relu_i}^{\#(transfo)}$ with m' = m + 1 is computed : zBox If $min(\iota(z)) \ge 0$, ReLu has no effect and propagated zonotope is the same (modulo dimension). Else :

$$\begin{aligned} (z'_{C})_{t} &= (z_{C})_{t} \text{ for } t \neq i \\ (z'_{E})_{t} &= (z_{E})_{t} \text{ for } t \neq i \\ (z'_{C})_{i} &= ReLu(\frac{1}{2}max(\iota(z)_{i})) \\ (z'_{E})_{i,l} &= 0 \text{ for } l \leq m \\ (z'_{E})_{i,m+1} &= ReLu(\frac{1}{2}max(\iota(z)_{i})) \\ (z'_{E})_{j,m+1} &= 0 \text{ for } j \leq i \\ z\text{Diag If } min(\iota(z)_{i}) &\leq 0 \leq max(\iota(z)_{i}) \text{ holds, then } : (z'_{C})_{t} = (z_{C})_{t} \text{ for } t \neq i \\ (z'_{C})_{i} &= (z_{E})_{t} \text{ for } t \neq i \\ (z'_{C})_{i} &= (z_{E})_{i,l} \text{ for } l \leq m \\ (z'_{E})_{i,m+1} &= -\frac{1}{2}min(\iota(z)_{i}) \\ (z'_{E})_{j,m+1} &= 0 \text{ for } j \leq i \end{aligned}$$

Else, zBox

Adversarial training

Loss : $L(z, y) = \max_{y' \neq y} (z_{y'} - z_y)$, where z points and y labels. Then the adversarial loss when minimized shows the π -robustness of all the training set :

$$L_N^A(x,y) = \max_{\widetilde{z} \in \gamma(T_N^{\#}(\alpha(\pi(x))))} L(\widetilde{z},y).$$

Results

- Epoch training time multiplied between 3 and 7. An epoch on a baseline Resnet is 3.7s, against 12.6s with their method
- Test against one attack (PGD, Madry et al.)
- MNIST : 5.8% on adversarial test error, baseline 100%
- CIFAR-10 : ResNet with adversarial training has a 47.8% test error, baseline is 88%.

Conclusion

An elegant method combining the best of the two worlds, promising results but need to be compared against more attacks and with different metrics

Questions?

:)

Reading group: formal methods for robust deep learning December 2018

SMT

SMT

- Introduction
 - Abstract interpretation
 - Another interpretation of a program
 - Theoretical elements
 - Structure and convergence
 - Abstract domains
 - Case study : DiffAl/DeepZ
 - Transfer functions

3 SMT

• Automated reasoning : SAT calculus

- Problem formulation
- How to solve a SAT problem ?
- Make the theory talk
 - A praxis of theories

• ReLuPlex/DeepSafe/Fast-Lin

Results

Boolean calculus

Two possible values : false(0) and true(1)

Boolean calculus

Two possible values : *false*(0) and *true*(1) Rules are "good" :

- associativity : A \land (B \land C) = (A \land B) \land C
- commutativity $(A \land B = B \land A)$
- idempotency $(A \land A = A)$
- $\bullet\,$ neutral elements : 1 for \wedge , 0 for \vee
- \bullet absorbant elements : 0 for \wedge , 1 for \vee
- distributivity

Boolean calculus

Two possible values : *false*(0) and *true*(1) Rules are "good" :

- associativity : $A \land (B \land C) = (A \land B) \land C$
- commutativity $(A \land B = B \land A)$
- idempotency $(A \land A = A)$
- $\bullet\,$ neutral elements : 1 for \wedge , 0 for \vee
- \bullet absorbant elements : 0 for \wedge , 1 for \vee
- distributivity

Some axioms

- \bigcirc negation \neg
- 2 Morgan's law : $\neg(A \land B) = \neg A \lor \neg B$, same idea for \lor

Boolean calculus (following)

Vocabulaire :

- Litterals : elementary signs (values, variables)
- Clause (or term) : litterals disjunction $(a \lor b)$
- A unit clause iff there is only one litteral involved
- Cunjonctive Normal Form : ((a \lor b) \land (b \lor d))

Boolean calculus (following)

Vocabulaire :

- Litterals : elementary signs (values, variables)
- Clause (or term) : litterals disjunction $(a \lor b)$
- A unit clause iff there is only one litteral involved
- Cunjonctive Normal Form : ((a \lor b) \land (b \lor d))

Boolean calculus is used to encode logic formulae

SAT problem

- Let a formula $A(x_1, x_2, ..., x_n)$, are there boolean values x_i making A true? : SAT
- Let a formula $A(x_1, x_2, ..., x_n)$, is A true for all x_i ? : VALID VALID(A) is equivalent to \neg SAT(\neg A)

SAT problem

- Let a formula $A(x_1, x_2, ..., x_n)$, are there boolean values x_i making A true? : SAT
- Let a formula $A(x_1, x_2, ..., x_n)$, is A true for all x_i ? : VALID VALID(A) is equivalent to \neg SAT(\neg A) NP-complete problem

Conflict Driven Clause Learning

Principle :

- Look for a term leading the formula to UNSAT by assigning values iteratively to variables
- 2 Identify the origin of conflict and learn a clause preventing it
- Repeat until SAT, TIMEOUT or UNSAT

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

$$x_1 \Rightarrow x_4 \ [\varphi_1]$$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

$$\mathbf{x}_1 \Rightarrow \mathbf{x}_4 \ [\varphi_1]$$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \ [\varphi_1] \\ x_3 \Rightarrow x_8 \ [\varphi_2], \ x_{12} \ [\varphi_3] \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \ [\varphi_1] \\ x_3 \Rightarrow x_8 \ [\varphi_2], \ x_{12} \ [\varphi_3] \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \ [\varphi_1] \\ x_3 \Rightarrow x_8 \ [\varphi_2], \ x_{12} \ [\varphi_3] \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \ [\varphi_1] \\ x_3 \Rightarrow x_8 \ [\varphi_2], \ x_{12} \ [\varphi_3] \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \; [\varphi_1] \\ x_3 \Rightarrow x_8 \; [\varphi_2], \; x_{12} \; [\varphi_3] \\ x_2 \Rightarrow x_{11} \; [\varphi_4] \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \; [\varphi_1] \\ x_3 \Rightarrow x_8 \; [\varphi_2], \; x_{12} \; [\varphi_3] \\ x_2 \Rightarrow x_{11} \; [\varphi_4] \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

$$\begin{split} \varphi_1 &= x_1 \lor x_4 \\ \varphi_2 &= x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 &= x_1 \lor x_8 \lor x_{12} \\ \varphi_4 &= x_2 \lor x_{11} \\ \varphi_5 &= \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 &= \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 &= x_8 \lor \overline{x_7} \lor \overline{x_9} \end{split}$$

 $\begin{array}{l} x_1 \Rightarrow x_4 \ [\varphi_1] \\ x_3 \Rightarrow x_8 \ [\varphi_2], \ x_{12} \ [\varphi_3] \\ x_2 \Rightarrow x_{11} \ [\varphi_4] \\ x_7 \Rightarrow x_{13} \ [\varphi_5], \ x_9 \ [\varphi_6], \ \overline{x_9} \ [\varphi_7] \end{array}$

Contradiction because of $\overline{x_3}$, $\overline{x_7}$, x_8

 $\begin{array}{l} \varphi_1 = x_1 \lor x_4 \\ \varphi_2 = x_1 \lor \overline{x_3} \lor \overline{x_8} \\ \varphi_3 = x_1 \lor x_8 \lor x_{12} \\ \varphi_4 = x_2 \lor x_{11} \\ \varphi_5 = \overline{x_3} \lor \overline{x_7} \lor x_{13} \\ \varphi_6 = \overline{x_3} \lor \overline{x_7} \lor \overline{x_{13}} \lor x_9 \\ \varphi_7 = x_8 \lor \overline{x_7} \lor \overline{x_9} \end{array}$

 $\begin{array}{l} x_1 \Rightarrow x_4 \ [\varphi_1] \\ x_3 \Rightarrow x_8 \ [\varphi_2], \ x_{12} \ [\varphi_3] \\ x_2 \Rightarrow x_{11} \ [\varphi_4] \\ x_7 \Rightarrow x_{13} \ [\varphi_5], \ x_9 \ [\varphi_6], \ \overline{x_9} \ [\varphi_7] \end{array}$

Contradiction because of $\overline{x_3}$, $\overline{x_7}$, x_8 $\beta = \overline{x_3} \lor \overline{x_7} \lor x_8$ Conflict memory

Limitations

Thou shalt calculate only booleans

What's a theory?

Définition (Theory)

A theory is an set of symbols and rules specifying the meaning of those symbols and their grammar (how they can be combined together).

To solve $a + b \ge 3$, we need to know about :

- identify symbols 3, a and b as members of the same set (R)
- specify the meaning of the symbol + (what is a sum)
- ullet specify the meaning of the symbol \geq and deduce a constraint
- specify what is the sum of two reals
- a way to solve the equation

To solve $a + b \ge 3$, we need to know about :

- identify symbols 3, a and b as members of the same set (R)
- specify the meaning of the symbol + (what is a sum)
- specify the meaning of the symbol \geq and deduce a constraint
- specify what is the sum of two reals
- a way to solve the equation

Real arithmetic theory gives us the necessary tools :

To solve $a + b \ge 3$, we need to know about :

- identify symbols 3, a and b as members of the same set (R)
- specify the meaning of the symbol + (what is a sum)
- ullet specify the meaning of the symbol \geq and deduce a constraint
- specify what is the sum of two reals
- a way to solve the equation

Real arithmetic theory gives us the necessary tools :

- (R, +, *) as a set with properties
- evaluations rules

To solve $a + b \ge 3$, we need to know about :

- identify symbols 3, a and b as members of the same set (R)
- specify the meaning of the symbol + (what is a sum)
- ullet specify the meaning of the symbol \geq and deduce a constraint
- specify what is the sum of two reals
- a way to solve the equation

Real arithmetic theory gives us the necessary tools :

- (R, +, *) as a set with properties
- evaluations rules

Mature solvers : Linear Programming, simplex algorithm, etc.

How to make out theories with SAT?

- In the second second
- Ind a conjunction of litterals using SAT solvers
- Pass this conjunction to a solver modulo theory
- Propagates given results as constraints via equalities

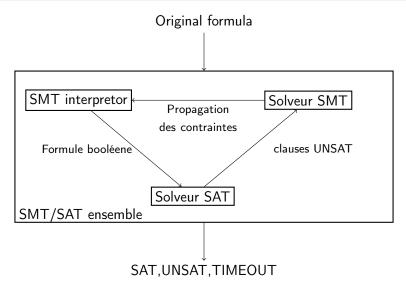
Let the formula $((a = 1) \lor (a = 2)) \land (a \ge 3 \land ((b \le 2) \lor (b \ge 3))$

Let the formula $((a = 1) \lor (a = 2)) \land (a \ge 3 \land ((b \le 2) \lor (b \ge 3))$ There is logic AND arithmetic Are there reals making this formula true?

Let the formula $((a = 1) \lor (a = 2)) \land (a \ge 3 \land ((b \le 2) \lor (b \ge 3))$ There is logic AND arithmetic **Are there reals making this formula true ?** Comment faire? Créer des variables et les passer à SAT. Par exemple : $x_1 : a = 1, x_2 : a = 2, x_3 : a \ge 3, x_4 : b \le 2, x_5 : b \ge 3$

Let the formula $((a = 1) \lor (a = 2)) \land (a \ge 3 \land ((b \le 2) \lor (b \ge 3))$ There is logic AND arithmetic **Are there reals making this formula true ?** Comment faire ? Créer des variables et les passer à SAT. Par exemple : $x_1 : a = 1, x_2 : a = 2, x_3 : a \ge 3, x_4 : b \le 2, x_5 : b \ge 3$ On obtient alors : $(x_1 \lor x_2) \land (x_3 \land (x_4 \lor x_5))$

Let the formula $((a = 1) \lor (a = 2)) \land (a \ge 3 \land ((b \le 2) \lor (b \ge 3))$ There is logic AND arithmetic **Are there reals making this formula true ?** Comment faire? Créer des variables et les passer à SAT. Par exemple : $x_1 : a = 1, x_2 : a = 2, x_3 : a \ge 3, x_4 : b \le 2, x_5 : b \ge 3$ On obtient alors : $(x_1 \lor x_2) \land (x_3 \land (x_4 \lor x_5))$ It's a SAT problem !



Reading group: formal methods for robust deep learning December 2018

Application concrète

Logiciels : Z3, CVC4, Yices, Simplify, Alt-Ergo Que fournir en entrée?

Déclarer des variables d'entrées (fonctions muettes) contraintes sous forme d'inégalités linéaires (ou affines) spécifier le flot de contrôle axiomes éventuels (définitions de fonctions) propriétés à vérifier

Exemple : identité sur un réseau jouet

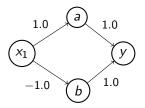


Figure – Pour $x_1 \ge 0$, on a l'identité

(set-logic QF_LRA)

```
;; Declare the neuron variables
```

```
(declare-fun x1 () Real)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun b () Real)
(declare-fun y () Real)
:: Bound input ranges
(assert (>= x1 0))
:: Layer 1
(assert (let ((ws (* x1 1.0)))
(= a (ite (>= ws 0) ws 0))))
(= b (ite (>= ws 0) ws 0))))
(= b (ite (>= ws 0) ws 0))))
:: Layer 2
(assert (let ((ws (+ (* a 1.0) (* b 1.0))))
(= y ws)))
```

```
;; to check
(assert (= y x1))
(check-sat)
```

Exemple : identité sur un réseau jouet

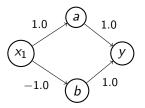


Figure – Pour $x_1 \ge 0$, on a l'identité

```
(set-logic QF_LRA)
```

```
;; Declare the neuron variables
```

```
(declare-fun x1 () Real)
(declare-fun a () Real)
(declare-fun b () Real)
(declare-fun y () Real)
(declare-fun y () Real)
:: Bound input ranges
(assert (>= x1 0))
:: Layer 1
(assert (let ((ws (* x1 1.0))))
(assert (let ((ws (* x1 (- 1.0))))
(a t (te (>= wo ) ws 0))))
:: Layer 2
```

```
;; Layer 2
(assert (let ((ws (+ (* a 1.0) (* b 1.0))))
(= y ws)))
```

```
;; to check
(assert (= y ×1))
(check-sat)
```

julien @ gugnir in ~/Formation/alt-ergo \$ z3 toy-reluplex.smt2 sat

Figure – Formule satisfaite

Reading group: formal methods for robust deep learning December 2018

Articles

- Towards Fast Computation of Certified Robustness for ReLU Networks, Tsui-Wei et al, 2018
- Reluplex : An Efficient SMT Solver for Verifying Deep Neural Networks, Katz et al, 2017
- DeepSafe : A Data-driven Approach for Assessing Robustness of Neural Networks, Gopinath et al, 2018

ReLuPlex : Simplexe + ReLu

Simplex algorithm : for a set of affine constraints, find the optimal solution. If it exists, the solution is at an edge of the constraint polytope

Implemented as an array with update rules

The Linear Programming Problem

Solve this linear programming problem.

ReLuPlex : Simplexe + ReLu

- Two variables for each ReLu : backward and forward
- Updates rules for ReLu inside of Simplex algorithm

$$\begin{split} & \text{Update}_{b} \quad \frac{x_{i} \notin \mathcal{S}, \ (x_{i}, x_{j}) \in R, \ \alpha(x_{j}) \neq \max(0, \alpha(x_{i})), \ \alpha(x_{j}) \geq 0}{\alpha : = \text{update}(\alpha, x_{i}, \alpha(x_{j}) - \alpha(x_{i}))}\\ & \text{Update}_{f} \quad \frac{x_{j} \notin B, \ (x_{i}, x_{j}) \in R, \ \alpha(x_{j}) \neq \max(0, \alpha(x_{i}))}{\alpha : = \text{updat}(\alpha, x_{i}, \alpha(x_{i})) - \alpha(x_{j}))}\\ & \text{PixetForRel} \quad \frac{x_{i} \in B, \ 3x_{i}, (x_{i}, x_{i}) \in R, \ x_{i} \notin B, \ T_{i,j} \neq 0}{T : = \text{proot}(T, i, j), \ B := B \cup \{x_{j}\} \setminus \{x_{i}\}}\\ & \text{ReluSplit} \quad \frac{\langle x_{i}, x_{j} \rangle \in R, \ i \notin R, \ i < (x_{i}) < 0, \ u(x_{i}) > 0}{U(x_{i}) : = 0, \ U(x_{i}) : = 0}\\ & \frac{\forall x \in \mathcal{X}, \ l(x) \leq \alpha(x) \leq u(x), \ \forall x_{i}^{*}, x_{i}^{*} \in R, \ \alpha(x^{*}) = \max(0, \alpha(x^{*})) \\ \end{split}$$

DeepSafe : partition the input space

- Parition the input space using non-supervised clustering
- Uses SMT solvers to prove a given region robust regarding a certain label
- Partial robustness

Experimental setting

- ACAS Xu neural networks : Inputs are sensors informations (7 dimensions), output are instructions given to the pilot (5 dimensions)
- 6 layers, 7 or 9 neurons per layer, fully connected

From the $N_{12}^{(1)}$ is $p \le 0.0288$, $-3.341202 \le \theta \le -0.75$, $3.14292 \ge \theta \le -0.75$, $3.14292 \ge -0.1 \le 0 \le 0.1$, $0.00 \le n_{\rm inver} \le 1200$, $0.00 \le n_{\rm int} \le 1200$. Desired settput property: the score for "weak left" is minimal or the score for OCO is unimal.

Figure - Exemple of verified properties

Results : ReLuPlex

Property de

Property g_{k} . — Developing III the introduce is discretize aband and is moving among from the weakly but at a lower speed than that of the consolipt, the source for COC will us to be unionized. — Tractod one all networks receipt $N_{k,k}, N_{k,k}$ and $N_{k,k}$. — Experimentation 1500 $\beta \neq 500$, $\alpha = 0.06$, $\beta = 0.06$, $\beta = 0$, $\tau_{max} \geq 1000$, $200 \, s_{m} \geq 800$. — Desired energies grouper preperty: the score for COC is not the minimal score.

Property du-

- Denoiption IF for introduc in collisions by law arrays, the actional advisors COC. - Tractor on $\mathcal{H}_{0,n}$ - Input constraints: 12000 $\leq p \leq 00000, 10.7 \leq \theta \leq 1.141500 (\gamma (-3.14100 \pm \theta \leq 0.000, 100 \pm 1.14100 \pm \theta \leq 0.000, 100 \pm 1.14100 \pm \theta \leq 0.000, 100 \pm 1.14100 \pm 0.000, 100 \pm 0.000,$

Property du-

- Description to return equivalent to any , the reveals that have a row a rest a - Description $S_{\rm eff}$, $S_{\rm eff}$, - Description $S_{\rm eff}$, $S_{\rm eff}$, - Description - Description

Property du-

sety, the network will where extrate OOC is containent deriving "weak Me". Transist ans. "Spin Set $S \ge S \ge 0.0788$, $-3.311200 \le M \le -8.7533.310202$, $-8.1 \le 0 \le 4.5$, -0.05, $s_{\rm rimes} \le 1200$, 0.000 yrs $s_{\rm rimes} \le 1200$.

Figure – Exemple of verified properties

	Table 2:	Verifying	properties .	of the	ACAS	Xu	networks.
--	----------	-----------	--------------	--------	------	----	-----------

	Netv	vorks	Result	Time	Stack	Splits	
ϕ_1		41	UNSAT	394517	47	1522384	
		4	TIMEOUT				
ϕ_2		1	UNSAT	463	55	88388	
		35	SAT	82419	44	284515	
ϕ_3		42	UNSAT	28156	22	52080	
ϕ_4		42	UNSAT	12475	21	23940	
ϕ_5		1	UNSAT	19355	46	58914	
ϕ_6		1	UNSAT	180288	50	548496	
φ ₇		c. 1	TIMEOUT				ep learning
Reading $\phi_7^{\phi_7}$	roup:	TOF	SATIE	40102	or 69	DU\$E697	ep learning
ϕ_9		1	BRSAT	1596340	1848	227002	

Results : DeepSafe

MNIST proven robust for certain labels within 12 hours of testing, with 10 hours of clustering (80 clusters).

Questions?

:)

Reading group: formal methods for robust deep learning December 2018