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The Loss Function

1. Take a dataset and split it into two parts: Dtrain & Dtest

2. Form the loss using only Dtrain:

Ltrain(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

`(w ; (x , y))

3. Find: w∗ = arg minLtrain(w)

4. ...and hope that it’ll work on Dtest .
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The Loss Function

Some quantites:

• M : number of parameters w ∈ RM

• N : number of examples in the training set |Dtrain|
• d : number of dimension in the input x ∈ Rd

• k : number of classes in the dataset

Question: When do we call a model over-parametrized?
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The Loss Function

Old fear:

• M in w ∈ RM is large

• L(w) is non-convex in w

But SGD works:

• random stating point → same loss value

• larger M → better performance

Conclusion: Optimization is easy with SGD!
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Training
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What’s special about SGD?

GD is bad use SGD:

This remark in Bottou (1991) is still widely believed (with a twist)!
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What’s special about SGD?

GD is bad use SGD:

Bourelly (1988)
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What’s special about SGD?

Simple fully-connected network on MNIST (S.-Guney-LeCun, 2014):

M ∼ 43K (left) and M ∼ 450K (right)
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What’s special about SGD?

GD is bad use SGD:

In Bourelly (1988), M is tiny, the network has only 5 neurons in the

hidden layer!
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What’s special about SGD?

Assuming good initialization and right pre-processing (non-trivial)

Training is easy when M is large (S.-Bottou 2016, Zhang et. al. 2016)

• Corrupt data

• Scramble labels

• More complex data

• Random polynomials

8



Generalization
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SGD is really special

Simple fully-connected network on MNIST (S.-Guney-LeCun, 2014):

M ∼ 43K (left) and M ∼ 450K (right)
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Average number of misclassifications:

small-SGD: 256, small-GD: 299, large-SGD: 174, large-GD: 194
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SGD is really special

Where common wisdom may be true (Keskar et. al. 2016.):

F2: fully connected, TIMIT (M = 1.2M)

C1: conv-net, CIFAR10 (M = 1.7M)

• Similar training error, but gap in the test error.

10



SGD is really special

Moreover, Keskar et. al. (2016) observe that:

• LB → sharp minima

• SB → wide minima

Considerations around the idea of sharp/wide minima:

Pardalos et. al. 1993 (More recently: Zecchina et. al., Bengio et. al., ...)
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SGD is really special

Repeating the LB/SB with a twist (S. et. al. 2017).

1. Train a large batch CIFAR10 on a bare AlexNet

2. At the end point switch to small batch
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SGD is really special

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation coefficient

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Line interpolation between end points of the two phases

Train accuracy
Test accuracy

13



SGD is really special

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation coefficient

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Line interpolation between end points of the two phases

Train accuracy
Test accuracy

13



SGD is really special

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

2. Extend a line away from the SB solution

3. Extend a line away between the two solutions

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Interpolation coefficient

0

1

2

3

4

5

6

7

Lo
ss

 v
al

ue

Train loss
Test loss

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Line interpolation between end points of the two phases

Train accuracy
Test accuracy

13



Local geometry of the loss
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Hessian of the loss

Check out the Taylor expansion for local geometry:

L(w + ∆w) ≈ L(w) + ∆wT∇L(w) + ∆wT∇2L(w)∆w

Local geometry at a critical point:

• All positive → local min

• All negative → local max

• Some negative → saddle

• Moving along eigenvectors and sizes of eigenvalues
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Hessian of the loss: An example

2-hidden layer ReLU network with 50 categories of Gaussian blobs in 100

dimensions. Trained with SGD constant step size.
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Gauss-Newton decomposition of the Hessian

Loss functions between the output, s, and label, y

• MSE `(s, y) = (s − y)2

• Hinge `(s, y) = max{0, sy}
• NLL `(sy , y) = −sy + log

∑
y ′ exp sy ′

are all convex in their output: s = f (w ; x)
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Gauss-Newton decomposition of the Hessian

With ` ◦ f in mind, the gradient and the Hessian per loss:

∇`(f (w)) = `′(f (w))∇f (w)

∇2`(f (w)) = `′′(f (w))∇f (w)∇f (w)T + `′(f (w))∇2f (w)

then average over the training data:

∇2L(w) =
1

N

N∑
i=1

`′′(f (w))∇f (w)∇f (w)T +
1

N

N∑
i=1

`′(f (w))∇2f (w)
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First term of the decomposition

Let’s ignore the second term for the moment and look at the first term:

∇2L(w) ≈ 1

N

N∑
i=1

`′′(f (w))∇f (w)∇f (w)T︸ ︷︷ ︸
g(w)g(w)T

where g is an M × N matrix with min{M,N} non-trivial eigenvalues.

• Suppose the data has k clusters each with small variance

• Redundancy in N examples (even when N is too large)

• Would G (w) have order k non-trivial eigenvalues?
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Closer look: (1) data and outliers

Let’s train a neural network on artificial data of k-blobs for a fixed ReLU

architecture, learning rate, and batch-size. Changing k gives rise to

roughly k large eigenvalues:
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Closer look: (2) number of parameters and outliers

Increasing the size of the network adds more zeros.
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Closer look: (3) algorithm and outliers

Increasing the batch-size leads to larger outlier eigenvalues.
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Further observations

QUESTION: What’s the fluctuations of the top eigenvalue?

• What should we expect?

• Not many ev’s that push the top one.

• The Hessian is correlated
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Further observations

Fix the dimension of the system, calculate the top eigenvalue and repeat

training with the same fixed number of iterations 50K times.

Remark: Kurt Johansson “From Gumbel to Tracy-Widom”(2005)
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Final thoughts and conclusion

• Existing tools require non-degenerate functions

• Existing intuituion may be misleading

• Maybe this flatness is the feature
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Thank you!
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