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The Loss Function

1. Take a dataset and split it into two parts: Dirain & Diest
2. Form the loss using only Dy,ain:
1
Lirain(W) = —=—— Z Uw; (x,y))
‘,Dtrain‘

(X7Y)€Dtrain

w

. Find: w* = argmin Lin(w)

>

...and hope that it'll work on Dies;.



The Loss Function

Some quantites:

e M : number of parameters w € RM
e N : number of examples in the training set |Diyain|
e d : number of dimension in the input x € R

e k : number of classes in the dataset

Question: When do we call a model over-parametrized?



The Loss Function

Old fear:

e Minw e RMis large

e L(w) is non-convex in w
But SGD works:

e random stating point — same loss value

e larger M — better performance

Conclusion: Optimization is easy with SGD!



Training



What'’s special about SGD?

GD is bad use SGD:

o The total gradient (3) converges to a local minimum of the cost function. The algorithm

then cannot escape this local minimum, which is sometimes a poor solution of the
problem.
In practical situations, the gradient algorithm may get stuck in an area where the cost
is extremely ill conditionned, like a deep ravine of the cost function. This situation
actually is a local minimum in a subspace defined by the largest eigenvalues of the
Hessian matrix of the cost.

The stochastic gradient algorithm (4) usually is able to escape from such bothersome
situations, thanks to its random behavior (Bourrely, 1989).

This remark in Bottou (1991) is still widely believed (with a twist)!



What'’s special about SGD?

GD is bad use SGD:

It has been shown that the difficulty in parallel earning is duc o the fact that the paryy

algorithm does not really use the stochastic algorithm. Two solutions are presently Proposed 1,

prevent the system from falling into a local minimum.

1)

Bourelly (1988)

Add momentum to the algorithm such that it can "roll past” a local minimum, Thus the

algorithm then becomes:
Wi = (1-0) Wi - £ a f(W,, X))

where f is the error gradient Q relative to W

One can add a random "noise" to the gradient calculations. One method of performing this
task is to calculate the gradients in an approximate manner. This variation could be
modelled as a type of ‘Brownian motion', using a temperature function (similar to simulated
annealing). This temperature could be lowered relative to the Temaining system error. For
example, the variation in gradients could follow a Gaussian distribution. Thus, for
example:

Wi =We-eN(£(W, X)), kY Temp)
where f is the error gradient Q relative to W
and Nis a function giving a Gaussian random variable.

Both of these approaches are presently under research.



What'’s special ab

Simple fully-connected network on MNIST (S.-Guney-LeCun, 2014):
M ~ 43K (left) and M ~ 450K (right)
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What'’s special about SGD?

Assuming good initialization and right pre-processing (non-trivial)

Training is easy when M is large (S.-Bottou 2016, Zhang et. al. 2016)

e Corrupt data
e Scramble labels
e More complex data

e Random polynomials



Generalization



SGD is really special

Simple fully-connected network on MNIST (S.-Guney-LeCun, 2014):
M ~ 43K (left) and M ~ 450K (right)

Cost vs. step no for 500-300 network
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Average number of misclassifications:
small-SGD: 256, small-GD: 299, large-SGD: 174, large-GD: 194



SGD is really special

Where common wisdom may be true (Keskar et. al. 2016.):

Accuracy

Accuracy
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Figure 2: Convergence trajectories of training and testing accuracy for SB and LB methods

F2: fully connected, TIMIT (M = 1.2M)
C1: conv-net, CIFAR10 (M = 1.7M)

e Similar training error, but gap in the test error.
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SGD is really special

Moreover, Keskar et. al. (2016) observe that:

e LB — sharp minima
e SB — wide minima

Considerations around the idea of sharp/wide minima:

fins(R) =/ '{/5\[1;7 R)fH(R)]dR'} (2)
where R is a multidimensional vector representing all the coordinates in the molecule.
One of the simplest and most useful forms for Sy is a Gaussian
Sy(R) = C(A)eMTR
C(A) = =2Det7'(A) (3)

where d is the total dimensionality of #. The function [ included in (2) allows for non-
linear averaging. Two choices motivated by physical considerations are f(z) = z and f(z) =
¢=#/E5T | Phese choices correspond respectively to the “diffusion equation” and “cffective
energy” methods which are described below. Wu [77] has presented a general discussion of
transformations of the form of (2).

A highly smoothed I‘I\J (from which all high spatial-frequency components have been
removed) will in most cases have fewer local minima than the unsmoothed (“bare”) func
{ion, so it will be much easier to identify its global minimum. If the strong spatial-scaling
hypothesis is correct, the position of this minimum can then be iteratively tracked by local-
minimi

tion as A decreases. As A — 0, the position will approach the global minimizer of
the bare objective function.

Pardalos et. al. 1993 (More recently: Zecchina et. al., Bengio et. al., ...)
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SGD is really special

Repeating the LB/SB with a twist (S. et. al. 2017).

1. Train a large batch CIFAR10 on a bare AlexNet
2. At the end point switch to small batch

Continuous training in two phases
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SGD is really special

Keep the two points: end of LB training and end of SB continuation.

1. Extend a line away from the LB solution

Line interpolation between end points of the two phases
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SGD is really special
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SGD is really special
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Local geometry of the loss



Hessian of the loss

Check out the Taylor expansion for local geometry:

L(w+ Aw) =~ L(w) + Aw VL(w) + AwV2L(w)Aw

Local geometry at a critical point:

All positive — local min

All negative — local max
e Some negative — saddle

e Moving along eigenvectors and sizes of eigenvalues
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Hessian of the loss: An example

2-hidden layer ReLU network with 50 categories of Gaussian blobs in 100
dimensions. Trained with SGD constant step size.

le—1 Full spectrum at large scale
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Order of eigenvalues

All zero, with some outliers... 15



Gauss-Newton decomposition of the Hessian

Loss functions between the output, s, and label, y

o MSE ((s,y) = (s —y)°
e Hinge {(s,y) = max{0, sy}
o NLL {(sy,y) = —s, +log ), exps,

are all convex in their output: s = f(w; x)
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Gauss-Newton decomposition of the Hessian

With £ o f in mind, the gradient and the Hessian per loss:

VU(F(w)) = £ (F(w))VF(w)
V2U(f(w)) = ' (F(w))VF(w)VF(w)T + 0/ (F(w))Vf(w)

then average over the training data:

N

N
V2L(w) = © D W)V (w) N (w)

i=1

17



First term of the decomposition

Let’s ignore the second term for the moment and look at the first term:

V2L(w) ~ % Z O (F(w))VF(w)VF(w)"

g(w)g(w)™
where g is an M x N matrix with min{ M, N} non-trivial eigenvalues.

e Suppose the data has k clusters each with small variance
e Redundancy in N examples (even when N is too large)

e Would G(w) have order k non-trivial eigenvalues?

18



Closer look: (1) data and outliers

Let’s train a neural network on artificial data of k-blobs for a fixed ReLU
architecture, learning rate, and batch-size. Changing k gives rise to
roughly k large eigenvalues:
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Closer look: (2) number of parameters and outliers

Increasing the size of the network adds more zeros.

Eigenvalues
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Closer look: (3) algorithm and outliers

Increasing the batch-size leads to larger outlier eigenvalues.

lel Right eigenvalue distribution . .
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Further observations

QUESTION: What's the fluctuations of the top eigenvalue?

e What should we expect?
e Not many ev's that push the top one.
e The Hessian is correlated

Full Hessian at the beginning Full Hessian at the end
0 0.02 ° 0.0015
1000 1000
0.01 0.0010
2000 2000
3000 000 3000 0.0005
4000 4000
oot 0.0000
5000 5000

—0.02

—0.0005
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Further observations

Fix the dimension of the system, calculate the top eigenvalue and repeat
training with the same fixed number of iterations 50K times.

Top eigenvalue fluctuations of the loss function

1000
800
600
400

200

Remark: Kurt Johansson “From Gumbel to Tracy-Widom" (2005)



Final thoughts and conclusion

e Existing tools require non-degenerate functions
e Existing intuituion may be misleading

e Maybe this flatness is the feature
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Thank youl!



