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Initializing a neural network

Framework

Neural network with layers / € {1,--- L} of sizes n;. Each neuron performs
the following computation:

ni—1

2= Wiyl b,y =),
Jj=1

where:
@ ¢: activation function;
o z!, yl: pre-activation, activation of the preceding layer;
o Wi

ijy

bl: weight, bias.

Backpropagation of the gradient:
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Initializing a neural network

Forward and backward
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Initializing a neural network

Issues with the initialization of weights and biases

We want to:

@ propagate information: avoid activations explosion/collapse;

@ backpropagate information: avoid gradients explosion/collapse.
We must avoid these problems at initialization.

= find a good initialization distribution for WU’ and b!.
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Glorot/He Initialization

Idea: variance preservation

Initialization rule for a layer /. We assume that:
o the inputs (y?); and (y/); are random and i.i.d.;

gyL_,)l are i.i.d and independent from the inputs.

i/

@ the gradients (

Ideas:
@ preserve variance of the pre-activations during propagation;

@ preserve variance of the gradients during backpropagation.
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Glorot/He Initialization

Idea: variance preservation

Initialization rule for a layer /. We assume that:
o the inputs (y?); and (y/); are random and i.i.d.;

gyL_,)l are i.i.d and independent from the inputs.

i/

@ the gradients (

Ideas:
@ preserve variance of the pre-activations during propagation;

@ preserve variance of the gradients during backpropagation.
Therefore, we have, for all layers I
Var(y') = Var(y/*") = Var(¢(2')) ~ nj_1Var(W!) =1

Var (}%) = Var (%) = Var(¢/(Z )W) ~ nVar(W) = 1
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Glorot/He Initialization

Results

Glorot initialization:

W'~ U (_ V6 NG )
h \/n/-i-n/—17 V4 ni—y

Var(W/) = 2

ni+n—

Arithmetic compromise between forward and backward variance preservation.
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Glorot/He Initialization

Results

Glorot initialization:

W(Nu( V6 V6 )

_\/n, +n_1’ V4 ni—y
Var(W!) = #
ni+n—

Arithmetic compromise between forward and backward variance preservation.

w! ~N<0,< *ﬁl)2>,

Factor 1/2: variance preservation when ¢ = ReLU.
Preserves the variance during the forward pass.
Backward pass: no variance collapse/explosion, even for arbitrarily deep NNs.

He initialization:
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Glorot/He Initialization

References

o Understanding the difficulty of training deep feedforward neural networks,
Glorot and Bengio, 2010;

o Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification, He et al., 2015.
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Edge of Chaos Link with the Neural Tangent Kernels

Framework

Study:
@ propagation of deterministic inputs;

@ correlation between two data points across a neural network.

Given two inputs input a and b:
@ (xja)i: input vector of a data point a;
(zl,)i: the pre-activation at layer /, given a data point a.

q., = E[27,]: expected variance of a pre-activation at layer /;

qlp, = E[zi2zib]: expected covariance between the pre-activations of two
inputs a and b at layer /.

Goal: study the sequences (g.,); and (gb,);. Fixed point? Convergence? ...
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Recurrence Relations

Assumption: the pre-activations are Gaussian (i.e. the layers are very wide).
2
Initialization: W} ~ A (0, %w) and b} ~ N(0,02)

/¢( Gaa )Dz+0§

qéb =0l / ¢(u1)p(u2)Dz1Dzy + o'g,

Recurrence relations:

/
Gaa

where D is the Gaussian distribution A/(0,1), v = Vahla,
u = qL;l (C;;lzl —+ 1-— ( ) 22)

I ‘7,13[,

Cap — .
V qgaqu

Correlation:
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Edge of Chaos

Fixed points

Convergence towards fixed points for several activation functions ¢.
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Edge of Chaos Link with the Neural Tangent Kernels

Meaning of the fixed points

V/q* is the limit of the norms of the pre-activations (||z}||2); as | — oo.

Interpretation of the convergence of (c.); towards c*:
@ ¢* =1: two inputs a and b, even far from each other, tend to be fully
correlated
= order;
e c* €[0,1[: two close inputs a and b, tend to decorrelate
= chaos.
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Discriminator x1

!
c* = 1is always a fixed point. Stability determined by x1 = s

aclt 1
Cases:
@ x1 < 1= c¢*=1isstable = order;
@ x1 = 1= ¢* =1is "“astable” = transition order/chaos;
@ x1 > 1= c¢" =1is unstable, the limit is <1 = chaos;
Ordered o Ordered
" Chaotic Chaotic
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Edge of Chaos

Principle
Depth of Propagation/Backpropagation
Link with the Neural Tangent Kernels

Exponential convergence of g’, and c/,

Across how many layers does information
propagates/backpropagates?

Speed of convergence of g., and ¢, with
respect to /.

Goal: the convergence of (cl,); should be as
slow as possible.

Preserve initial correlation.

Figures: red: o2 = 0.01; purple: 02 =1.7.
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Depth of Information Propagation

Guess: Exponential convergence.
I L.
° |qaa - q*| ~ exp (75)1
! * !
@ |cop — €| ~ exp (_g)
Asymptotic recurrence relations give:

° &t =—log 1 +oy [¢"(VaT2)é(va 2)Dz];
o &1 =log [of [ ¢'(ui)¢' (us)Dz1 D2
Case x1 = 1: & = 0.

(chp)i converges slower than exponentially towards 1.
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Edge of Chaos

ut the gradients

Layers necessary to achieve convergence:
@ expected gradient norm: §§1 = —log x1;
e expected gradient correlation: £ = log [02 [ ¢'(uf)¢'(u3)Dz1Dz].
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Neural Tangent Kernels (NTK)

Dynamics of the training of a neural network:

_1

dhi(X) = -

Ks, (X, X)VL(£(X), ) dt,

where f; is the NN, (X, )) is the training set, 0; is the vector of parameters,
{(z,y) is the loss, and Kj. is the “NTK".
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Neural Tangent Kernels (NTK)

Dynamics of the training of a neural network:

_1

dhi(X) = -

Ko (X, X)VL(£(X), V) dt,
where f; is the NN, (X, )) is the training set, 0; is the vector of parameters,
{(z,y) is the loss, and Kj. is the “NTK".

In the infinite-width limit:

dfi(X) = —%KL(X, X))V L(R(X),Y)dt,

where K' is the limit kernel as the widths tend to infinity.
K" depends of the initialization distribution of weights and biases.
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Neural Tangent Kernels (NTK)

Dynamics of the training of a neural network:

_1

dhi(X) = -

Ko (X, X)VL(£(X), V) dt,
where f; is the NN, (X, )) is the training set, 0; is the vector of parameters,
{(z,y) is the loss, and Kj. is the “NTK".

In the infinite-width limit:

dfi(X) = —%KL(X, X))V L(R(X),Y)dt,

where K' is the limit kernel as the widths tend to infinity.
K" depends of the initialization distribution of weights and biases.

Example with £(z,y) = %HLY“%Z

dfi(X) = —%KL(X, X)(R(X) — Y)dt.
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NTK with EOC Initialization

Behavior of K as L — c0?

Results:

o if K! is singular, then there exists C > 0 such that, for all t:
1f:(X) = V| = C.
= untrainable NN;

o if the initialization parameters (ow, o) lie in the ordered or chaotic phase,
then K" tends towards a constant kernel K> (x,x") = A, which is singular
= untrainable;

o if the initialization parameters (0w, o) lie on the EOC, then K* is
invertible
= trainable.

Conclusion: EOC initialization is useful to make an arbitrarily deep NN
trainable.
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References

o EOC: Exponential expressivity in deep neural networks through transient
chaos, Poole et al., 2016;

o EOC and layer scales: Deep information propagation, Schoenholz et al.,
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o NTK and EOC: Mean-field Behaviour of Neural Tangent Kernel for Deep
Neural Networks, Hayou et al., 2019.

Pierre Wolinski Initializing a Neural Network on the Edge of Chaos



Conclusion

© Conclusion

Pierre Wolinski itializing a Neural Network on the Edge of Chaos



Conclusion

Conclusion

importance of the Edge of Chaos to study the training dynamics;
question: validity of the infinite-width approximations (EOC and NTK);

question: Gaussian behavior of the pre-activations (EOC);

“philosophical” question: after Glorot/He and EOC approaches, is there
another refinement of the initialization procedure?
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Conclusion

Conclusion

importance of the Edge of Chaos to study the training dynamics;
question: validity of the infinite-width approximations (EOC and NTK);

question: Gaussian behavior of the pre-activations (EOC);

“philosophical” question: after Glorot/He and EOC approaches, is there
another refinement of the initialization procedure?

Thank you for your attention!
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