Structural Learning of Neural Networks
PhD Defense

Pierre Wolinski

TAU Team, LRI & Inria

March 6, 2020

L]
universits Lot

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Artificial Intelligence

Artificial Intelligence: solve a given task, like image recognition/classification
or winning at the go game...

w
~§ —— vird

BN
! — horse

Classification task Al “AlphaGo”

LEE SEDOL
. 00:01:00

Credits: Alex Krizhevsky Credits: Google DeepMind

Machine Learning: instead of implementing “human methods” into programs,
let programs find the best method to solve given tasks.

Pierre Wolinski Structural Learning of Neural Networks

Introduction

How to Do Machine Learning

Recipe of Machine Learning

Fix a task to be performed

Build a training dataset

Build a model to perform the task
(usually a program with initially unde-
termined parameters)

Design an algorithm to train the model
to perform the task (i.e., which modifies
its parameters to improve it)

Example

Task: recognize handwritten digits.

Dataset: database of labeled images of
handwritten digits.

Model: Convolutional Neural Network

Training Algorithm: Stochastic Gradi-
ent Descent with backpropagation of the
gradient

Pierre Wolinski Structural Learning of Neural Networks

—_— O
Classification
Task:

q — 9

_>8

Pierre Wolinski Structural Learning of Neural Networks

OQ~AMmM>TrwrS~=o
ONAd®mIWne N o
Sk M= nS N %
[N~AmsLaters

O— DTV NP
Qo™ =&
A~amyI e &
QAN O w09 ¢
Q—AO>Pw0 NN
ONdNOTnI ra
DN PIMT VI~
N—VPTWI v
SexXMn>oS 8
S=AMANIO N\

q

9949399904

Q—¥MIYVLS ~w
OS~XMI 9 ™o

Dataset

Classification

Task:

Structural Learning of Neural Networks

Pierre Wolinski

OQ~AMmM>TrwrS~=o
ONAd®mIWne N o
Sk M= nS N %
[N~AmsLaters
O~ 4O TVS AP
Qo™ =&
A~amI e =6
QAN O w09 ¢
- O>rwon®
ONdNOTnI ra
VDN IMT VI ~
N—VPTWI v
SexXMn>oS 8
S=AMANIO N\
Q= ¥MILS WO
OS~XMI 9 ™o

q

99439949794

Dataset

Classification
Task

Convolutional

Neural Net.

H

64x1ax14

32x14x14

28x28

128x10

2x28x28

Credits: Krut Patel

3136x128

Structural Learning of Neural Networks

Pierre Wolinski

OQ~AMmM>TrwrS~=o
ONAd®mIWne N o
Sk M= nS N %
[N~AmsLaters
O~ 4O TVS AP
Qo™ =&
A~amI e =6
QAN O w09 ¢
- O>rwon®
ONdNOTnI ra
VDN IMT VI ~
VNP TWVWI [~
SexXMI>OS R
S=AMANIO N\
Q= ¥MILS WO
OS~XMI 9 ™o

q

99439949794

Dataset

Classification
Task

Backprop. + SGD

Convolutional

Neural Net.

Oy

AN

Oy
Q
55

Image

pl "

64x7x7

64x1ax14

32x14x14

28x28

128x10

&
&

2x28x28

Credits: Krut Patel

3136x128

Structural Learning of Neural Networks

Pierre Wolinski

Introduction

Neural Networks

Approach of Machine Learning: Neural Networks.
Very flexible class of models, trainable with a generic algorithm.

trainable
parameters
B —
output
E—
inputs
neuron neural network

The artificial neuron is the elementary brick of every neural network, infinite
ways to combine them = choice of the model, training hyperparameters.

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Problem: Hyperparameters

Hyperparameter search:
@ architecture of the neural network;
o learning rate n: w <~ w — nVyL;
o penalty A, r: L(w, D) = S0, [lyi — Mu(x)[+ A r(w).

Main issues:

o efficient architectures are usually very large:
how to reduce their size? = pruning.

@ optimal n and A depend strongly on the neural network architecture:
find rules to get rid of 1 or find default values for and A.

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Summary

Goal:
Build theoretically well-founded methods to help fixing the hyperparameters n
and A, and the architecture.

© Learning with Random Learning Rates,
get rid of the learning rate 7;

@ Interpreting a Penalty as the Influence of a Bayesian Prior,
bridge between empirical penalties and the Bayesian framework,
default value for A;

© Asymmetrical Scaling Layer for Stable Network Pruning,
reparameterization of neural networks to find a default value for 7,
pruning technique.

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

© Learning with Random Learning Rates
Robustness of Training Methods

@ Presentation of Alrao

@ Experimental Results

@ Conclusion

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Robustness of Training Methods

When training a neural network, we want robustness:
@ during training,
o between runs,
@ between architectures and datasets,
@ robust to hyperparameter change.

Sensitive hyperparameter: learning rate.

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Robustness of Training Methods

When training a neural network, we want robustness:
@ during training,
o between runs,
@ between architectures and datasets,
@ robust to hyperparameter change.

Sensitive hyperparameter: learning rate.

Idea of Alrao: instead of searching the optimal learning rate, add diversity in
the learning rates:

@ we attribute randomly a learning rate to each neuron, sampled from a
distribution spanning many orders of magnitude;

@ neurons with a wrong learning rates will be useless and ignored;

@ emergence of an efficient sub-network.

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Alrao: in the Internal Layers

Setting: classification task performed by a
feedforward network:

Output

Network = internal layers + classification layer

1 Sm}nmx ?
Learning rates sampling: we sample a learning rate ~
Nneuron Per neuron from the log-uniform /%\
distribution on the interval (7min, 7Jmax): ; -)
Bs=—

Input

Classifier

|0g nn~ Z/[(T]mina nmax)-

Pre-classifier model

Update rule: for every neuron, the update of its
parameters Gpheuron iS:

Oneuron < Bneuron — "7neur0nv9neulron L(e)

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Alrao: in the Output Layer

Issue: in the classification layer, each neuron
corresponds to a class. All classes should be trained
equivalently.

How to use Alrao in the output layer?

Output

Model Averaging

Modified architecture: we replace the single 4 + 4
" . . . Mix Softmax Softmax Softmax

classification layer by a convex combination C s 4

of classifier layers (G);:

CMix = Z aj C,',

each one with a learning rate sampled in
(nmin7 nmax)-

Training method:

Input

o each classifier is trained separately;

o averaging weights (a;); are updated with the
Switch Bayesian averaging method.

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

How Does Alrao Compare to SGD and Adam?

Experiments: comparison between Alrao, SGD with optimized 7, and Adam.

Tasks and architectures:
o CIFAR-10: MobileNet, GooglLeNet, VGG19;
o ImageNet: AlexNet, DenseNet121, ResNet50;
@ PennTreeBank: LSTM;
°

Reinforcement Learning: Pendulum, Lunar Lander.

Observations:

@ Alrao performs almost as well as SGD with its best learning rate, without
grid search;

@ not a single run of Alrao has failed.

Pierre Wolinski Structural Learning of Neural Networks

. . . Robustness of Training Methods
Learning with Random Learning Rates Presentation of Alrao

Experimental Results

Conclusion

How Does Alrao Compare to SGD and Adam?

Loss test

---- alrao: (10~%, 10%)
- alrao, width * 3
Ir=1e-01
—— Ir=1e-02
Ir=1e-03
Ir=1e-04 Setups:
Ir=1e-05
Adam H
2 R idth = 3 ° Alrao with a Large1
8 interval (1072,10%);
@ SGD with
-5 14.
“Adam 776{10 7"'710 }’
@ Adam with its standard
hyperparams.
0 ‘ : : : - ; . Alrao
0 20 40 60 80 100 120 140
epochs

ResNet50 trained on ImageNet.

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Is the Learning Rate Interval of Alrao Important?

We claim to remove the learning rate n
hyperparameter... but we replace it by
two hyperparameters: 7min and 7max!

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Is the Learning Rate Interval of Alrao Important?

We claim to remove the learning rate n
hyperparameter... but we replace it by
two hyperparameters: 7min and 7max!

Typically, the interval of all learning
rates you would have used in a grid
search will work.

Pierre Wolinski Structural Learning of Neural Networks

. . . Robustness of Training Methods
Learning with Random Learning Rates Presentation of Alrac
Experimental Results
Conclusion

Is the Learning Rate Interval of Alrao Important?

3.0
We claim to remove the learning rate n Eé
hyperparameter... but we replace it by s led 25
two hyperparameters: 7min and 7max! g 102 ao
2 100
E 1:; 15
Typically, the interval of all learning £ 1631
rates you would have used in a grid Elet] 10
search will work. = 10 o
le-8 N
le-9
If the interval contains the optimal
learning rate and is not absurdly large,
Alrao will perform roughly as well as GooglLeNet model trained with Alrao
the optimal learning rate. on CIFAR10, for Nmin and 7max in

(107°,---,107).

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Back to the Hypothesis: Are There Dead Neurons?

First intuition: neurons with too large or too
small learning rate will be ignored. Is that true?

More generally:

Which are the learning rates of the least useful
neurons?

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Back to the Hypothesis: Are There Dead Neurons?

Learning with Random Learning Rates

First intuition: neurons with too large or too

pruning interval by layer (zero)

small learning rate will be ignored. Is that true? o
4 —_— 0.875

More generally:) —
by - 0.825

Which are the learning rates of the least useful i
neurons? . o

: — 0.725

Results: e .

3 2
interval of log-learning rates

@ the “wrong” learning rates depend on the

pruning interval by layer (reinit)

|ayer; 0.900
@ in some layers, many neurons can be ©

0.825

reinitialized with little accuracy loss.

0.800

pruned layer
accuracy

In a deep neural network as VGG, there is no —
“wrong” learning rate. However, neurons with a 0 —
small learning rate can possibly be reinitialized. T

0.700

1 o
interval of log-learning rates

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Limitations

Alrao increases the number of parameters in the model.
On classification tasks with many classes, the last layer might represent a large
part of the network’s weights. Duplicating the last layer can be computationally
expensive:

@ on CIFAR10: Only +5% on the number of weights;

@ on ImageNet: Between +50% and +100%.

Alrao would not be efficient for word-level NLP.

Performance.

In our experiments, Alrao always performed close to SGD with its optimal
learning rate.

Still, its performance is sometimes slightly below.

Pierre Wolinski Structural Learning of Neural Networks

Robustness of Training Methods
Presentation of Alrao
Experimental Results
Conclusion

Learning with Random Learning Rates

Conclusion

Summary:
@ Alrao is a method for robust optimization without grid-search on n;
@ not a single run of Alrao has failed;

o it is designed especially for deep learning models (and would not make
sense in other settings);

o instead of searching optimal hyperparameters, adding diversity in the
network.

Perspectives:

o Lottery Ticket Hypothesis (Frankle, 2018): towards more diversity in
neural networks;

@ implement usual tricks: learning rate schedule, momentum, regularization;

@ application to AutoML: testing new architectures easily.

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Interpreting a Penalty as the Influence of a Bayesian Prior Theoretical Results

Fixing the Penalty Factor
Conclusion

© Interpreting a Penalty as the Influence of a Bayesian Prior
@ Introduction
@ Theoretical Results
o Fixing the Penalty Factor
@ Conclusion

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Theoretical Results
Fixing the Penalty Factor
Conclusion

Interpreting a Penalty as the Influence of a Bayesian Prior

Introduction

Context:
o train a model of parameters w € R" on dataset (x,y);
@ inputs x = distribution pw(-|x) on the targets y;
o fit the data = minimize the negative log-likelihood.

usual: Luguar(w) = —Inpu(ylx) + r(w)

Pierre Wolinski Structural Learning of Neural Networks

Introduction
. A . Theoretical Results
Interpreting a Penalty as the Influence of a Bayesian Prior Fhetlers dio Fomelly Frsien

Conclusion

Introduction

Context:
o train a model of parameters w € R" on dataset (x,y);

@ inputs x = distribution pw(-|x) on the targets y;
o fit the data = minimize the negative log-likelihood.

usual: Luguar(w) = —Inpu(ylx) + r(w)
Variational Inference: Lvi(8) = Eu~p { —In pw(y\x)} + KL(B|«)

Variational Inference:
@ Bayesian method: optimize 3 instead of w, prior «;
@ [contains more information than w: uncertainty...
o case B = dw: Lvi(B) = — In pu(y|x) + In(a(w)) = a x exp(r).

Pierre Wolinski Structural Learning of Neural Networks

Introduction
. A . Theoretical Results
Interpreting a Penalty as the Influence of a Bayesian Prior Fhetlrs dho Fomellay Frsien

Conclusion

Link between a Penalty and a Bayesian Prior

We assume that w ~ 8. We define, for a penalty r and a prior a:

L(B) = -Euwglnpu(ylx) + r(B)
Lvi(B) = —Ew~slnpu(ylx) + KL(B]a).

Given r, does there exist a prior « such that for all B, r(8) = KL(8||a)?

If so, is there a systematic way to compute o from r?

Pierre Wolinski Structural Learning of Neural Networks

Introduction
. A . Theoretical Results
Interpreting a Penalty as the Influence of a Bayesian Prior Fhetlrs dho Fomellay Frsien

Conclusion

Link between a Penalty and a Bayesian Prior

We assume that w ~ 8. We define, for a penalty r and a prior a:

L(B) = -Euwglnpu(ylx) + r(B)
Lvi(B) = —Ew~slnpu(ylx) + KL(B]a).

Given r, does there exist a prior « such that for all B, r(8) = KL(8||a)?

If so, is there a systematic way to compute o from r?

Theorem 1 (informal, c.f. Theorem 1)

We provide an explicit condition (x) on r such that:
r fulfills (x) < there exists a unique prior o corresponding to r

Moreover, we have a formula for o.

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Theoretical Results
Fixing the Penalty Factor
Conclusion

Interpreting a Penalty as the Influence of a Bayesian Prior

Main Theorem Applied to a Particular Case

Family B of variational posteriors. We look for: * = arg minges Lvi(5).
Example: posteriors parameterized by their mean: B = {8, : p € RV}

Goal: given a function r, find a probability distribution « such that:

IKeR:VBeB, r(B)=KL(B|a)+K. (1)

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Theoretical Results
Fixing the Penalty Factor
Conclusion

Interpreting a Penalty as the Influence of a Bayesian Prior

Main Theorem Applied to a Particular Case

Family B of variational posteriors. We look for: * = arg minges Lvi(5).
Example: posteriors parameterized by their mean: B = {8, : p € RV}

Goal: given a function r, find a probability distribution « such that:

IKeR:VBeB, r(B)=KL(B|a)+K. (1)

Corollary 2 (c.f. Corollary 6)

Under technical conditions over By and r, there exists a unique prior solution
of Equation (1):

atw) = % exp (~Bue(in) - 7 [|).

where k > 0 is a normalization constant, Ent(8o) is the entropy of (o,
Bo(w) = fo(—w) and F is the Fourier transform.

Pierre Wolinski Structural Learning of Neural Networks

Introduction

Theoretical Results
Fixing the Penalty Factor
Conclusion

Interpreting a Penalty as the Influence of a Bayesian Prior

Applications

Gaussian distributions with £* penalty:
° /B = B,u,az = N([L, 02);
° rﬁ,fz(ﬁu,vz) = fl(‘72) + f2(‘72)1u‘2 .

Corollary 3 (informal, c.f. Corollary 7)

If the penalty r, s, above corresponds to a prior o, then o: ~ N (0,03) and
WACE 02) = g (m, 02)'

Deterministic distributions:
o 3= Pu=0u;

@ we recover the Lyap loss, i.e., o o exp(r).

Pierre Wolinski Structural Learning of Neural Networks

Introduction
. A . Theoretical Results
Interpreting a Penalty as the Influence of a Bayesian Prior Fixing the Penalty Factor

Conclusion

How to Fix the Penalty Factor A7

We can interpret penalties in the same way: probability distributions.

Goal: fix the penalty factor X in the penalized loss: L(8) = £(8) + Ar(B).

Pierre Wolinski Structural Learning of Neural Networks

Introduction

. A . Theoretical Results
Interpreting a Penalty as the Influence of a Bayesian Prior Fixing the Penalty Factor

Conclusion

How to Fix the Penalty Factor \?

We can interpret penalties in the same way: probability distributions.
Goal: fix the penalty factor X in the penalized loss: L(8) = £(8) + Ar(B).

Idea:
@ use Theorem 1 on Ar to get the corresponding prior a;

@ the prior a) should be a reasonable initialization rule;

@ then, apply Glorot’s condition on a: { %Wwa*m]z] i (1)/P ,
Wy =

where P is the number of parameters in the considered neuron;

o finally, reflect this condition on A, which fixes its value.

Gaussian distributions with £? penalty: we get a ~ A/(0,1/P).

Pierre Wolinski Structural Learning of Neural Networks

Introduction
. A . Theoretical Results
Interpreting a Penalty as the Influence of a Bayesian Prior Fhetlors Ao Fomelly Frsien

Conclusion

Conclusion

Summary of the theoretical part:

@ Theorem 1: link between empirical penalties and Bayesian priors when
learning a distribution over the parameters w;

o Bayesian interpretation: unified interpretation of the penalty.

Experimental results:
@ our theoretical penalty factor is overestimated by a factor 10-100;

@ this overestimation is stable across tested architectures and penalties.

Perspectives:
@ is the Bayesian posterior overcautious?
@ investigate the issues with the combination Bayes/Glorot;

@ taking into account the global structure of the considered network.

Pierre Wolinski Structural Learning of Neural Networks

rbitrarily Large Neural Networks

Asymmetrical Scaling Layers for Stable Network Pruning

@ Asymmetrical Scaling Layers for Stable Network Pruning
@ Pruning Arbitrarily Large Neural Networks
@ Results

Pierre Wolinski Structural Learning of Neural Networks

Pruning Arbitrarily Large Neural Networks

Asymmetrical Scaling Layers for Stable Network Pruning Results

Pruning Arbitrarily Large Neural Networks

Efficient neural networks usually very large: how to reduce their size?
= Train and prune a very large neural network.

Pierre Wolinski Structural Learning of Neural Networks

Pruning Arbitrarily Large Neural Networks

Asymmetrical Scaling Layers for Stable Network Pruning Results

Pruning Arbitrarily Large Neural Networks

Efficient neural networks usually very large: how to reduce their size?
= Train and prune a very large neural network.

Problems to solve:
@ training: is the training algorithm robust to width change? (— o)

@ pruning: is the resulting network stable between runs, provided it was
initially wide enough?

Pierre Wolinski Structural Learning of Neural Networks

Pruning Arbitrarily Large Neural Networks

Asymmetrical Scaling Layers for Stable Network Pruning Results

Pruning Arbitrarily Large Neural Networks

Efficient neural networks usually very large: how to reduce their size?
= Train and prune a very large neural network.

Problems to solve:
@ training: is the training algorithm robust to width change? (— o)

@ pruning: is the resulting network stable between runs, provided it was
initially wide enough?

Let w be the tensor of weights of a layer:

@ Scala: training procedure.
Instead of training directly w, we train W, defined by w = Sw,
where S is typically Id/\/nin, changes the dynamics of SGD;

@ ScalP: training and pruning procedure.
Combination of Scala, e.g., with S typically proportional to
Diag(171,271,371,-..), and pruning.

Pierre Wolinski Structural Learning of Neural Networks

Pruning Arbitrarily Large Neural Networks

Asymmetrical Scaling Layers for Stable Network Pruning Results

Results

Discussion:
@ Scala and ScalLP worked with a learning rate n ~ 1;

@ as the width of a layer tends to infinity, the behavior of ScaLa does not
change, while the standard SGD tends to diverge after one gradient step;

@ ScalP leads to the same network structure, regardless of the initial width
of the layers (provided that they are wide enough).

Perspectives:
@ link with the Neural Tangent Kernels (NTK);

@ adapt ScalP to remove connections between entire layers in inception-like
or U-Net-like networks.

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

@ Conclusion

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Conclusion

Developing theoretical considerations:
o diversity in neural networks;
@ Glorot’s heuristic for weight initialization;

o Bayesian interpretations.

Further works:
@ application of Alrao to AutoML;
@ asymmetrical scaling layers = link with Neural Tangent Kernels (NTK);

@ stronger theorem for the penalty—prior equivalence.

Questions:
o limitations of Glorot’s heuristic: how to take into account the architecture?

o random weights: in neural networks, what is the role of diversity?

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Variational Inference: Framework

We train a model M,, parameterized with w € R" on a dataset D = {(x;, yi);}.

User-defined objects:
o family of variational posteriors on w: B = {8, :u €U};

o Bayesian prior on w: distribution a.
Details:
@ given an input x, M, outputs pw(:|x);
o vector w € RY randomly drawn from a distribution 8, € B;

@ instead of learning w, we learn 3,, i.e. u;

o loss: L(u) = —Ew~p, In pw((y1)i|(xi)i) + KL(Bulle);
o we call B,= € B the variational posterior, where u* = arg minycy L(v).

Bu= is the best approximation in B of the Bayesian posterior given D and «.

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Variational Inference: Examples

Gaussian posteriors:

o family of products of Gaussian distributions on w € RV:
/Bu = 6(’_‘/170%,<>4 vMNvU%/) = N(/lea J%) Q- ®N(HN7 fflzv),
o prior: a = N(0,0?), where o is fixed.

Deterministic posteriors:

e family of products of Diracs on w € RV:
Bu = ﬂ(mw- N) — Oug @ -+ @ Gy

e prior: o = N(0,07), where o is fixed.

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Assumptions and Notation

© we parameterize the variational posteriors 3, on w € RV by their mean
1 € RV and another parameter v: 8, = Bu..
Example: if By ~ N(p, X), then By = Bu.x;

@ moreover, we assume that the family B of variational posteriors is
translation-invariant:

vw e R", Bu.w(W) = Bou(w — p);

o we denote indistinctly: r(u) = r(p,v) = r(p);
e entropy of a distribution: Ent(fo,.) = —Ew~g,.,. [In Bo,.(W)];
o let Bo,u(w) = ﬁoyu(*w).

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Main Theorem

Goal: given a function r, find a probability distribution « such that:

JKeR:Vuel, r(u) = KL(Bulla) + K. @)

Definition 4 (c.f. Definition 1)

Let A, = —Ent(8o,)1 — F* [%]

A, does not depend on v

7 bl eemelim () < { A is a function s.t.exp(A) integrates to k > 0

Theorem 5 (informal, c.f. Theorem 1)

Equation (1) has a solution o € T < r fulfills (x) and o = L exp(A).

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Fixing A\: Examples

Gaussian distributions with £? penalty: in Corollary 3, we have proven that
o=z~ N(0,03).
1

a fulfills Glorot < ag =5
|

Deterministic distributions: for a f.c. layer w, we consider the penalty A\7(w).
We propose to use ABayesian given below, instead of Ausual.

Fw) —lwllz lwlls [[wll2,1 [w' 2,1

ABayesian P1/2 /2P, \/P/(P/ +1) \/P/(n, +1)
)\usual 1 1 \/ﬁl \/’Tl

where ||w|l2,1 = 3, ||wil|2 is the group-Lasso penalty,
w; being the i-th row of w.

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Experimental Results

Tested architectures: simple convolutional NN (CVNN) and VGGI09.
Complete penalty: A", Air(w;), where w; is the tensor of the /-th layer.

Experiments:
@ “usual setup™: \; is set to Ausual (See above);
o “Bayesian setup™)\, is set to Apayesian (Se€ above);
@ in both setups: grid search over A = (*,acc™);
@ in the Bayesian setup: A should be theoretically equal to
Arn = 1/#[training set].

llwiz Iwllx [[wll2a w21
CVNN VGG CVNN VGG CVNN VGG CVNN VGG
aCChoua (%) 8800+ .4 9335+ .15 88.36+.3 93.17+.3 8843+.14 9278+.19 88.04+.4 93.37+.00

ACChayesian 88694 .12 93.48+£.09 88.41+£.3 9289+ .2 88.67+.09 92.35+.18 88.324.16 93.03+.15
aCCRayesian 88.25+.3 93.28+.17 87.48+.08 92.74+.19 87.45+.17 92.24+.14 8549+.3 92.85+.06
Arn /A 10°° 10" 10" 10" 10% 10% 10'® 10*

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Penalty—Bayes — Graphs (1)

CVNN + L2 penalty CVNN + L1 penalty

092 0.92
0.90 0.90
« s,
088 P ,088
g - T z
H 5 H .
M s 3 =
2 s b] hnd
0.6 0.86
084 084
++ pen. L2 (usual) ++ pen. L1 penalty (usual)
4+ pen. L2 (Bayesian pen) -+ pen. L1 penatty (Bayesian pen.)
o 082 -
100 106 10 o+ 1o 107 10- To-¢ 10 10-¢ 10

penalty factor A penalty factor A

VGG19 + L2 penalty VGG19 + L1 penalty

094 094
XJ’:?—’)" — > H\
092 | = 092 & ™ ~
] —
088 088
0.86{ ++ pen. L2 (usual) 086 -+ pen. L1 penatty (usual)

Pierre Wolinski Structural Learning of Neural Networks

-+ pen. L2 (Bayesian pen)

107 10¢ 107
penal

10
ity factor A

=+ pen. L1 penalty (Bayesian pen.)

107 10°¢ 10
penalty factor A

Conclusion

Penalty—Bayes — Graphs (2)

CVNN + group-Lasso penalty CVNN + rev. group-Lasso penalty

0.90 0.90

5088 i .\4 ,088 u
g . P g Pare
H s S—— 3 —
% e 086
084 084
4+ pen. group-Lasso (usual) “+ pen. Rev. gr. Lasso (usual)
++ pen. group-Lasso (Bayesian pen) ++ pen. Rev. gr. Lasso (Bayesian pen)
o
107 10 10- 10-¢ 10 7 To-¢ 10- 10 10 10~
penalty factor A penalty factor A
VGG19 + group-Lasso penalty VGG19 + rev. group-Lasso penalty
094 094

107 107 0-¢ 107 10 10 0 1077 1077

10 1
penalty factor A penalty factor A

Pierre Wolinski

Structural Learning of Neural Networks

Conclusion

Scaling Layers — Scala: Definition of the Scaling Layer

We consider: a loss L, one neuron w € R" and one data point (x,y) € RY x R.
SGD on w = SGD on w (where w = SW, with S = Diag(o1,- -+ ,0on)).

Equivalent to a new update rule: wyx <~ wx —nVu, L = wi + wi —nafVWkL.

scaling
layer “neuron” W

X1 —> |0 —>» oxa — |

X2 —> | o —> e — |
. E— ZN Wi Ok Xk

X3 —> | o3 —> 03x3 —> | i k=1

< < < S
S = Diag((o)«) W= (W)
X > Sx > W Sx=w'x

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Scaling Layers — Scala: Forward Pass and Backward Pass

w is randomly initialized, and x and V, L are supposed to be random.
Properties to check:

o forward pass: we want a bounded variance for activation y as N — oc;

o backward pass: we want a bounded variance for the difference (y' — y) of
activations y’, obtained after one update, and y, as N — co.

We check it for one neuron w.

Proposition 6 (informal, c.f. Corollary 2)

We have:
i0'2 < oo |?m/\/*>oo Var(y(,\,)) < 00
i k limy— oo Var(y(yy — yvy) < o0

Examples: oy o< 1/(k/2Ink) or oy o 1/k.

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Scaling Layers — Scala: Insensitivity to Width Change

1/\/N — Fu\ly'connfled NN {Tif”
Practical scalings: o 1/(k1/2 In k) ‘ \
1/k

Experiments: CIFAR-10, NN with one hidden
layer, Id or ReLU activation function.
Test of various N: from 300 to 100000

Standard SGD: test of many learning rates,
from 107> to 107 1. o0

SGD with Scala: one only learning rate oee0
(n =1), and test of various scaling layers. -

0.550

accuracy

0.525

0.500

SGD with Scala is more resilient than standard
SGD to width change. oss0

10° 10¢
number of neurons in the hidden layer

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Scaling Layers — Scal P: Asymmetrical Penalization

ScalP: use Scala with asymmetrical scaling layers to prune neurons.

Example: £? penalty.

L ny /i
D HICTE I E o
I=1 k=1 i =0 k=1 ’+1’< wewl_,
~—

m(wL)z, usefulness of neuron WZ
from the point of view of layer /+1

where w} is the k-th neuron in the /-th layer, and w}_, is the set of its
output weights, i.e., weights in layer / + 1 that are linked to wj.

Interpretation.
The usefulness m(w})? of each neuron wj is pushed towards 0 with a scaling
factor 1/07,4 .

Asymmetrical scaling layer S = Asymmetrical penalization

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Scaling Layers — ScalLP: Consequences on Pruning

Summary:
o we choose a (decreasing) sequence (041,k)x With 352, 0714 4 < 00;
e we build an asymmetrical scaling layer Diag(oi+1,1,- -+ , O141,n);

@ its output weights w)_, are pushed towards 0 with force 1/0,2+17k.

Should we prune neuron wi?
e we measure its usefulness: m(w}) = />, ./ w?
k—
1

@ given a threshold ¢, if mm(wi) < ¢, then w} is pruned.
k—

The more the index k of a neuron is high, the more its outputs weights are
pushed toward 0, the less it is useful, the more likely it will be pruned.

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Scaling Layers — ScalLP: Accuracy and Pruning Results

VGG19
0.94
X
Experiments: VGG19 trained 0921
on CIFAR-10, for various 090
penalty factors A:
E 0.88
— g >4 baselins
L(w) = ¢(w) 4+ Apen(w). ose ¢ beslne
—— pen. GLasso
| —+ BN-Lasso
11 ScalP, pen. L2, sc. 1/(k”.5 log(k))
Accuracy: best accuracy o84y [Solppen L2 s 1k
. R / ScalP, pen. GLasso, sc. unif.
obtained with ScalLP (pen. 0824/ ScalP, pen. GLasso, sc. 1/(k™.5 log(k)
. B : - ScalP, pen. GLasso, sc. 1/k
GLasso and uniform scaling). ;
10° 10° 107
. . final number of parameters
Pruning: ScalP competitive
with BN-Lasso (pen. GLasso Final accuracy in function of final number of
. 1/2 y
and scaling 1/(k"/* log k)) parameters.

Dotted lines: with ScalP
Continuous lines: without Scal.P

Pierre Wolinski Structural Learning of Neural Networks

Conclusion

Scaling Layers — ScalP: Stability of the Final Architecture

With asymmetrical scaling layers, we hope that
the final width of a layer is independent from
its initial width.

Experiment: train a neural neural network with
one hidden layer of size N for different N
(MNIST).

Test with BN-Lasso and Scala with
group-Lasso.

Unlike BN-Lasso, ScalLP with asymmetrical
scaling returns the same network architecture.

Over the runs: the returned architecture is
stable between runs with ScalP, unlike
BN-Lasso.

Pierre Wolinski Structural Learning of Neural Networks

BN-Lasso

= width: 250, acc.: 98.02 %,
= width: 500, acc.: 98.05 %,
= width: 1000, acc.: 98.12 %,
= width: 2000, acc.: 98.21 %,

1stlayer 2nd layer classifier

ScalP, pen. GLasso, sc. 1/(k".5 log(k))

= width: 250, acc.: 98.49 %
= width: 500, acc.: 98.46 %,
= width: 1000, acc.: 98.56 %,
m—width: 2000, acc.: 98.51 %,

1t layer 2nd layer classifier

	Introduction
	Learning with Random Learning Rates
	Robustness of Training Methods
	Presentation of Alrao
	Experimental Results
	Conclusion

	Interpreting a Penalty as the Influence of a Bayesian Prior
	Introduction
	Theoretical Results
	Fixing the Penalty Factor
	Conclusion

	Asymmetrical Scaling Layers for Stable Network Pruning
	Pruning Arbitrarily Large Neural Networks
	Results

	Conclusion

