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Arti�cial Intelligence

Arti�cial Intelligence: solve a given task, like image recognition/classi�cation
or winning at the go game...

Credits: Alex Krizhevsky

plane

bird

dog

horse

Classi�cation task AI �AlphaGo�

Credits: Google DeepMind

Machine Learning: instead of implementing �human methods� into programs,
let programs �nd the best method to solve given tasks.
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How to Do Machine Learning

Recipe of Machine Learning Example

Fix a task to be performed Task: recognize handwritten digits.

Build a training dataset Dataset: database of labeled images of
handwritten digits.

Build a model to perform the task
(usually a program with initially unde-
termined parameters)

Model: Convolutional Neural Network

Design an algorithm to train the model
to perform the task (i.e., which modi�es
its parameters to improve it)

Training Algorithm: Stochastic Gradi-
ent Descent with backpropagation of the
gradient
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Neural Networks

Approach of Machine Learning: Neural Networks.

Very �exible class of models, trainable with a generic algorithm.

neuron

inputs

output

0.1

-0.5

2.3

-1.2

trainable
parameters

neural network

The arti�cial neuron is the elementary brick of every neural network, in�nite
ways to combine them ⇒ choice of the model, training hyperparameters.
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Problem: Hyperparameters

Hyperparameter search:

architecture of the neural network;

learning rate η: w← w − η∇wL;

penalty λ, r : L(w,D) =
∑n

i=1 ‖yi −Mw(xi )‖22 + λ r(w).

Main issues:

e�cient architectures are usually very large:
how to reduce their size? ⇒ pruning.

optimal η and λ depend strongly on the neural network architecture:
�nd rules to get rid of η or �nd default values for η and λ.

Pierre Wolinski Structural Learning of Neural Networks
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Summary

Goal:

Build theoretically well-founded methods to help �xing the hyperparameters η
and λ, and the architecture.

1 Learning with Random Learning Rates,
get rid of the learning rate η;

2 Interpreting a Penalty as the In�uence of a Bayesian Prior,
bridge between empirical penalties and the Bayesian framework,
default value for λ;

3 Asymmetrical Scaling Layer for Stable Network Pruning,
reparameterization of neural networks to �nd a default value for η,
pruning technique.
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Robustness of Training Methods

When training a neural network, we want robustness:

during training,

between runs,

between architectures and datasets,

robust to hyperparameter change.

Sensitive hyperparameter: learning rate.

Idea of Alrao: instead of searching the optimal learning rate, add diversity in
the learning rates:

we attribute randomly a learning rate to each neuron, sampled from a
distribution spanning many orders of magnitude;

neurons with a wrong learning rates will be useless and ignored;

emergence of an e�cient sub-network.

Pierre Wolinski Structural Learning of Neural Networks
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Alrao: in the Internal Layers

Setting: classi�cation task performed by a
feedforward network:

Network = internal layers + classi�cation layer

Learning rates sampling: we sample a learning rate
ηneuron per neuron from the log-uniform
distribution on the interval (ηmin, ηmax):

log η ∼ U(ηmin, ηmax).

Update rule: for every neuron, the update of its
parameters θneuron is:

θneuron ← θneuron − ηneuron∇θneuronL(θ)
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Alrao: in the Output Layer

Issue: in the classi�cation layer, each neuron
corresponds to a class. All classes should be trained
equivalently.

How to use Alrao in the output layer?

Modi�ed architecture: we replace the single
classi�cation layer by a convex combination CMix

of classi�er layers (Ci )i :

CMix =
∑

aiCi ,

each one with a learning rate sampled in
(ηmin, ηmax).

Training method:

each classi�er is trained separately;

averaging weights (ai )i are updated with the
Switch Bayesian averaging method.
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How Does Alrao Compare to SGD and Adam?

Experiments: comparison between Alrao, SGD with optimized η, and Adam.

Tasks and architectures:

CIFAR-10: MobileNet, GoogLeNet, VGG19;

ImageNet: AlexNet, DenseNet121, ResNet50;

PennTreeBank: LSTM;

Reinforcement Learning: Pendulum, Lunar Lander.

Observations:

Alrao performs almost as well as SGD with its best learning rate, without
grid search;

not a single run of Alrao has failed.

Pierre Wolinski Structural Learning of Neural Networks
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How Does Alrao Compare to SGD and Adam?

ResNet50 trained on ImageNet.

Setups:

Alrao with a large

interval (10−5, 101);

SGD with

η ∈ {10−5, · · · , 101};
Adam with its standard

hyperparams.
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Is the Learning Rate Interval of Alrao Important?

We claim to remove the learning rate η
hyperparameter... but we replace it by
two hyperparameters: ηmin and ηmax!

Typically, the interval of all learning
rates you would have used in a grid

search will work.

If the interval contains the optimal
learning rate and is not absurdly large,
Alrao will perform roughly as well as
the optimal learning rate.

GoogLeNet model trained with Alrao
on CIFAR10, for ηmin and ηmax in

(10−9, · · · , 107).

Pierre Wolinski Structural Learning of Neural Networks
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Back to the Hypothesis: Are There Dead Neurons?

First intuition: neurons with too large or too
small learning rate will be ignored. Is that true?

More generally:

Which are the learning rates of the least useful
neurons?

Results:

the �wrong� learning rates depend on the
layer;

in some layers, many neurons can be
reinitialized with little accuracy loss.

In a deep neural network as VGG, there is no
�wrong� learning rate. However, neurons with a
small learning rate can possibly be reinitialized.
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Limitations

Alrao increases the number of parameters in the model.

On classi�cation tasks with many classes, the last layer might represent a large
part of the network's weights. Duplicating the last layer can be computationally
expensive:

on CIFAR10: Only +5% on the number of weights;

on ImageNet: Between +50% and +100%.

Alrao would not be e�cient for word-level NLP.

Performance.

In our experiments, Alrao always performed close to SGD with its optimal
learning rate.
Still, its performance is sometimes slightly below.

Pierre Wolinski Structural Learning of Neural Networks
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Conclusion

Summary:

Alrao is a method for robust optimization without grid-search on η;

not a single run of Alrao has failed;

it is designed especially for deep learning models (and would not make
sense in other settings);

instead of searching optimal hyperparameters, adding diversity in the
network.

Perspectives:

Lottery Ticket Hypothesis (Frankle, 2018): towards more diversity in
neural networks;

implement usual tricks: learning rate schedule, momentum, regularization;

application to AutoML: testing new architectures easily.
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Introduction

Context:

train a model of parameters w ∈ RN on dataset (x, y);

inputs x ⇒ distribution pw(·|x) on the targets y;

�t the data ⇒ minimize the negative log-likelihood.

usual: Lusual(w) = − ln pw(y|x) + r(w)

Variational Inference: LVI(β) = Ew∼β

[
− ln pw(y|x)

]
+ KL(β‖α)

Variational Inference:

Bayesian method: optimize β instead of w, prior α;

β contains more information than w: uncertainty...

case β = δw: LVI(β) = − ln pw(y|x) + ln(α(w)) ⇒ α ∝ exp(r).

Pierre Wolinski Structural Learning of Neural Networks
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Link between a Penalty and a Bayesian Prior

We assume that w ∼ β. We de�ne, for a penalty r and a prior α:

L(β) = −Ew∼β ln pw(y|x) + r(β)
LVI(β) = −Ew∼β ln pw(y|x) + KL(β‖α).

Questions

Given r , does there exist a prior α such that for all β, r(β) = KL(β‖α)?

If so, is there a systematic way to compute α from r?

Theorem 1 (informal, c.f. Theorem 1)

We provide an explicit condition (?) on r such that:

r ful�lls (?)⇔ there exists a unique prior α corresponding to r

Moreover, we have a formula for α.

Pierre Wolinski Structural Learning of Neural Networks
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Main Theorem Applied to a Particular Case

Family B of variational posteriors. We look for: β∗ = argminβ∈B LVI(β).

Example: posteriors parameterized by their mean: B = {βµ : µ ∈ RN}.

Goal: given a function r , �nd a probability distribution α such that:

∃K ∈ R : ∀β ∈ B, r(β) = KL(β‖α) + K . (1)

Corollary 2 (c.f. Corollary 6)

Under technical conditions over β0 and r , there exists a unique prior α solution

of Equation (1):

α(w) =
1

κ
exp

(
−Ent(β0)−F−1

[
Fr
F β̌0

]
(w)

)
,

where κ > 0 is a normalization constant, Ent(β0) is the entropy of β0,
β̌0(w) = β0(−w) and F is the Fourier transform.
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Applications

Gaussian distributions with L2 penalty:

β = βµ,σ2 = N (µ, σ2);

rf1,f2(βµ,σ2) = f1(σ2) + f2(σ2)µ2 .

Corollary 3 (informal, c.f. Corollary 7)

If the penalty rf1,f2 above corresponds to a prior α, then α ∼ N (0, σ20) and

rf1,f2(µ, σ2) = rσ20 (µ, σ2).

Deterministic distributions:

β = βµ = δµ;

we recover the LMAP loss, i.e., α ∝ exp(r).
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How to Fix the Penalty Factor λ?

We can interpret penalties in the same way: probability distributions.

Goal: �x the penalty factor λ in the penalized loss: L(β) = `(β) + λr(β).

Idea:

use Theorem 1 on λr to get the corresponding prior αλ;

the prior αλ should be a reasonable initialization rule;

then, apply Glorot's condition on αλ:

{
Ew∼αλ [w ] = 0
Ew∼αλ [w2] = 1/P

,

where P is the number of parameters in the considered neuron;

�nally, re�ect this condition on λ, which �xes its value.

Gaussian distributions with L2 penalty: we get α ∼ N (0, 1/P).

Pierre Wolinski Structural Learning of Neural Networks
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Summary of the theoretical part:

Theorem 1: link between empirical penalties and Bayesian priors when
learning a distribution over the parameters w;

Bayesian interpretation: uni�ed interpretation of the penalty.

Experimental results:

our theoretical penalty factor is overestimated by a factor 10�100;

this overestimation is stable across tested architectures and penalties.

Perspectives:

is the Bayesian posterior overcautious?

investigate the issues with the combination Bayes/Glorot;

taking into account the global structure of the considered network.
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Pruning Arbitrarily Large Neural Networks

E�cient neural networks usually very large: how to reduce their size?
⇒ Train and prune a very large neural network.

Problems to solve:

training: is the training algorithm robust to width change? (→∞)

pruning: is the resulting network stable between runs, provided it was
initially wide enough?

Let w be the tensor of weights of a layer:

ScaLa: training procedure.
Instead of training directly w, we train w̃, de�ned by w = Sw̃,
where S is typically Id/

√
nin, changes the dynamics of SGD;

ScaLP: training and pruning procedure.
Combination of ScaLa, e.g., with S typically proportional to
Diag(1−1, 2−1, 3−1, · · · ), and pruning.
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Results

Discussion:

ScaLa and ScaLP worked with a learning rate η ≈ 1;

as the width of a layer tends to in�nity, the behavior of ScaLa does not
change, while the standard SGD tends to diverge after one gradient step;

ScaLP leads to the same network structure, regardless of the initial width
of the layers (provided that they are wide enough).

Perspectives:

link with the Neural Tangent Kernels (NTK);

adapt ScaLP to remove connections between entire layers in inception-like
or U-Net-like networks.
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Developing theoretical considerations:

diversity in neural networks;

Glorot's heuristic for weight initialization;

Bayesian interpretations.

Further works:

application of Alrao to AutoML;

asymmetrical scaling layers ⇒ link with Neural Tangent Kernels (NTK);

stronger theorem for the penalty�prior equivalence.

Questions:

limitations of Glorot's heuristic: how to take into account the architecture?

random weights: in neural networks, what is the role of diversity?

Pierre Wolinski Structural Learning of Neural Networks



29/28

Introduction
Learning with Random Learning Rates

Interpreting a Penalty as the In�uence of a Bayesian Prior
Asymmetrical Scaling Layers for Stable Network Pruning

Conclusion

Penalty�Bayes � Variational Inference: Framework

We train a modelMw parameterized with w ∈ RN on a dataset D = {(xi , yi )i}.

User-de�ned objects:

family of variational posteriors on w: B = {βu : u ∈ U};
Bayesian prior on w: distribution α.

Details:

given an input x ,Mw outputs pw(·|x);

vector w ∈ RN randomly drawn from a distribution βu ∈ B;
instead of learning w, we learn βu, i.e. u;

loss: L(u) = −Ew∼βu ln pw((yi )i |(xi )i ) + KL(βu‖α);

we call βu∗ ∈ B the variational posterior, where u∗ = argminv∈U L(v).

βu∗ is the best approximation in B of the Bayesian posterior given D and α.
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Penalty�Bayes � Variational Inference: Examples

Gaussian posteriors:

family of products of Gaussian distributions on w ∈ RN :

βu = β(µ1,σ
2
1 ,··· ,µN ,σ

2
N

) = N (µ1, σ
2
1)⊗ · · · ⊗ N (µN , σ

2
N);

prior: α = N (0, σ2), where σ is �xed.

Deterministic posteriors:

family of products of Diracs on w ∈ RN :

βu = β(µ1,··· ,µN ) = δµ1 ⊗ · · · ⊗ δµN ;

prior: α = N (0, σ2), where σ is �xed.
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Penalty�Bayes � Assumptions and Notation

we parameterize the variational posteriors βu on w ∈ RN by their mean
µ ∈ RN and another parameter ν: βu = βµ,ν .
Example: if βu ∼ N (µ,Σ), then βu = βµ,Σ;

moreover, we assume that the family B of variational posteriors is
translation-invariant:

∀w ∈ RN , βµ,ν(w) = β0,ν(w − µ);

we denote indistinctly: r(u) = r(µ,ν) = rν(µ);

entropy of a distribution: Ent(β0,ν) = −Ew∼β0,ν [lnβ0,ν(w)];

let β̌0,ν(w) = β0,ν(−w).
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Penalty�Bayes � Main Theorem

Goal: given a function r , �nd a probability distribution α such that:

∃K ∈ R : ∀u ∈ U , r(u) = KL(βu‖α) + K . (2)

De�nition 4 (c.f. De�nition 1)

Let Aν = −Ent(β0,ν)1−F−1
[
Frν
Fβ̌0,ν

]
.

r ful�lls condition (?) ⇔
{

Aν does not depend on ν
A is a function s.t. exp(A) integrates to κ > 0

.

Theorem 5 (informal, c.f. Theorem 1)

Equation (1) has a solution α ∈ T ⇔ r ful�lls (?) and α = 1
κ
exp(A).
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Penalty�Bayes � Fixing λ: Examples

Gaussian distributions with L2 penalty: in Corollary 3, we have proven that
α = ασ20 ∼ N (0, σ20).

α ful�lls Glorot ⇔ σ20 =
1

Pl
.

Deterministic distributions: for a f.c. layer w, we consider the penalty λr̃(w).
We propose to use λBayesian given below, instead of λusual.

r̃(w) ‖w‖22 ‖w‖1 ‖w‖2,1 ‖wT‖2,1

λBayesian Pl/2
√
2Pl

√
Pl(Pl + 1)

√
Pl(nl + 1)

λusual 1 1
√
Pl

√
nl

where ‖w‖2,1 =
∑

i ‖wi‖2 is the group-Lasso penalty,
wi being the i-th row of w.
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Penalty�Bayes � Experimental Results

Tested architectures: simple convolutional NN (CVNN) and VGG19.
Complete penalty: λ

∑
l λl r(wl), where wl is the tensor of the l-th layer.

Experiments:

�usual setup�: λl is set to λusual (see above);

�Bayesian setup�: λl is set to λBayesian (see above);

in both setups: grid search over λ ⇒ (λ∗, acc∗);

in the Bayesian setup: λ should be theoretically equal to
λTh = 1/#[training set].

‖w‖22 ‖w‖1 ‖w‖2,1 ‖wT‖2,1
CVNN VGG CVNN VGG CVNN VGG CVNN VGG

acc∗usual (%) 88.00± .4 93.35± .15 88.36± .3 93.17± .3 88.43± .14 92.78± .19 88.04± .4 93.37± .09

acc∗Bayesian 88.69± .12 93.48± .09 88.41± .3 92.89± .2 88.67± .09 92.35± .18 88.32± .16 93.03± .15
accBayesian 88.25± .3 93.28± .17 87.48± .08 92.74± .19 87.45± .17 92.24± .14 85.49± .3 92.85± .06
λTh/λ

∗ 100.5 101 101 101 102 102 101.5 101
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Penalty�Bayes � Graphs (1)
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Penalty�Bayes � Graphs (2)
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Scaling Layers � ScaLa: De�nition of the Scaling Layer

We consider: a loss L, one neuron w ∈ RN and one data point (x, y) ∈ RN ×R.

SGD on w ⇒ SGD on w̃ (where w = Sw̃, with S = Diag(σ1, · · · , σN)).

Equivalent to a new update rule: wk ← wk −η∇wkL ⇒ wk ← wk −ησ2k∇wkL.

x1

x2

x3

σ1x1

σ2x2

σ3x3

scaling

layer

∑N
k=1 w̃kσkxk

�neuron� w̃

w̃1

w̃2

w̃3

=
∑N

k=1 wkxk

σ1

σ2

σ3

x Sx

S = Diag((σk)k) w̃ = (w̃k)k
w̃TSx = wT x
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Scaling Layers � ScaLa: Forward Pass and Backward Pass

w is randomly initialized, and x and ∇yL are supposed to be random.
Properties to check:

forward pass: we want a bounded variance for activation y as N →∞;

backward pass: we want a bounded variance for the di�erence (y ′ − y) of
activations y ′, obtained after one update, and y , as N →∞.

We check it for one neuron w.

Proposition 6 (informal, c.f. Corollary 2)

We have:

∞∑
k=1

σ2k <∞⇔
{

limN→∞Var(y(N)) <∞
limN→∞Var(y ′(N) − y(N)) <∞ .

Examples: σk ∝ 1/(k1/2 ln k) or σk ∝ 1/k.
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Scaling Layers � ScaLa: Insensitivity to Width Change

Practical scalings: σk ∝


1/
√
N

1/(k1/2 ln k)
1/k

Experiments: CIFAR-10, NN with one hidden
layer, Id or ReLU activation function.
Test of various N: from 300 to 100 000

Standard SGD: test of many learning rates,
from 10−5 to 10−1.

SGD with ScaLa: one only learning rate
(η = 1), and test of various scaling layers.

SGD with ScaLa is more resilient than standard
SGD to width change.

103 104 105

number of neurons in the hidden layer
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Scaling Layers � ScaLP: Asymmetrical Penalization

ScaLP: use ScaLa with asymmetrical scaling layers to prune neurons.

Example: L2 penalty.

pen(w) :=
L∑

l=1

nl∑
k=1

∑
i

(w̃ l
ki )

2 =
L−1∑
l=0

nl∑
k=1

[
1

σ2l+1,k

∑
w∈wl

k→

w2

︸ ︷︷ ︸
m(wl

k )2, usefulness of neuron w
l
k

from the point of view of layer l+1

]
,

where wl
k is the k-th neuron in the l-th layer, and wl

k→ is the set of its
output weights, i.e., weights in layer l + 1 that are linked to wl

k .

Interpretation.

The usefulness m(wl
k)2 of each neuron wl

k is pushed towards 0 with a scaling
factor 1/σ2l+1,k .

Asymmetrical scaling layer S ⇒ Asymmetrical penalization
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Scaling Layers � ScaLP: Consequences on Pruning

Summary:

we choose a (decreasing) sequence (σl+1,k)k with
∑∞

k=1 σ
2
l+1,k <∞;

we build an asymmetrical scaling layer Diag(σl+1,1, · · · , σl+1,nl );

its output weights wl
k→ are pushed towards 0 with force 1/σ2l+1,k .

Should we prune neuron wl
k?

we measure its usefulness: m(wl
k) =

√∑
w∈wl

k→
w2;

given a threshold ε, if 1

#[wl
k→]

m(wl
k) < ε, then wl

k is pruned.

The more the index k of a neuron is high, the more its outputs weights are
pushed toward 0, the less it is useful, the more likely it will be pruned.
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Scaling Layers � ScaLP: Accuracy and Pruning Results

Experiments: VGG19 trained
on CIFAR-10, for various
penalty factors λ:

L(w) = `(w) + λpen(w).

Accuracy: best accuracy
obtained with ScaLP (pen.
GLasso and uniform scaling).

Pruning: ScaLP competitive
with BN-Lasso (pen. GLasso
and scaling 1/(k1/2 log k))
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ScaLP, pen. GLasso, sc. 1/(k^.5 log(k))
ScaLP, pen. GLasso, sc. 1/k

Final accuracy in function of �nal number of
parameters.

Dotted lines: with ScaLP
Continuous lines: without ScaLP
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Scaling Layers � ScaLP: Stability of the Final Architecture

With asymmetrical scaling layers, we hope that
the �nal width of a layer is independent from
its initial width.

Experiment: train a neural neural network with
one hidden layer of size N for di�erent N
(MNIST).
Test with BN-Lasso and ScaLa with
group-Lasso.

Unlike BN-Lasso, ScaLP with asymmetrical
scaling returns the same network architecture.

Over the runs: the returned architecture is
stable between runs with ScaLP, unlike
BN-Lasso.
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ScaLP, pen. GLasso, sc. 1/(k^.5 log(k))
width: 250, acc.: 98.49 %, 
width: 500, acc.: 98.46 %, 
width: 1000, acc.: 98.56 %, 
width: 2000, acc.: 98.51 %, 
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