Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Logiciels et brevets
Production scientifique
Logiciel Django
Django - theta-subsumption test for Relational Learning
Date de dernière version : 01 juin 2005

Responsable : SEBAG Michèle


Supervised learning intensively relies on the so-called covering test, checking whether a hypothesis covers an example. As the covering test is intensively used during the course of learning, its implementation must be efficient.

In Relational Learning and Inductive Logic Programming, the most commonly used test is the theta-subsumption defined by Plotkin. Based on reformulating theta-subsumption as a binary constraint satisfaction problem (CSP), the Django algorithm combines well-known CSP procedures and theta-subsumption specific data structures. The computational gain is about two orders of magnitude on the previous theta-subsumption algorithms.

Django has been devised by Jérôme Maloberti during his PhD under Michele Sebag's supervision. Why this name ? Because it's fast ! and because Jérôme is a Django Reinhardt's fan :-)

Pour en savoir plus: http://tao.lri.fr/tiki-index.php?page=Django

Logiciel - Licence : GPL



Activités de recherche
  Apprentissage

Membres
  SEBAG Michèle

Equipe
  Apprentissage et Optimisation

Equipe-projet Inria
  TAO
Logiciels et brevets
BOLDR
Query Intermediate Representation Library

CARNAVAL
Database of RNA Recurrent Interaction Networks

PINT
Static analyzer for dynamics of Automata Networks