Français Anglais
Accueil Annuaire Plan du site
Accueil > News du laboratoire > "Sparse correlation screening for large scale data analysis"
"Sparse correlation screening for large scale data analysis"
"Sparse correlation screening for large scale data analysis"
27 mai 2010

A.Hero, professeur de l'Université de Michigan, Chaire d'excellence Digiteo, fera un exposé le mardi 8 juin à Supelec (amphi F3.05) à 14h00.
The problem of correlation screening arises in many disciplines including gene expression analysis, finance, and security, where the number of variables can range from a few hundred to hundreds of thousands. In this case the number p of variables is much larger than the number n of samples making the sample covariance matrix singular.

 

The objective of sparse correlation screening is detection: we wish to find a set of variables that have high correlations or high partial correlations under a user specified false positive constraint. This is in contrast to the well known problem of covariance selection, which is a problem of estimation: it attempts to find a good sparse approximation to sample covariance or inverse covariance.

 

In this talk, we will review several applications of sparse correlation screening, present scalable screening algorithms, develop mathematical theory for predicting error rates and phase transitions, and illustrate the theory and algorithms for bioinformatics problems.

Pour en savoir plus: http://www.eecs.umich.edu/~hero/
News
SWERC 2019-2020
25 janvier 2020
Trois membres du LRI contribuent à l'organisation du SWERC 2019-2020

Wendy Mackay nommée ACM Fellow
19 janvier 2020
pour ses contributions à l'Interaction Humain-Machine et son leadership au sein de l'ACM SIGCHI

Prix de stage de recherche de l'École polytechnique
19 novembre 2019
Quentin Soubeyran a reçu le prix de stage de recherche de l'École polytechnique pour son travail au LRI dans l'équipe Systèmes Parallèles.