
ECE 484/584

Tutorial on Using QtSpim

QtSpim is software that will help you to simulate the execution of MIPS assembly programs. It
does a context and syntax check while loading an assembly program. In addition, it adds in
necessary overhead instructions as needed, and updates register and memory content as each
instruction is executed. Below, is a tutorial on how to use QtSpim.

Where to Get QtSpim?

Download the source from the SourceForge.org link at:
http://pages.cs.wisc.edu/~larus/spim.html
 (See “New versions of spim” text in red at the top of the page.)
Alternatively, you can go directly to:
http://sourceforge.net/projects/spimsimulator/files/
- Note that versions for Windows machines, Linux machines, and Macs are all available

Important Documents to Read :

Kindly make a point to read the below documents before starting, from the Appendix A of the
third edition of Hennessy & Patterson, Computer Organization and Design: The
Hardware/Software Interface. This documentation is far more complete and up-to-date than the
documentation included in the spim distribution. :

Assemblers, Linkers, and the SPIM Simulator (PDF). An overview and reference manual
for spim and the MIPS32 instruction set.

Getting Started with spim (PDF). Overview of the console version of spim (both Unix and
Windows).

Getting Started with xspim (PDF). Overview of the X-windows version of spim.

Getting Starting with PCSpim (PDF). Overview of the Microsoft Windows version of spim.

SPIM Command-Line Options (PDF). Overview of the command line options of spim (all
versions).

SPIM in action

When you open QtSpim, A window will open as shown in Figure 1. The window is divided into
different sections:

1. The Register tabs display the content of all registers.

2. Buttons across the top are used to load and run a simulation

http://books.elsevier.com/us/mk/us/subindex.asp?isbn=1558606041&country=United+States&community=mk&mscssid=T3GQV69C1T2T8NHKQJH2H7ANRW84FXW3
http://books.elsevier.com/us/mk/us/subindex.asp?isbn=1558606041&country=United+States&community=mk&mscssid=T3GQV69C1T2T8NHKQJH2H7ANRW84FXW3
http://pages.cs.wisc.edu/~larus/HP_AppA.pdf
http://pages.cs.wisc.edu/~larus/spim.pdf
http://pages.cs.wisc.edu/~larus/xspim.pdf
http://pages.cs.wisc.edu/~larus/PCSpim.pdf
http://pages.cs.wisc.edu/~larus/SPIM_command-line.pdf

3. The Text tab displays the MIPS instructions loaded into memory to be executed.
(From left-to-right, the memory address of an instruction, the contents of the address
in hex, the actual MIPS instructions – where register numbers are used, the MIPS
assembly that you wrote, and any comments you made in your code are displayed.)

4. The Data tab displays memory addresses and their values in the data and stack
segments of the memory.

5. The Information Console lists the actions performed by the simulator.

 Figure 1 : QtSpim

To run the program in QtSpim:

1. Use a text editor to create your program yyyyyy.s

2. Click on the “load” button and open yyyyyy.s

3. You can then run the program by simply pressing the “run” (play) button – all instructions will
be executed, and the final contents of memory and the register file will be reflected in the
QtSpim window.

Debugging

Suppose your program does not do what you expect. What can you do? QtSpim
has two features that help debug your program.

The first, and perhaps the most useful, is single-stepping, which allows you to run your program
an instruction at a time. The single stepping icon can be found in the toolbar. Every time you
do single stepping, QtSpim will execute one instruction and update its display, so that you
can see what the instruction changed in the registers or memory.

What do you do if your program runs for a long time before the bug arises? You could single-
step until you get to the bug, but that can take a long time. A better alternative is to use a
breakpoint , which tells QtSpim to stop your program immediately before it executes a particular
instruction. When QtSpim is about to execute the instruction where there is a breakpoint, it asks
for continue, single stepping or abort.

Single-stepping and setting breakpoints will probably help you find a bug in your program
quickly. How do you fix it? Go back to the editor that you used to create your program and
change it. Click on the Riinitialize simulator tab in the toolsbar and load the sourcefile again.

Generally Useful Information

When using QtSpim, you may find the following information to be useful:

You can access all of the commands via the “File” and “Simulator” menus as well.

When examining register or memory data, you can view the data in binary, hex, or decimal
format. Just use the “Register” pull down menu to select.

Kernel Text and Kernel Data may not be necessary to be viewed all the times, you can unselect
them by unselecting “Kernel Text” in the “Text Segment” pull down menu and unselecting
“Kernel Data” in the “Data Segment” pull down menu.

You can set breakpoints in your code simply by right clicking on an instruction in the Text tab.

To view memory data, simply click on the Data tab.

By right clicking on a register file value or memory address value, you can change its contents
dynamically.

Example Program

Below is an example program to find the sum of an array. Copy this into a text editor and save it
as a .s file and open it in QtSpim by loading the file. You can directly run it or do single stepping
and observe the change in the Register file. At the end of the Program you should be able to
see the result stored in S1 as “1e” (2+4+6+8+10 = 30 = 0x1e) and the console will print this
result. The code is well commented which should help you start straight away.,

first SPIM program

ECE 484/584

.data # Put Global Data here

N: .word 5 # loop count

X: .word 2,4,6,8,10 # array of numbers to be added'

SUM: .word 0 # location of the final sum

str:

.asciiz "The sum of the array is = "

.text # Put program here

.globl main # globally define 'main'

main: lw $s0, N # load loop counter into $s0

la $t0, X # load the address of X into $t0

and $s1, $s1, $zero # clear $s1 aka temp sum

loop: lw $t1, 0($t0) # load the next value of x

add $s1, $s1, $t1 # add it to the running sum

addi $t0, $t0, 4 # increment to the next address

addi $s0, $s0, -1 # decrement the loop counter

bne $0, $s0, loop # loop back until complete

sw $s1, SUM # store the final total

li $v0, 10 # syscall to exit cleanly from main only, refer to Figure

A.9.1 in the Assemblers, Linkers, and the SPIM
#Simulator document (PDF).

syscall # this ends execution

.end

http://pages.cs.wisc.edu/~larus/HP_AppA.pdf

Steps:

1. Load the program

2. Execute

3. Observe the change in Register contents

