Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Résultat majeur
Production scientifique
Résultat majeur : TORUSDESKTOP: POINTING VIA THE BACKDOOR IS SOMETIMES SHORTER
TORUSDESKTOP: POINTING VIA THE BACKDOOR IS SOMETIMES SHORTER
07 mai 2011

S. Huot, O. Chapuis, P. Dragicevic. ACM CHI 2011.
When pointing to a target on a computer desktop, we may think we are taking the shortest possible path. But new shortcuts become possible if we allow the mouse cursor to jump from one edge of the screen to the opposite one, i.e., if we turn the desktop into a torus. We discuss the design of TORUSDESKTOP, a pointing technique that allows to wrap the cursor around screen edges to open this pointing back- door. A dead zone and an off-screen cursor feedback make the technique more usable and more compatible with every- day desktop usage. We report on three controlled experi- ments conducted to refine the design of the technique and evaluate its performance. The results suggest clear benefits of using the backdoor when target distance is more than 80% the screen size in our experimental conditions.



Activités de recherche
  ° Interaction Homme-Machine

Equipe
  ° Informatique Centrée sur l'Humain
  ° AVIZ

Contact
  [aucun]
Résultats majeurs
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 octobre 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 octobre 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 septembre 2019
Guillaume Doquet (A&O), Best Student Paper Award (category Machine Learning) at ECML 2019.

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 juillet 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
05 juillet 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski