Français Anglais
Accueil Annuaire Plan du site
Accueil > Evenements > Séminaires
ANR Paral-ITP, Kick-off meeting


02 November 2011, 09h00 - 02 November 2011, 18h30
Salle/Bat : 465/PCRI-N
Contact : Burkhart Wolff

Activités de recherche :

Résumé :
Interactive theorem proving is a technology of fundamental importance for mathematics and computer science.
Interactive development of larger and larger proofs increases the demand for computing power, which means explicit
parallelism on current multicore hardware.
The project intends to overcome the sequential model both for Coq and Isabelle, to make the
resources of multi-core hardware available for even larger proof developments. Beyond traditional processing
of proof scripts as sequence of proof commands, and batchloading of theory modules, there is a large space of
possibilities and challenges for pervasive parallelism. This a ffects many layers of each prover system: basic
computational structures, inference kernel, tactical programming, proof command language, and interactive
front-ends.

Project Web Page: http://paral-itp.lri.fr/

Pour en savoir plus : http://www.lri.fr/~wolff/
Séminaires
A Family of Tractable Graph Distances
Gestion de données du Web
Wednesday 04 July 2018 - 10h30
Salle : 465 - PCRI-N
Stratis Ioannidis .............................................

Binary pattern of length greater than 14 are abeli
Combinatoire
Friday 29 June 2018 - 14h30
Salle : 445 - PCRI-N
Matthieu Rosenfeld .............................................

Distributionally Robust Optimization with Principa
Optimisation combinatoire et stochastique
Friday 29 June 2018 - 11h00
Salle : 455 - PCRI-N
Dr. Jianqiang Cheng .............................................

Caractérisation de réseaux égocentrés par l'énumér
Friday 15 June 2018 - 14h30
Salle : 455 - PCRI-N
Raphaël Charbey .............................................

DATA VERACITY ASSESSMENT: HOW A-PRIORI KNOWLEDGE E
Intégration de données et de connaissances
Friday 15 June 2018 - 14h00
Salle : 445 - PCRI-N
Valentina Beretta .............................................